Data Parallel C++ (DPC++)
Programming Model

Abhlshek Bagusetty

eeeeeeeeeeee gineering Group
Argo eadership Comput cility

abagusetty @anl.gov

SYCL - Specification KHRCONOS

GROUP

* SYCL is “not” a programming model but a "language specification”

— Heuristics looks similar to OpenCL-C bindings

— C++ single source (co-exists host and device source code)
— Two distinct memory models (USM and/or Buffer)

— Asynchronous programming (overlaps device-compute,

copy, host operations)
— Portability (functional and performance)
— Productivity

2 Argonne Leadership Computing Facility Argonne 6

Data Parallel C++ (DPC++)

Intel’'s oneAPI Implementation of SYCL = C++ and SYCL*
standard and extensions

Based on modern C++
v C++ productivity fFeatures and familiar constructs

Standards-based, cross-architecture
v’ Incorporates the SYCL standard for data parallelism and
heterogeneous programming

3 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

SYCL* extensions
Productivity

»Simple things should be simple to express
»Reduce verbosity and programmer burden enhance performance

*Give programmers control over program execution
*Enable hardware-specific Features

Fast-moving open collaboration feeding into the SYCL*

standard

v’ Open source implementation with goal of upstream LLVM

v Extensions aim to become core SYCL*, or Khronos*
extensions

4 Argonne Leadership Computing Facility Argonne‘)

AAAAAAAAAAAAAAAAAA

SYCL — A Portable Programming Model

A C++-based programming model for intra-node parallelism

* SYCL is a specification and “not” an implementation, currently compliant to C++17 ISO standards
Cross-platform abstraction layer, heavily backed by industry
Open-source, vendor agonistic

* Single-source model

One-MKL Complex ML frameworks
03:;[)0';2 Standard C++ . can be directly compiled
C++ 1 and accelerated
SYCL-BLAS Application
SYCL-Eigen Libraries C d Frameworks TensorFlow
SYCL-DNN ode

SYCL Parallel STL
++ Templat ++ Tem lat ++ Template C++ templates and lambda
[C++ Template] [c phatLe] [C P } % functions separate host &

Libraries \\/ ;brane; \7 Libraries accelerated device code
C++ Kernel Fusion can @CL SYCL (CPU M
give better performance : Compiler Compiler M “GCC
on complex apps and libs i = Vsual C++
than hand-coding T/ 2 g \7
0’ EL Other ik
pen Backends
Accelerated code U 4 SYCL is ideal for accelerating larger
%asseg Ijnto dei':fice [H CPU][GPU]] "[CPU][GPU D C++-based engines and applications
pe - Compron [FPGA][DSP] [FPGA][DSP] with performance portability

[Al/Tensor HW] [Al/Tensor HW]
J

[Custom Hardware] [Custom Hardware

5 Argonne Leadership Computing Facility Argonneﬁ

AAAAAAAAAAAAAAAAAA

SYCL — Compiler Players

SYCL, OpenCL and SPIR-V, as open industry (SYC: L SYCL enables Khronos to influence
standards, enable flexible integration and i ISO C++ to (eventually) support
deployment of multiple acceleration technologies Source Code heterogeneous compute

UNIVERSITAT
HEIDELBERG

(codeplay’ C ComputeCpp

ComputeCpp :
Multiple
Backends

Uses LLVM/Clang
Part of oneAPI

hipSYCL
Multiple Backends

S T
S -
Any CPU e >
OpenCL nviDia OooniP 1 X
NVIDIA GPUs SPETENE b vioin
27 T-
RO Ope'ncl; 1 Any CPU ‘
Crn <5PIR. 1
e AMD GPUs Intel CPUs 1
SPIR. Intel FPGAs
Intel GPUs AMD GPUs)
Intel CPUs apeticls on drvar 41ACK) RO Level Zero
Intel GPUs Arm Mali Cm
Intel FPGAs IMG PowerVR Intel GPUs

