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lceCube Neutrino Observatory

@ Project goal is to detect
high-energy extraterrestrial i
neutrinos, originating from e.g.
black holes and supernovae

IceCube Lab

@ Neutrinos interact only
through gravity and weak
subatomic force, making them
excellent intergalactic
messengers
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@ Detection is made difficult due
to overwhelming cosmic ray
background noise

Figure: IceCube sensor array

Nicholas Choma and Joan Bruna Graph Neural Networks for Neutrino Classific: July 18, 2018 3/23



IceCube Dataset

@ Cubic km, irregular hexagonal eeCube Lab
grid of 5160 sensors for

50m
detecting neutrinos X

@ Each detection event involves
only a subset of all sensors

o Data is generated by
simulators using first principles
from physics

1450m —+—

2450m
@ About 4x more background agoom L

events than signal. Samples
weighted based upon yearly
frequency

— DeepCore

Eiffel tower
324m

Figure: IceCube sensor array
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lceCube Physics Baseline

@ Sequence of cuts based upon
energy loss stochasticity and
energy vs. zenith angle used to
obtain baseline

@ Current baseline keeps:

» 1 weighted signal event per
year
» 1:1 signal-noise ratio (SNR)  Figure: Background (left) and signal
(right) events
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Geometric Deep Learning

@ Graph- and
manifold-structured data

Point clouds

Social networks

3D shapes

Molecules

Gaussian kernel, GCNN layer 4

vV vy vYyy

@ Graph neural network models:

» Learned information
diffusion processes

» Convolution based upon
spectral filters

» Graphs performing local
neighborhood operations

o See [Bronstein et al., 2016] for Figure: Point cloud er_nbedded in_3D.
. . Graph constructed using a Gaussian
Geometric Deep Learning

kernel.
survey
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Graph Neural Networks (GNN) and IceCube

@ Graph constructed with DOMs

as vertices, edges learned

@ Computation restricted to
active DOMs only

@ GNN model able to use
IceCube structure to learn
efficiently

@ Translation invariance not
required as in 3D
Convolutional Neural Network
(CNN)

sssss

220m

Figure: IceCube sensor array (left),
overhead view (top right), and sensor
(bottom right)
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lceCube GNN Architecture

Task

Input: n x 6-tuple of (domx, domy, domz, first_charge, total_charge,
first_time)
Output: Prediction € [0, 1]

GNN Overview:

© Compute adjacency matrix of pairwise distances between DOMs
active in a given event

@ Apply graph convolution layers

© Pool graph nodes and apply final network output layer on all features
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Step 1: Compute adjacency matrix

@ Pairwise distances are computed using a Gaussian kernel function
@ Only spatial coordinates are used (domx, domy, domz)

@ 0 is a scalar, learned parameter

Gaussian kernel ’

djj = exp(—3]1x — xi[[?/0?)

@ A softmax function is applied to each row to get adjacency matrix A

A — exp(dj;)

Softmax
i = Y, exp(di) |
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Step 2: Apply Graph Convolution Layers

@ Model uses eight layers of graph convolution with 64 features each
o Each layer is divided into two 32-feature graph convolutions, one
which has a pointwise nonlinearity (ReLU) applied
» ReLU(x) = max(0, x)
@ Linear and nonlinear outputs are concatenated - denoted by || symbol

- to produce the layer output
@ t indexes the graph convolution layer, d is the number of features

Graph Convolution Layer
Input: X(®) ¢ R
Output: X(t+1) ¢ Rrxd“+?
Xpiin = ReLU(GConv(X (1))
Xiin = GConv(X(t))
XD = X ool | Xntin
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Step 2 (cont.): GConv, Operators and Transformation

@ Signal is spread over graph via two operators
» A, graph adjacency matrix
> [, identity matrix

@ OQutputs of operators acting on graph signal are concatenated

_ J(t+1) J(t+1)
o Linearly transformed by learned 6, € R2d!x ,0p e R 2

GConv update
Spread(X(t)) = AX(f)||/X(t)

t t
GConv(X()) = Spread(X(t))HSv) + 92)
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Step 3: Final Readout Layer

o Final layer sums over all points to produce X(¢"d) ¢ R?

o Features are then linearly transformed by 8{" ¢ Rd,Gl()e”d) €R
e A prediction yureq € [0, 1] is output using a sigmoid function

