

Agenda

Introduction to Arm Tools
Remote Client Setup
Debugging with Arm DDT
Other Debugging Tools
Break

Examples with DDT
Lunch

Profiling with Arm MAP
Examples with MAP
Obtaining Support

2 © 2018 Arm Limited

arm

+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ 4 + 4 + + 4 + +
+ + + + + + + + +

© 2018 Arm Limited

arm

+ + + + + + + +

Arm Forge
An interoperable toolkit for debugging and profiling

- The de-facto standard for HPC development

+ Available on the vast majority of the Top500 machines in the world
« Fully supported by Arm on x86, IBM Power, Nvidia GPUs and Arm v8-A.

I";/,‘\

Commercially supported

by Arm
= - State-of-the art debugging and profiling capabilities
I_I_I - Powerful and in-depth error detection mechanisms (including memory debugging)
.. - Sampling-based profiler to identify and understand bottlenecks
Fully Scalable - Available at any scale (from serial to petaflopic applications)

o Easy to use by everyone
o
\w'a' - Unique capabilities to simplify remote interactive sessions

+ Innovative approach to present quintessential information to users

Very user-friendly

4 © 2018 Arm Limited a r m

Arm Performance Reports

Characterize and understand the performance of HPC application runs

Gathers a rich set of data

« Analyses metrics around CPU, memory, 10, hardware counters, etc.
« Possibility for users to add their own metrics

Commercially supported
by Arm

Build a culture of application performance & efficiency

@ dawareness

Accurate and astute - Analyses data and reports the information that matters to users

insight - Provides simple guidance to help improve workloads’ efficiency
>6<_1' - Adds value to typical users’ workflows
X , . . .
- Define application behaviour and performance expectations
Relevant advice - Integrate outputs to various systems for validation (e.g. continuous integration)
to avoid pitfalls - Can be automated completely (no user intervention)

5 © 2018 Arm Limited

arm

Software tools-centric view

6

Open Interfaces
(e.g. JSON APIs)

A 4

Demand for software ANALYZE
efficiency
(Arm
Performance
Reports)
Demand for developer R
efficiency >

© 2018 Arm Limited

OPTIMIZATION

(Arm MAP)

Continuous Integration
(e.g. Jenkins, etc.)

A

A 4

Version Control
(e.qg. GIT, etc...)

Debug/optimize, edit,
commit, build, repeat

DEBUGGING

(Arm DDT)

arm

Using Forge and the = |
remote client

© 2018 Arm Limited

arm

+ + + + + + + +

Different ways to run Arm Forge...

Here N _—~ There
(remote launch + i) Public Network (interactive mode +
reverse connect) reverse connect)
- - Head de
(=] =
. Private Network
':j D L > T\ r,,/ There
=11 a1 \=r— .(offllne QR
= = = interactive mode)

Compute Node\ Compute Node Computf Node

\ /

Ultimately, that's where the tools will run.
But what about the GUI?

8 © 2018 Arm Limited a r m

Forge Remote Client

* The latest version of Forge can be downloaded from
https://developer.arm.com/products/software-
development-tools/hpc/downloads/download-arm-forge

* |tis important to have the remote client version match
what is installed on the system

9 © 2018 Arm Limited a r m

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Forge Remote Client

-:*_!_.2[!]5 Arm DDT - Arm Forge 18.1.2 [Trial Version] i = Bl s -
File Edit View Control Tools Window Help
F RG E o Configure Remote Connections
Edison Add
! 1 -1 -
RUN ; .
Run and debug a program. Remote Launch Settings [
ATTACH . . .
G rm Attach to an already running program. nection Name: [CDrI]
DDT OPEN CORE . Host Name: [username@cun.nersc.guv username@cmomO2.nersc.gov]
Open a core file from a previous run. How do | connect via a gateway (multi-hopl?
MANUAL LAUNCH (ADVANCED) tion Directory: [fgl0bal,.fcc:mmcnfsw,.fcrawcnlﬁfhaswelIfallinea-fnrgefdefault]

q rm Manually launch the backend yourself.