Renesas R-Car AMD GPUs

6 Argonne Leadership Computing Facility Argonneﬁ

AAAAAAAAAAAAAAAA

o

intel. &

SYCL @ NERSC

ssds

Comp oneAPI
* Collaboration between ALCF, NERSC and Codeplay to enable \
support for NVIDIA A100 GPUs in LLVM DPC++/SYCL2020 <
* Initial scope of work complete TGPUS W

- support for tensor cores, USM, atomics, and more available

* Current fFocus on performance, upstreaming features to LLVM,
tracking library support (e.g. FFT, oneMKL)

Intel CPUs, GPUs, FPGAs
PrgEnv-llvm for CPE SPIR. oToenEE
NERSC has developed an additional PrgEnv which adds to the

Cray Programming Environment (CPE) that HPE
provides.

* LLVM compiler with support fFor OpenMP offload, SYCL

®
Argonne S MM (codeplay
NATIONAL LABORATORY

https://docs.nersc.gov/development/programming-models/sycl/

7 Argonne Leadership Computing Facility Credits: Brandon Cook (N ERSC) Arggmgmme

SYCL @ NERSC

8

HOME ABOUT SCIENCE

FOR USERS

» Getting Help

» NERSC Code of Conduct

*» Live Status

» Getting Started

» Accounts & Allocations

» Documentation

» Policies

= My NERSC

» Job Logs & Statistics

» Training & Tutorials
Training Events

Migrating from Cori to
Perimutter Training, Dec 1,
2022

Migrating from Cori to
Perimutter Office Hours, Nov
2022 to Jan 2023

NERSC GPU Hackathon,
Nov-Dec 2022

SpinUp Workshop: Nov-Dec
2022

Data Day 2022, October
26-27

GPUs for Science day 2022,
October 25th

Quantum for Science day

Argonne Leadership Computing Facility

My NERSC | A-Z Index | *& Share | 5§ Follow

search...

Powering Scientific Discovery Since 1974

SYSTEMS WUl NEWS R&D EVENTS LIVE STATUS

Home » For Users » Training & Tutorials » Training Events » An Introduction to Programming with SYCL on Perlmutter and Beyond, March 1, 2022

AN INTRODUCTION TO PROGRAMMING WITH SYCL ON
PERLMUTTER AND BEYOND, MARCH 1, 2022

Introduction

SYCL is an open standard programming model that allows developers to use standard C++ code to program for a range of GPUs
and other accelerator processors. This means that it is possible to develop using modern C++ code and target Nvidia, AMD and
Intel GPUs from a single code base. To enable SYCL on the latest supercomputers, Codeplay has been working in partnership with
different National Laboratories to bring SYCL support to Perimutter, Polaris and Frontier.

Join engineers from Codeplay for a half day hands-on workshop that will walk through the fundamentals of SYCL programming
using practical examples and exercises to help reinforce the learning. Attendees will also learn how to compile their SYCL code
using the DPC++ compiler to target Nvidia GPUs including those on the Perlmutter supercomputer. Lastly, we’'ll talk about some of
the things you need to know to achieve good performance, including best practices for memory management, with free time for
questions and discussions.

ALCF and OLCF users are welcome to this training. NERSC training accounts will be provided if needed.

Workshop Leader: Hugh Delaney, Software Engineer, Codeplay Software

Course Outline

« Introduction

Argonne &

NATIONAL LABORATORY

Queues & Contexts

“SYCL Queues” provide mechanism to submit work to a device
“SYCL Contexts” is well known to be over-looked

sycl::queue Que; // implicitly creates a SYCL context

Context (aka cuContext)

* Contexts are used for resources isolation and sharing

* A SYCL context may consist of one or multiple devices

* Memory created can be shared only if their associated queue(s) are created using the same context

Queue (aka CUDA Stream)
“ Executes “"asynchronously” from host code
“ SYCL queue can execute tasks enqueued in either “in-order” or “out-of-order (default)”
“ SYCL queue (in-order) is similar to CUDA stream (FIFO)

