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Monte Carlo Simulation: Why

Understand how detector design affect 

measurements and physics

Correct for inefficiencies, inaccuracies, 

unknowns.

Theory models to compare data against.

Detailed simulation of subatomic particles is 
essential for data analysis, detector design
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A good simulation demonstrates that we understand the detectors and the 

physics we are studying
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The problem

Complex physics and geometry modeling

Heavy computation requirements

>50% of WLCG power for simulations

Current code cannot cope (HL-LHC in 2025)

Currently available solutions detector 
dependent

Focus on EM Calorimeter
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200 Computing centers in 20 countries:     

> 600k cores

@CERN (20% WLCG): 65k cores; 

30PB disk + >35PB tape storage 

Campana, CHEP 2016

ATLAS experiment:

https://indico.cern.ch/event/505613/contributions/2241721/attachments/1344208/2032301/Oral-90.pdf
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Classical Monte Carlo simulation

1. Calculate step particle 
could travel before doing a 
PHYSICS interaction

2a. Chek if step is within 
volume 
boundaries(GEOMETRY)

3. Propagate with selected 
step

5. PHYSICS 
process

4. Repeat 2,3 until reaching volume 
boundary. 
Restart from 1

Repeat stages 1 to 5 :

- For every particle trajectory step
- For every primary particle 
- For every secondary particle

simplified from 
A. Gheata

https://indico.cern.ch/event/656336/timetable/#20171110
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Deep Learning for fast simulation

Generic approach

Can encapsulate expensive computations 

Inference step is faster than algorithmic 

approach

Already parallelized and optimized for 

CPUs/HPCs. 

Industry building highly optimized 

software, hardware, and cloud services. 

Improved, efficient and accurate fast simulation
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Can we keep accuracy while doing things faster? 
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Requirements

Precise simulation results:

Detailed validation process

A fast inference step

Generic customizable tool 

Easy-to-use and easily extensible framework

Large hyper parameters scans and meta-optimisation:

Training time under control

Scalability

Possibility to work across platforms
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A DL engine for fast simulation

Start with time consuming detectors

Reproduce particle showers in 
calorimeters

Train on detailed simulation

Test training on real data

Test different models

Generative Adversarial Networks

Embed training-inference cycle in 
simulation

8

Intel
Parallel 
Computing 
Center  2017
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Can image-processing approaches be 
useful? 

Can we preserve accuracy while increasing 
speed? 

Can we sustain the increase in detector 
complexity (future highly-granular 
calorimeters)? 

How generic is this approach?

Can we “adjust” architecture to fit a 
large class of detectors? 

What resources are needed?
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A plan in two steps

• A first proof of concept

• Understand performance and 

validate accuracy

• Prove generalisation is possible

• Understand and optimise
computing resources

• Reduce training time

• HPC friendly
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CLIC Calorimeter

Array of absorber material and silicon sensors
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Ispy visualisation

25 2525

Detector output is 

essentially a 3D image 

Pierini, DS@HEP(*) http://cds.cern.ch/record/2254048#

CLIC (Compact LInear Collider) is a CERN project for a 
linear accelerator of electrons and positrons to TeV
energies

Associated electromagnetic calorimeter detector design(*)

Highly segmented (pixelized)

Segmentation is critical for particle identification and energy calibration.

https://github.com/tpmccauley/ispy-hepml
https://indico.hep.caltech.edu/indico/getFile.py/access?contribId=16&sessionId=9&resId=0&materialId=slides&confId=102
http://cds.cern.ch/record/2254048
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Network architecture

3D conditional GAN

- reproduce full volumes of 

shower reconstruct in one go

- with two auxiliary regression 

tasks

Based on 3D 

convolution/deconvolutions to 

describe whole volume

12

Y
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Conditioning and auxiliary tasks

Condition training on several input variables (particle type, 

energy, incidence angle)

Auxiliary regression tasks assigned to the discriminator: 

primary particle energy, deposited energy, incidence angle

Loss is linear combination of 3 terms:

Combined cross entropy  (real/fake) 

Mean absolute percentage error for regression tasks
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Easily generalisable to multi-class approach (or multi-discriminator 

approach): angle..

Real/fake probability

Epochs
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RESULTS validation
Comparison to Monte Carlo data

14

Geant4
GAN generated

GAN generated electron 
shower

Y moment (width)

Average shower 
section

Primary particle 
energy
(100 GeV)

Single cell 
response
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Generation speedup

Inference:

Classical Monte Carlo requires 17 secs/shower using Geant4 

3DGAN takes  7 msec/shower 

speedup factor > 2500!!