MAP OPTIONS

Remote Launch:

Remote Script [,.fgl0bal,.fcc:mmc:nfSw,.fcray,."cnlﬁfhaswelIfallinea-fargefremote-init]

Always look for source files locally

off ['_I'est Remote Launchl
Configure.. .
QuIT
e | oK || Cancel |
Tutorials
arm.com

Licence Serial: 11477 ?
Arm Forge 18.1.2

.10 © 2018 Arm Limited | a r m

http://www.nersc.gov/users/software/performance-and-debugging-tools/ddt/

+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +

D b I .th
+ gg + + + + + + +
+ + + + + + + + +
+ 4 + 4 + + 4 + +
+ + + + + + + + +

© 2018 Arm Limited

arm

+ + + + + + + +

Print statement debugging

» The first debugger: print statements
- Each process prints a message or value at
defined locations
- Diagnose the problem from evidence and

intuition
e \\
* Along slow process x
- Analogous to bisection root finding

* Broken at modest scale
- Too much output — too many log files

12 © 2018 Arm Limited a r m

Typical types of bugs

e Steady and e Oh, you are
dependable, debugging?
I’ll be there Let me hide
for you. for a sec!

BOHR

S
()

e Chaos is my e | am buggy
name and AND not
you shall fear buggy. How
me. about that?

MANDEL
BUG

13 © 2018 Arm Limited a r m

Debugging by discipline

Debugging a problem is much easier when you can:

- Make and undo changes fearlessly $ mkdir logs
g vim logssszegfault-at-409%—-procs
- Use a source ContrOI (CVSI "') When running lu.E. 4096 with the trace-4410.dat s=et.
the job exited with: "An error occurred in MPI_Send

[11346-209:25319] on communhicator MPI_COMM_WORLD
MPI_ERE_RANEK: inwalid rank".

« Track what you’ve tried so far

To reproduce: mpiexec -n 4096 1lu . W. 4096 trace-4410. dat
on supermnuc. Seemsz to happen every tine.

- Write logbooks

Tried reading core file with gdb, "File truncated’
* St ulimit - unlimited and ran again:

« Reproduce bugs with a single command

% logs<=segfault—-at-4096—-proc=.=h
Sep 2Y 15:29: ueued as= job. 43214
Sep 27 18:01: Funning. ..

Sep 27 19:29: FAIL

- Create and use test script

14 © 2018 Arm Limited a r m

Arm DDT — the debugger

Who had a rogue behaviour ?
- Merges stacks from processes and threads

Where did it happen?

- leaps to source

How did it happen?
- Diagnostic messages
- Some faults evident instantly from source

Why did it happen?
- Unique “Smart Highlighting”
- Sparklines comparing data across processes

15 © 2018 Arm Limited

Run

with Allinea tools

Identify
a problem
Gather info
Who, Where, How, (S
Why
Fix
N
Locals Curreni Line(s) I Curreni Stack I
:_l Current Line(s) 5 X
Variable Name I Value I
‘e mype ""’bﬂ. 2724
\’\l
150120 = pop (POP.f90:81)
150120 ilnltiahzse_pop(initlal190'119)
150120 Zinit_communicate (communicate f90:87)
1s0118 7] é--create_ocn_oommunicator (communicate f90:300)

Arm DDT cheat sheet

Load the environment module (on Cori/Edison)
S module load allinea-forge

Prepare the code
S cc -00 -g myapp.c —0 myapp.exe

Start Allinea DDT in interactive mode
S ddt srun -n 8 ./myapp.exe argl arg2

Or use the reverse connect mechanism
On the login node:
$ ddt &
(or use the remote client)
Then, edit the job script to run the following command and submit:
ddt --connect srun -n 8 ./myapp.exe argl arg2

16 © 2018 Arm Limited a r m

+ + + + + + + af + + +
+ + + + + + + + + + +
Examples
+ + * + + * * + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + +

2018 Arm Limited

arm

&

Example Files

* Once connected to cori, download the examples to your

home directory
* cp /project/projectdirs/training/DebugProfile_201804/NERSC_Training.tar.gz ~/

18 © 2018 Arm Limited a r m

i + 4 + + + + + +
+ + + + + + + + +
+ + + + + + + + +
t t I
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
© 2018 Arm Limited q r m
+ + + + + + + + +

Exercise:
Fixing a sim

+ +

R

2018 Arm Limited
Fy

&

le cras

arm

Algorithm: C=AxB +C

k j i, j, k: loop indexes

A 4
A 4

nslices =4

size

Algorithm

1- Master initialises matrices A, B & C

2- Master slices the matrices A & C, sends them to slaves
3- Master and Slaves perform the multiplication

4- Slaves send their results back to Master

5- Master writes the result Matrix C in an output file

21 © 2018 Arm Limited a r m

Fix a simple crash in a MPI code

Objectives:
Discover Arm DDT's interface
Debug a simple crash in a MPI application interactively
Use the tool in a cluster environment
Key commands:
Compile the application: $ make
Clean and recompile for debugging: $ make clean && make DEBUG=1
Use the debugger with reverse connect
- Accept the incoming connection!
Can you find out and fix the bug?