9 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

Bring You Own Compiler — Perlmutter

(~30 mins, plan accordingly)

Download the compiler:
git clone -b sycl https://github.com/intel/llvm

I

Build & Install: (takes a while)

module load cudatoolkit/11.5
export DPCPP_HOME=$HOME

cd llvm
export CUDA_LIB_PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/21.11/cuda/lib64/stubs

CC="which gcc® CXX="which g++" python $DPCPP_HOME/llvm/buildbot/configure.py --cuda --cmake-gen="Unix Makefiles" --cnake-opt="-
DCUDA_TOOLKIT_ROOT_DIR=/opt/nvidia/hpc_sdk/Linux_x86_64/21.11/cuda/11.5"

I

Where are my SYCL compilers installed ?
train515@nid001608:~/llvm/build/bin>

python $DPCPP_HOME/llvm/buildbot/compile.py

10 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

Porting from CUDA to SYCL

&= = YCL

NVIDIA.

CUDA

AAAAAAAAAAAAAAAA

Execution Model: CUDA vs SYCL

Work Items

Sub-groups are subset of the work-items that are executed
simultaneously or with additional scheduling guarantees.

Leveraging sub-groups will help to map execution to low-level
hardware and may help in achieving higher performance.

12 Argonne Leadership Computing Facility Argonneﬁ

AAAAAAAAAAAAAAAAAA

Why use SYCL - sub groups ?

Sub-Group = subset of work-items within a work-group.

A subset of work-items within a work-group that execute with additional guarantees and often
map to SIMD hardware.

*Work-items in a sub-group can communicate directly using shuffle operations, without repeated
access to local or global memory, and may provide better performance.

*Work-items in a sub-group have access to sub-group collectives, providing fast implementations
of common parallel patterns.

sub-group of work-group of
4 work-items (4,4,4) work-items "

& A

O O oo

of work-group

dimension 1

dlmenswn 0 / of ND-range
of sub-group dimension 0
+“—>r
dimension 2 °f work-group
of work-group v dimension 0
P . of ND-range
dimension 2
of ND-range
Work-item Sub-group Work-group ND-Range

13 Argonne Leadership Computing Facility Arggmgm%

Memory Model: CUDA vs SYCL

Memory Type Scope Memory Type Scope
Register memory Thread Private memory Work-item
Shared memory Block Local memory Work-group
Global memory Grid (all threads) Global memory All work Items
Allocation Type Initial Location Accessible By Migratable To
device device host No host No
device Yes device N/A
Another device Optional (P2P) Another No
device
host host host Yes host N/A
Any device Yes device No
shared Unspecified host Yes host Yes
device Yes device Yes
Another device Optional Another Optional
device

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-

14 Argonne Leadership Computing Facility 2020.html#table.USM.allocation.characteristics

AAAAAAAAAAAAAAAAAA

Memory Model: Global Memory

CUDA SYCL

Memory Type Scope Memory Type Scope
Register memory Thread Private memory Work-item
Shared memory Block Local memory Work-group
Global memory Grid (all threads) Global memory All work Items

// allocating device memory

float *A dev;
cudaMalloc((void **)&A dev, array size * sizeof(float)):;

4

sycl::queue g(syckl::gpu selector{});
float *A dev = sycl::malloc_device<float>(array size, q);

// allocating device memory

* SYCL's Global/Device allocated memory is only valid on the
device

% Maore.imeerantly not.gesggsiple from host

AAAAAAAAAAAAAAAAAA

Vector Addition: SYCL Buffer memory model

#include <sycl/sycl.hpp>
#include <iostream>

L Create SYCL buffers
void main() { . _
using namespace sycl; using host pointers.
Float A[1024], B[1024], C[1024];
Host { Create a queue to submit work
Code buffer<float, 1> bufA { A, range<1> {1024} }; to a GPU

buffer<float, 1> bufB { B, range<1> {1024} };
buffer<float, 1> bufC { C, range<1> {1024} };
Read/write accessors create