Using a trained model is very fast

Time to create an electron shower

Method Machine
Time/Shower

(msec)

Full Simulation 
(geant4)

Intel Xeon 
Platinum 8180

17000

3D GAN
(batch size 128)

Intel Xeon 
Platinum 8180

7
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Use keras 2.13 /Tensorflow 1.9 
(Intel optimised)

• AVX512 –FMA support

• Intel® MKL-DNN (with 3D 
convolution support)

Optimised multicore utilisation
• inter_op_paralellism_threads

• intra_op_paralellism threads

• OMP_NUM_THREADS

Horovod 0.13.4
• MPI_AllReduce

Distributed 

training

Run on TACC Stampede2 cluster:
• Dual socket Intel Xeon 8160

• 2x 24 cores per node, 192 GB RAM

• Intel® Omni-Path Architecture

Test several MPI scheduling
configurations

• 2,4, 8 processes per nodes. 

• Best machine efficiency with 4 
processes/node
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Optimizing & Parallelizing Training

Karas:

Simplicity and high productivity

TensorFlow + MKL-DNN

Special MKL-DNN build with 3D Conv Support

Horovod

Init & Wrapping TensorFlow/Karas optimizer inside HorovodDistributedOptimizer class 

Broadcast shared variables to the Horovod World

Data Loading: Ensure data is loaded in parallel: Adapting existing code to take into account of 

Horovod World Size

Optimizer: RMSprop
18
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GANs, Dataset, TF, & Runtime Options

Original GANs

Conv Filters: non-multiple of 16

Parameters: Generator: 872736 & Discriminator: 73646; Model Size: 3.8MB

Modified Filter for Optimized Performance

Modified Conv Filters: Multiple of 16 for MKL-DNN optimizations

Parameters: Generator: 1042276 & Discriminator: 174966; Model-Size: ~5MB

Dataset: 200000

Training Samples: 180000 & Validation: 20000 

TensorFlow 1.9 (private branch) + MKL-DNN (w/ 3D Conv Support)

Batch Size: 8/Worker, # Workers/Node=4/Node; 2P Xeon Nodes: 1 to 128

Tuning: inter_op: 2 & Intra_op: 11 (Xeon® 8160 is 24C/CPU); LR: 0.001, Optimizer: RMSprop

Warmup Epochs: 5 (Facebook Methodology), Training Epochs: 20, horovod fusion buf: 64MB

19

12 Cores
½-Skt-0Worker-0

12 Cores
½-Skt-0Worker-1

12 Cores
½-Skt-1 Worker-2

12 Cores
½-Skt-1 Worker-3
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High Energy Physics: 3D GANS Training Secs/Epoch Performance
Single-Node Intel(R) 2S Xeon(R) Stampede2/TACC

TensorFlow 1.9, MKL-DNN vs EIGEN

Perf. Improvement (Secs/Batch)

Baseline:
140625 

Secs/Epoch

Baseline:
17831 

Secs/Epoch

Single-Node Training Perf. optimisation

• 1 worker/node TF + Eigen (baseline)

• 1 worker/node TF + MKL-DNN

• 1 worker/node, TF+ MKL-DNN, 
optimised number of convolution filters

• 4 workers/node, TF+ MKL-DNN, 
optimised number of convolution filters

See in animation
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Some performance degradation 

Mostly in the low energy regions 

for batchsize

Network optimised for the 100-

200 GeV central region

Applied warmup and scaling of 

initial learning rate

Further investigation ongoing

Physics performance at scale

Data: Geant4

BatchSize=1024

BatchSize=4096

BatchSize=10240
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Physics Performance at scale

Data: GeantV

BatchSize=1024

BatchSize=4096

BatchSize=10240

50 100 150 200 250 300
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Conclusion & Plans

Distributed training process and optimisation to scale on clusters 

is critical

Allows meta-optimisation and hyperparameter scans in order to 

generalize to different detectors

Parallelizing training process and optimize scaling on clusters

Initial results are very promising

Reduced training time by x8 on single node

Linear scaling brings down training time to ~2min/Epoch on 128 nodes

Keep working on the understanding / optmisation of physics 

performance at scale 

First results are very promising from physics perspective

27
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Questions?

www.cern.ch/openlab
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Generator G generates data from random noise

Discriminator D learns how to distinguish real data 
from generated data
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Simultaneously train two networks that compete and cooperate with each other: 

Generative adversarial networks

Goodfellow et. al. 2014.: arXiv:1406.2661v1 

Image source:

The counterfeiter/detective case

Counterfeiter shows the Monalisa

Detective says it is fake and gives feedback 

Counterfeiter makes new Monalisa based on feedback

Iterate until detective is fooled

https://arxiv.org/pdf/1701.00160v1.pdf

https://arxiv.org/abs/1406.2661v1
https://arxiv.org/abs/1406.2661v1
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f