22 © 2018 Arm Limited a r m

~ Exercise:

Identlfymg Out- of-Memory
Accesses

Ll T - + L
18 Arm Limited q r m
+ + + + +

Critical memory crash

Objectives:
Use the memory debugging feature
Diagnose and fix a memory problem

Key commands:
Compile the application with debugging flags: $ make
Recompile using the memory debugging library (statically link through Makefile LFLAGS)
Enable memory debugging in the “Run window”
Change the amount of checks, enable guard pages
Can you see the memory issue can you fix it?

24 © 2018 Arm Limited a r m

Exercise:.
Understanding hangs

2018 Arm Limited

arm

&

Deadlock

Objectives:
- Witness a deadlock and attach to the running processes
- Use Arm DDT Stack feature
- Use Arm DDT evaluation window

Key commands:
- Compile with: S make
- Submit the job to run the application with 10 processes: it works.
- Run it again with 8 processes: it hangs!
- Leave the application run in the queue and attach to it with the debugger
- OR (if attaching is not supported) Submit the job again with the debugger
- Observe where it hangs. Can you fix the problem?

26 © 2018 Arm Limited a r m

Exercise:

s

Detecting memory

2018 Arm Limited
+

s

arm

Memory leaks

Objectives:
Use Arm DDT’s offline mode
Use the memory debugging feature

Diagnose and fix a memory leak problem

Key commands:
Compile the application for debugging

S make
Edit a job script to use the debugger in offline mode with memory debugging on and submit the job
Open the resulting *.html file
- Canyou see the memory leak?

Restart the debugger in interactive mode. Can you see any hint from the debugger?

28 © 2018 Arm Limited a r m

Profil

© 2018 Arm Limited
S

+

+ + +
+ + +
+ + +

+ + +
+ + 4
+ + +
+ + +

arm

The complete HPC developer workflow

e System access made simple

@ - Work remotely or locally
Debug Commit - Same full capabilities

ﬁ X * Be confident changes work

Test Profile « Re-use Scheduler reservation ...

. ... Edit
X j Build
. ... lest

Build :l Optimise « Commit

30 © 2018 Arm Limited

arm

wWhy profiling?
How to improve the performance of an application?

Profiling: a form of dynamic program analysis that measures, for example, the space
(memory) or time complexity of a program, the usage of particular instructions, or the
frequency and duration of function calls. Most commonly, profiling information serves to
aid program optimization.

(Wikipedia)

How?
— Select representative test case(s)
— Profile
— Analyse and find bottlenecks
— Optimise
— Profile again to check performance results and iterate

31 © 2018 Arm Limited a r m

How to profile?

Different methods

- Tracing
—~Records and timestamps all operations
—Intrusive

- Instrumenting
—~Add instructions in the source code to collect data
—Intrusive

- Sampling
—~Automatically collect data
—~Not intrusive

32 © 2018 Arm Limited a r m

Some types of profiles

Spike

* The application spends most of the time in a few functions
¢ Speed-up potential depends on the aggregated time
 Variable optimisation time

33 © 2018 Arm Limited a r m

Arm MAP: Performance made easy

34 2018 Arm Limited q rm

Arm MAP cheat sheet

Load the environment module
S module load allinea-forge

Prepare the code
S cc —03 -g myapp.c —0 myapp.exe

Edit the job script to run Arm MAP in “profile” mode
S map --profile srun ./myapp.exe argl arg2

Open the results
On the login node:
S map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
« (or load the corresponding file using the remote client connected to the remote system or locally)

35 © 2018 Arm Limited a r m

Typical memory hierarchy

36 © 2018 Arm Limited

Latency from next
level (cycles)

4

12

26

230-360

A

Example of Intel Sandy Bridge

Size (bytes)

192

32k

256Kk

2M

ZG

arm

Speeding up memory accesses

High performance is possible when:
- There is an opportunity for cache re-use
- Data is local to the core for quick usage
- CPU gets data from memory to cache before it is actually needed

37 © 2018 Arm Limited q r m

Memory access patterns

Data locality
- Temporal locality: use of data within a short time of its last use
- Spatial locality: use memory references close to memory already referenced

Temporal locality example
for (i=0 ; i < N; i++) {
for (loop=0; loop < 10; loop++) {
.= . X[1] ..

}

Spatial locality example
for (i=0 ; i < N*s; i+=s) {
W= . X[1] ..