_» dependencies
if other kernels or host access

queue myQueus;
myQueue.submit([&](handler& cgh) {
auto accA = bufA.get_access<access::read>(cgh);

: auto accB = bufB.get_access<access::read>(cgh); buffers.
Device auto accC = bufC.get_access<access::write>(cgh);
Code
cgh.parallel_for<class vector_add>(range<1> {1024}, [z](id<1>i) { = \/ector addition device kernel
accC[i] = accA[i] + accBi];
i
}.wait();
}
Host for (inti=0;i<1024;i++)
Code std::cout << “C[" << i<< "] =" << (][i] << std::end|;

}

16 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

Vector Addition: SYCL USM memory model

#include <sycl/sycl.hpp>
#include <iostream>

Step 1: Create SYCL queue
to create GPU

void main() {
Float A[1024], B[1024], C[1024];
// initialize A, B, C with values on host

sycl::queue myQueue;

Host Float* devA = sycl::malloc_device<float>(1024, myQueue); /I Step 2: Allocate device memorﬂ
Code float* devB = sycl::malloc_device<float>(1024, myQueue);

float* devC = sycl::malloc_device<float>(1024, myQueue);

. _ | Step 3 (H2D): copy inputs “A” &
myQueue.memcpy(devA, A, 1024 * sizeof(float)); “B” to GPU
myQueue.memcpy(devB, B, 1024 * sizeof(float)); =~

myQueue.parallel for<class vector_add>(range<1> {1024}, [=](id<1>i) { .
Device devC[i] = devAl[i] + devBi]; — Etep . (Compute). AU e
); ernel on device
Code
myQueue.memcpy(C, devC, 1024 * sizeof(float));
» | Step 5 (D2H): Copy result
For (inti=0;i<1024; i++) “devC” back to host
Host std::cout << “C[" << i<< "] =" << ([i] << std::endl;
Code }

17 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

Vector Addition: SYCL USM memory model

#include <sycl/sycl.hpp> SYCL queue (by-default) is out-of-
#include <iostream> order. (i.e., the execution starts
void main{) { when possible. Duty of

programmer to assure correct
dependencies

Float A[1024], B[1024], C[1024];
// initialize A, B, C with values on host

sycl::queue myQueue;

Host float* devA = sycl::malloc_device<float>(1024, myQueue); . .
Cod float* devB = sycl::malloc_device<float>(1024, myQueue); myQueue'Walt()' wait for H2D to
oks Float* devC = sycl:malloc_device<float>(1024, myQueue); complete before starting the
kernel

myQueue.memcpy(devA, A, 1024 * sizeof(float));
myQueue.memcpy(devB, B, 1024 * sizeof(float));

myQueue.parallel_for<class vector_add>(range<1> {1024}, [=](id<1> i) { . .
Device dev([i] = devA[i] + devB]i]; myQueue.wait(), wait fFor
Code Di — the kernel to finish

myQueue.memcpy(C, devC, 1024 * sizeof(float));

For (inti=0;i<1024; i++) \
Host std::cout << “C[" <<i<< "] =" << ([i] << std::end|;

Code }

myQueue.wait(), wait for D2H to
complete before printing “C"

18 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

Vector Addition: SYCL USM memory model

#include <sycl/sycl.hpp> SYCL queue (in-order) i.e., FIFO
#include <iostream> like cudaStream_t
void main() {

Float A[1024], B[1024], C[1024];
// initialize A, B, C with values on host

sycl::queue myQueue(sycl::property_list{sycl::property::queue::in_order{}});
Host float* devA = sycl::malloc_device<float>(1024, myQueue);
Code float* devB = sycl::malloc_device<float>(1024, myQueue);

float* devC = sycl::malloc_device<float>(1024, myQueue);

myQueue.memcpy(devA, A, 1024 * sizeof(float));
myQueue.memcpy(devB, B, 1024 * sizeof(float));

myQueue.parallel_for<class vector_add>(range<1> {1024}, [=](id<1> i) {
Device dev([i] = devA[i] + devB]i];
Code ;

myQueue.memcpy(C, devC, 1024 * sizeof(float));

