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IceCube Neutrino Observatory

Project goal is to detect
high-energy extraterrestrial
neutrinos, originating from e.g.
black holes and supernovae

Neutrinos interact only
through gravity and weak
subatomic force, making them
excellent intergalactic
messengers

Detection is made difficult due
to overwhelming cosmic ray
background noise

Figure: IceCube sensor array
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IceCube Dataset

Cubic km, irregular hexagonal
grid of 5160 sensors for
detecting neutrinos

Each detection event involves
only a subset of all sensors

Data is generated by
simulators using first principles
from physics

About 4x more background
events than signal. Samples
weighted based upon yearly
frequency

Figure: IceCube sensor array
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IceCube Physics Baseline

Sequence of cuts based upon
energy loss stochasticity and
energy vs. zenith angle used to
obtain baseline

Current baseline keeps:
I 1 weighted signal event per

year
I 1:1 signal-noise ratio (SNR) Figure: Background (left) and signal

(right) events
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Geometric Deep Learning

Graph- and
manifold-structured data

I Point clouds
I Social networks
I 3D shapes
I Molecules

Graph neural network models:
I Learned information

diffusion processes
I Convolution based upon

spectral filters
I Graphs performing local

neighborhood operations

See [Bronstein et al., 2016] for
Geometric Deep Learning
survey

Figure: Point cloud embedded in 3D.
Graph constructed using a Gaussian
kernel.
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Graph Neural Networks (GNN) and IceCube

Graph constructed with DOMs
as vertices, edges learned

Computation restricted to
active DOMs only

GNN model able to use
IceCube structure to learn
efficiently

Translation invariance not
required as in 3D
Convolutional Neural Network
(CNN)

Figure: IceCube sensor array (left),
overhead view (top right), and sensor
(bottom right)
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IceCube GNN Architecture

Task

Input: n x 6-tuple of (domx, domy, domz, first charge, total charge,
first time)
Output: Prediction ∈ [0, 1]

GNN Overview:

1 Compute adjacency matrix of pairwise distances between DOMs
active in a given event

2 Apply graph convolution layers

3 Pool graph nodes and apply final network output layer on all features
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Step 1: Compute adjacency matrix

Pairwise distances are computed using a Gaussian kernel function

Only spatial coordinates are used (domx, domy, domz)

σ is a scalar, learned parameter

Gaussian kernel

dij = exp(−1
2 ||xi − xj ||2/σ2)

A softmax function is applied to each row to get adjacency matrix A

Softmax

Aij =
exp(dij )∑
k exp(dik )
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Step 2: Apply Graph Convolution Layers

Model uses eight layers of graph convolution with 64 features each
Each layer is divided into two 32-feature graph convolutions, one
which has a pointwise nonlinearity (ReLU) applied

I ReLU(x) = max(0, x)

Linear and nonlinear outputs are concatenated - denoted by || symbol
- to produce the layer output
t indexes the graph convolution layer, d is the number of features

Graph Convolution Layer

Input: X (t) ∈ Rnxd (t)

Output: X (t+1) ∈ Rnxd (t+1)

Xnlin = ReLU(GConv(X (t)))

Xlin = GConv(X (t))

X (t+1) = Xnlin||Xnlin
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Step 2 (cont.): GConv, Operators and Transformation

Signal is spread over graph via two operators
I A, graph adjacency matrix
I I , identity matrix

Outputs of operators acting on graph signal are concatenated

Linearly transformed by learned θw ∈ R2d (t)x d(t+1)

2 , θb ∈ R
d(t+1)

2

GConv update

Spread(X (t)) = AX (t)||IX (t)

GConv(X (t)) = Spread(X (t))θ
(t)
w + θ

(t)
b
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Step 3: Final Readout Layer