¥

38 © 2018 Arm Limited

arm

Memory Accesses and Cache Misses

i=0 f':l
r i=0,n=4 A

39 © 2018 Arm Limited q r m

~ Exercise: =
- Optimizing memory
accesses

arm

Resolve high memory accesses issues

Objectives:
Discover Arm MAP’s interface
Profile the MPI matrix multiplication example and find out the performance issue

Use the tool in a cluster environment

Key commands:
Compile the application
$ make
$ map --profile srun myApp.exe
Open the result in the GUI on the login node once the job has completed
$ map *.map
What is the bottleneck of the application? Can you identify performance problems?

41 © 2018 Arm Limited a r m

Resolving workload = |
imbalances

© 2018 Arm Limited

arm

+ + + + + + + +

9 Step guide: optimizing high performance applications

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks
and optimizations one step at a time.

ro-—======"="

Iouo

+" Discover lines of code spending a long
time in 1/0. |
+" Trace and debug slow access patterns.

| 0 Bugs | | I
I +" Correct application. I I +" Measure all performance aspects. I
L oe— — e ———ee———a You can't fix what you can't see.
I +" Prefer real workloads over artificial tests. I r — e e e e — —

+" Detect issues with balance.
+" Slow communication calls and processes. I
Dive into partitioning code.

| €@ Communication I

I +" Track communication performance. I
+" Discover which communication
I calls are slow and why. I

e o e

L———————J

|-°—M— —_————— | €© Cores | | | | @ Verification |

emor

I Y I + Discover synchonization I I +" Understand numerical intensity I I A Validate corrections I

I +" Reveal lines of code bottlenecked I overhead and core utilization. and vectorization Ie:uel. and optimal Performance.
by memory access times. I +" Synchronization-heavy code and I + Hot loops, unvectorized code I I I

I +" Trace allocation and use of hot I implicit barriers are revealed. and GPU performance revealed.

L———————J

Ll
4

Key:

+ armPERFORMANCE REPORTS
v AQrmFORGE

Load balancing in theory

Balancing the workload is critical because:
— Processors may be idle for an extended period of time
— They could have been doing some work instead of burning energy

Examples of load balancing
- Owner computes
Balance done through data distribution
- Independent tasks
Balance done through prediction/statistics
- A mix of various components
Balance between scalar workload and communications (for instance)

44 © 2018 Arm Limited

180 L

160 415

140

T 720

120 BB
100
a0

B0

al 100 1al 200

arm

Redistributing the workload

Several techniques exist to balance the workload

-« “Simple” redistribution of data
- Dynamic balancing using space filling curves

Example
Step 1: Adaptive Refinement of a domain in subsequent levels

45 © 2018 Arm Limited a r m

Redistributing the workload

Example

Step 2: Load distribution of an adaptively refined domain

Step 3: Space Filling Cur

46 © 2018 Arm Limited

5 R

arm

Load balancing can be counter intuitive

There is an asymmetry between processors having too much work and

having not enough work. It is better to have one processor that finishes a
task early than having one that is overloaded so that all others wait for it.

Corollary:

When it comes to load balancing, the
“costliest” function shown by the profiler is

not the bottleneck.
The bottleneck is the “cheapest” one.

Workload imbalance webinar video
09018 A Limited https://youtu.be/MScwYTNGOp0 arm

https://youtu.be/MScwYTNGOp0

Exercise:
Improving |

© 2018 Arm Limited q rm

+ + + + + + + + + + +

Detect workload imbalance and optimise 10

Objectives:
Exhibit the workload imbalance in the code (on 1 or 2 nodes)
Make suggestions to fix the problem

Key commands:
Compile the application
$ make
$ map --profile srun -n 8 ./myApp.exe
Open the profiling results in the GUI on the login node once the job has completed
$ map *.map
How can you fix the imbalance problem?

49 © 2018 Arm Limited a r m

- Maximizing application
~efficiency with
Performance Reports

arm

Arm Performance Reports benefits

51

© 2018 Arm Limited

Energy

Storage

Processor

Networks

Constraints

Arm Performance
Reports

Reduced run
time

Higher
throughput

Benefits

arm

“l earn

52

© 2018 Arm Limited

Executal MADbench2

Resource 16 processes, 1 node

sandybridge2

t time Mon Nov 4 12:27:50 2013

i s 109 seconds (2 minut
alllnea ‘ i seconds (2 minutes)

tmp/MADbench2

PERFORMANCE | 12-core server | HDD / 16 readers +writers

REPORTS

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock ime was spent as follows:

CPU 48% |

vt oo [
0 so

Time spent running application code. High values are usually good.
This is low; it may be worth improving I/O performance first.