For (inti=0;i<1024; i++) \
Host std::cout << “C[" <<i<< "] =" << ([i] << std::end|;

Code }

myQueue.wait(), wait for D2H to
complete before printing “C"

19 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

Performance Benchmarks

RSBench Performance
BabelStream Performance
10000000
1600000
9000000
1400000 000000
1200000 7000000
1000000 A
g ¢ 6000000
£ 800000 @
g 2 5000000
600000 o
€ 4000000
400000 -
3000000
200000
2000000
0
Copy Triad 1000000
0
Bcuda Msycl-al00 Whip Msycl-mil00 cuda sycl-a100 sycl-mi100
Lulesh Performance DSlash Performance
1400 -
28000
1200
27000
1000
26000
f& 5% 800
S 25000 T
5 @ 600
(1
24000
|||I 400
23000
200
cuda sycl-a100 sycl-mi100 cuda sycl-a100 syclk-mi100
Argonne &

NATIONAL LABORATORY

20 Argonne Leadership Computing Facility

Tools : How to port existing CUDA to SYCL ?

CUDA* to SYCL* Code Migration & Development Workflow
Intel® DF

Assist in migrati

HumanReadable

CUDA Source Code SYCLomatic Hwrth SYCL Single Source ,&f Crl"n["@r“’DL'Lrar'e“’ (A }let“\' C:[n ML}.QE'F-"%DGE'CGS’ o)
- | e A
S e e nalyzers, Lebuggers renitecture/Venaor Agnostic
i3
#include W E - ¥ oy !
4171 E =PL
<cuda_runtime.h> B E I_ - 3 ,_,] -
__global__ woid .. £ e
my cuda_routine() I JoF
1i-1E GPU
e
.. 1.1 FPGA
T""l_-:
: 2 - Ture perDesired ——
Wal=le] o o % q= E A
3 20 93_"’ ; Format & Structure Architecture Performance i -] E Otheraccel
Code Transformed Freserved E B
github cem/ereapi-sre/SY Clomatic
+ Intel estimates as of September 202 1. Based on measurements ona set of 70 HPC benchmarks and samples, with examples like Rodinia, SHOC, PENMANT. Results mayvary.
brands may be claimedas the property of others. 5YCL is a trademark of the Khronas Group Inc.

SYCLomatic: A “open-source” New CUDA*-to-SYCL* Code Migration Tool

https://github.com/oneapi-src/SYCLomatic

Additional Resources:
https://developer.codeplay.com/products/computec

/ce/quides/sycl-for-cuda-developers/cuda-to-sycl-examples
21 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/cuda-to-sycl-examples

Math Libraries : What are my options for
cublas,cu* ?

<= open-source implementation of the oneMKL Data Parallel C++ (DPC++) interface
= works with multiple devices (backends) uses vendor device-specific libraries underneath

Note: Apart of device-backend, supports host-CPU interface: Intel MKL, NETLIB

NVIDIA AMD Intel
BLAS cuBLAS rocBLAS oneMKL
Linear Solvers cuSOLVER (rocSOLVER) oneMKL
Random Numbers | ¢ ,rAND rocRAND oneMKL
FFT (cuFFT) (rocFFT) (oneMKL)

(work-in-progress)

22 Argonne Leadership Computing Facility Argonne‘)

AAAAAAAAAAAAAAAAAA

Questions

https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/cuda-to-sycl-examples
https://www.intel.com/content/www/us/en/developer/articles/training/intel-dpcpp-compatibility-tool-training.html

23 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/cuda-to-sycl-examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