Final layer sums over all points to produce X (end) ∈ Rd

Features are then linearly transformed by θ
(end)
w ∈ Rd , θ

(end)
b ∈ R

A prediction ypred ∈ [0, 1] is output using a sigmoid function
I Sigmoid(x) = 1

1+e−x

Readout

X
(end)
k =

∑
j X

(end−1)
jk

ypred = Sigmoid(X (end)T θ
(end)
w + θ

(end)
b )
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Results

Final deep learning selection on the test set gives
I 5.77 neutrinos per year
I 1.94 cosmic muons per year

Figure: Receiver operating characteristics (ROC) curve
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Future Directions, Performance

Models currently require ≈ 2 days to train. Future directions will address
this with several ideas:

1 Parallelization using multiple compute nodes

2 Kernel adjacency matrix sparsity

3 O(nlogn) implementation using hierarchical clustering
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Parallelization using multiple compute nodes

On each compute node, process subset of minibatch and compute
gradients of parameters. Then combine all gradients for minibatch and
take gradient step.

Benefits:

Run larger minibatches (> 5 samples currently) for faster training

Faster hyperparameter, architecture experimentation

Challenges:

Long idle time for any compute node processing a small event

Larger minibatches may affect model convergence

No asymptotic speedup
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Kernel adjacency matrix sparsity

Perform KNN-search for each graph node, or remove weighted edges from
graph below cutoff threshold, to create sparse graph adjacency matrix.

Benefits:

Reduces compute time (wall and asymptotic) once sparse adjacency
matrix is built

Challenges:

Still O(n2) cost in building sparse adjacency matrix

Graph may no longer be connected
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O(nlogn) implementation using hierarchical clustering

Idea

Create sparse graph which guarantees connectivity between distant
vertices.

1 Recursively divide the graph into two subsets of vertices, building a
binary tree with a unique subset of at most k vertices at each tree leaf

2 Internal tree nodes become new vertices in the graph and connect to
all descendants, guaranteeing O(n log n) edges in constructed graph

3 Vertices within a tree leaf are densely connected
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O(nlogn) Graph construction example
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O(nlogn) implementation using hierarchical clustering

Benefits:

Improved asymptotic time complexity for large graphs

Wall time cost improved for graphs with ≈ 1000 nodes, as in IceCube

No risk of having isolated subsets of the graph as in sparse case

Challenges:

Preliminary results show promise, but worse than best GNN

Need to use policy gradient to learn splitting procedure since discrete
splits not differentiable

Training on batches not straightforward
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Future Directions, Next Tasks

Several additional interesting problems may be greatly improved upon
through the use or continued development of GNNs:

1 Beyond Standard Model (BSM) jet classification

2 Quantum chemistry property estimation

3 Particle tracking, jet physics
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Jet Classification

Goal: Classify a jet event as interesting - e.g., as resulting from the decay
products of a Higgs Boson

Task

Input: An event, which consists of n particles in the point cloud. Each
particle consists of 6 features derived from its 4-momenta
Output: Prediction ∈ [0, 1]

Nearly identical format as the IceCube dataset

Classification accuracy improved by using a custom kernel inspired by
jet physics for creating the pairwise adjacency matrix
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Quantum Chemistry

Goal: Predict quantum properties of organic molecules, resulting in a
machine learning model which reduces compute time by orders of
magnitude over traditional methods

Task

Input: A molecule, consisting of n atoms and their type (e.g. N, O, F),
and the bonds between them
Output: Real value for a quantum chemistry property of interest

Gilmer et al., 2017 use message passing neural networks to
successfully predict 11 of 13 properties considered

Current work focuses on incorporating line graphs into GNN
architectures for modeling of higher-order interactions
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Particle Tracking

Goal: Reconstruct particle tracks from 3D points captured in particle
detectors

Task

Input: An event, consisting of n detector hits, their (x , y , z) positions, and
their charges
Output: n predictions ∈ {0, 1, . . . , k}, where k is unique for each event

Challenges
I n ≈ 100, 000
I k ≈ 10, 000, but unknown a priori

Combines both hierarchical graph pooling and the O(n log n) model
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