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Data Management Technologies

• Scientific Data Analytics Software Stack
• Deep Learning on HPC IO Platforms
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Data Management Challenges

• Achieving   IO Performance is hard
• Tuning I/O is complex

•Even along “the happy path”
•Multi-layered stack
•Scores of tunable parameters

• What is not measured cannot be improved!
•Determine baseline for every layer
•Measure overhead for each component
• Iterate: diff against baseline � tune � measure
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Data Management Challenges

• “Big Data” adds new and different complexity
•More moving parts and layers

•More permutations to analyze
•Middleware/Runtime/Library implementation issues

•Big Data >>> O (GB)
•KNL Nodes on Cori:

• 96 GB DDR4
• 16 GB MCDRAM

•Scientific Datasets Typically:
• Very Large: O (TB, PB)
• Very Complex: Hundreds of channels, Extreme Resolution



Factors Affecting I/O Performance

•Workload Type (I/O, Network, Memory, Compute)
• Is I/O even the bottleneck?

•What proportion of application runtime spent doing I/O?
•Use case may be compute/memory bound

•Extract and run I/O kernel (i.e. “null” computation)
•Compare against known baselines:

•Realistic Peak Throughput on Cori
• 3 GB/s per Lustre OST (Theoretical)
• ~1 GB/s per Haswell Core



Factors Affecting I/O Performance

• File System (Physical Layout)
•Parallelism: Serial vs Parallel
•Concurrency: Exclusive vs Shared

•How many Lustre clients per OST?
•How many threads (or cores) per client? (KNL requires more)

•Striping Layout: width, count, alignment
•Data Format (Logical Layout)

• Text vs Binary, Raw vs Compressed
•Row-major vs Column-Major order, Chunked



Factors Affecting I/O Performance

•Access Pattern: Sequential vs Strided vs Random
•Does access pattern match file layout?

•Reading columns from data stored row-wise
•Misalignment of data transfers with stripe boundaries

•Use I/O profiling tools to examine pattern
•e.g. Darshan; but only works with MPI



HDF5 in TensorFlow

•Requirements
• Feed data from HDF5 files to TensorFlow

•And possibly other data analytics frameworks in the future
•Needs to be fast and multi-threaded.
•Buffer data for efficient shuffling
•Allow overlapping I/O with computation
• Flexible / Tunable with respect to

•Number of files
•HDF5 datatypes and array shapes



HDF5 in TensorFlow

• Implementations
•Python-based File Iterator (Naïve)

•Easy to implement and change; Customized for specific dataset
•Not multi-threaded and cannot be used for shared files.

• File Queue Runner (Deprecated)
•Threaded I/O when working with multiple files; data prefetching
•Tedious to implement, deadlock prone

•Dataset API (Recommended)
•Threaded I/O when working with multiple files; data prefetching
•Must be implemented for every File System



HDF5 in TensorFlow

• Preliminary Results
• Read 80 GiB from 4 HDF5 files stored on Lustre
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Possible Next Steps

•Benchmarking & Analysis
•Will need more real science applications to tune
•Develop synthetic benchmarks from IO Kernels

•Extending existing libraries for IO scaling 
•Parallel I/O support for TensorFlow

•FileSystem Interface?
•MPI-IO over Lustre?

•Multi-threading support for HDF5
•Non-MPI Scaling & Parallel I/O

•Scale TensorFlow using novel exascale technologies?



Possible Next Steps

•Explore I/O strategies for scaling Deep Learning
•Hyperparameter Optimization

•Single data stream, no partitioning, multiple models
• I/O Strategy: Embarrassingly Parallel, Shuffle (e.g. MPI_Allgatherv)

•Data Parallelism
•Multiple data streams, vertical partitioning, replicated model
• I/O Strategy: Embarrassingly parallel, Stripe aligned

•Model Parallelism
•Multiple data streams, horizontal partitioning, distributed model
• I/O Strategy: Read Coalescing, Chunking



Summer Project – Fahim Chowdhury

•Evaluate Applications
• Instrument Applications and Frameworks
• Find I/O Bottlenecks
•Determine Solutions and Implement Them
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Next Exploration Scopes

ØAdded Flag to Ignore Training

ØCan Try to Run the Tests with Training Disabled

ØAdded Provision to Test Checkpointing by TimeLogger

ØCan Try to Run the Tests with this feature

ØHave to Perform Deeper Analysis on the Bandwidth for Parallel IO in 
Climate Data Benchmark

ØTo Have a Look into the PyTorch Benchmark

ØTo Try Running the Climate Data Tests Using Burst Buffer
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