> Sigmoid(x) = i

Readout
X[Eend E Xend 1)

Ypred = Sigmoid(X(e"d)Tg‘(Nend) 4 gl()end))
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Results

o Final deep learning selection on the test set gives
» 5.77 neutrinos per year
> 1.94 cosmic muons per year

x CNN
®m  GNN
Baseline

True Positive Rate (Signal Efficiency)

0.0 T T T T T T
1077 10°¢ 107° 10°% 1077 1072 101 10°
False Positive Rate (1- BG rejection)

Figure: Receiver operating characteristics (ROC) curve
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Future Directions, Performance

Models currently require =~ 2 days to train. Future directions will address
this with several ideas:

© Parallelization using multiple compute nodes

© Kernel adjacency matrix sparsity

© O(nlogn) implementation using hierarchical clustering
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Parallelization using multiple compute nodes

On each compute node, process subset of minibatch and compute

gradients of parameters. Then combine all gradients for minibatch and
take gradient step.

Benefits:

@ Run larger minibatches (> 5 samples currently) for faster training
o Faster hyperparameter, architecture experimentation
Challenges:
@ Long idle time for any compute node processing a small event
@ Larger minibatches may affect model convergence
@ No asymptotic speedup
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Kernel adjacency matrix sparsity

Perform KNN-search for each graph node, or remove weighted edges from
graph below cutoff threshold, to create sparse graph adjacency matrix.

Benefits:

@ Reduces compute time (wall and asymptotic) once sparse adjacency
matrix is built

Challenges:
e Still O(n?) cost in building sparse adjacency matrix

@ Graph may no longer be connected
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O(nlogn) implementation using hierarchical clustering

Idea
Create sparse graph which guarantees connectivity between distant
vertices.

© Recursively divide the graph into two subsets of vertices, building a
binary tree with a unique subset of at most k vertices at each tree leaf

@ Internal tree nodes become new vertices in the graph and connect to
all descendants, guaranteeing O(nlog n) edges in constructed graph

© Vertices within a tree leaf are densely connected
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O(nlogn) Graph construction example
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O(nlogn) Graph construction example

Nicholas Choma and Joan Bruna Graph Neural Networks for Neutrino Classific: July 18, 2018 18 / 23



O(nlogn) implementation using hierarchical clustering

Benefits:

@ Improved asymptotic time complexity for large graphs

@ Wall time cost improved for graphs with =~ 1000 nodes, as in lceCube

@ No risk of having isolated subsets of the graph as in sparse case
Challenges:

@ Preliminary results show promise, but worse than best GNN

@ Need to use policy gradient to learn splitting procedure since discrete

splits not differentiable
@ Training on batches not straightforward
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Future Directions, Next Tasks

Several additional interesting problems may be greatly improved upon
through the use or continued development of GNNs:

@ Beyond Standard Model (BSM) jet classification

@ Quantum chemistry property estimation

© Particle tracking, jet physics
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Jet Classification

Goal: Classify a jet event as interesting - e.g., as resulting from the decay
products of a Higgs Boson

Task

Input: An event, which consists of n particles in the point cloud. Each
particle consists of 6 features derived from its 4-momenta
Output: Prediction € [0, 1]

@ Nearly identical format as the IceCube dataset

o Classification accuracy improved by using a custom kernel inspired by
jet physics for creating the pairwise adjacency matrix
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Quantum Chemistry

Goal: Predict quantum properties of organic molecules, resulting in a
machine learning model which reduces compute time by orders of
magnitude over traditional methods

Task

Input: A molecule, consisting of n atoms and their type (e.g. N, O, F),
and the bonds between them
Output: Real value for a quantum chemistry property of interest

@ Gilmer et al., 2017 use message passing neural networks to
successfully predict 11 of 13 properties considered

@ Current work focuses on incorporating line graphs into GNN
architectures for modeling of higher-order interactions
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Particle Tracking

Goal: Reconstruct particle tracks from 3D points captured in particle
detectors

Task

Input: An event, consisting of n detector hits, their (x, y, z) positions, and
their charges

Output: n predictions € {0,1, ..., k}, where k is unique for each event

@ Challenges

» n = 100,000
» k ~ 10,000, but unknown a priori

e Combines both hierarchical graph pooling and the O(nlog n) model
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