Time spent in MPI calls. High values are usually bad.

This is average; check the MP| breakdown for advice on reducing it.
Time spent in filesystem I/0. High values are usually bad_

This is high; check the 'O breakdown section for optimization advice.

This application run was |/0O-bound. A breakdown of this time and advice for investigating further is in the 1/0 section below.

CPU

A breakdown of how the 4.8% total CPU time was spent:
Scalar numericops 49% |

Veclornumericops 0.1% |

Memory accesses 95.0% [N

Other 0.0 |

The per-core performance is memory-bound. Use a profiler to
identify ime-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice lo see why key loops could not be vedorized.

110

A breakdown of how the 53.9% total IO time was spent:

Time in reads 3.7% |

Time in writes 96.3% [|

Estimated read rate 272 Mb/s I

Estimated write rate 7.06 Mbis |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an I/O profiler to investigate which
write calls are affected.

MPI
Of the 41.3% total time spentin MPI calls:
Time in collective calls 100.0% |

Time in point-to-point calls 0.0% |

Estimated collective rate 4.07 bytesis [

Estimated point-to-point rate 0 bytes/s |

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing

synchronization overhead. You can investigate this further with an
MPI profiler.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 160 Mb [N

Peak process memory usage 173 Mb [N

Peak node memory usage 172% N

The peak node memory usage is low. You may be able to reduce
the total number of CPU hours used by running with fewer MP1
processes and more dala on each process.

” with Arm Performance Reports

Very simple start-up

arm

Metrics overview

Multi-threaded

parallelism

53

B

CPU

A breakdown of the 91.2% CPU time:

Single-core code

OpenMP regions

Scalar numeric ops

30.6% M

% .
/ parallelism
9.5% 1

SIMD

Vector numeric ops

Memory accesses

The per-core perform
identify time-consumy
performance.

No time is spent in v

compiler's vectorizat]
be vectorized.

© 2018 Arm Limited

MPI

Of the 41.3% total time spentin MP| calls:
Time in collective calls

Time in point-to-point calls
Estimated collective rate
Estimated point-to-point rate
All of the time is spent in col

This suggests a significant |
synchronization overhead. |

MPI profiler.

1/O

A breakdown of how the 53.9% total /O time was spent:

Time in reads
Time in writes
Estimated read rate
Estimated write rate]
Most of the time is g
transfer rate. This nf

inefficient access p4d
write calls are affec]

Memory

Per-process memory usage may also affect scaling:
160 Mb [

Mean process memory usage

Peak process mem

Peak node memory Lustre

The peak node men|

Lustre file operations (per node)

the total number of

processes and mord Mean write

Peak write r

Mean file o

100.0% I

0.0% | Load
4——

4.07 bytes/s imbalance

0 bytes/s

OpenMP

A breakdown of the 99.5% time in OpenMP regions:

99.7%

System load

Check the affected regions with a profiler.

regions in tight loops) or workload imbalance.

Significant time is spent synchronizing threads in parallel regions.

This may be a sign of overly fine-grained parallelism (OpenMP

Computation % —
«— |
Synchronization
Physical core utilization
— |

Mean metad

OMP
efficiency

Energy

A breakdown of how the 32.3 Wh was used:
CPU 61.9% Il

System 38.1% I

Mean node power 94.1W [N

Peak node power 98.0w [N

Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.

System
usage

arm

Arm Performance Reports cheat sheet

Load the environment module
S module load allinea-reports

Edit the job script to prefix the mpirun command
perf-report srun -n 8 ./myapp.exe

Analyse the results
S cat myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

S firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html|

54 © 2018 Arm Limited a r m

Exercise:

MaX|m|zmg SC|ent|f|c

output

Arm Limited

Y

Y

Maximise efficiency

Objectives:
- Generate a performance report of a simple code

- Find the best parameters to maximize the application efficiency
— Compilation flags
— Number of processes

— Number of nodes

Key commands:
- Compile:
S make
- S perf-report srun -n 8 ./myapp.exe

56 © 2018 Arm Limited a r m

© 2018 Arm Limited q rm

+ + + + + + + + + + +

Forge User Guide

* Online documentation is always available at
https://developer.arm.com/products/software-
development-tools/hpc/documentation

* Direct link to DDT User Guide
https://developer.arm.com/docs/101136/latest/ddt

* Local user guide is available in your Forge installation
/path/to/arm/forge/doc/userguide-forge.pdf

58 © 2018 Arm Limited

arm

https://developer.arm.com/products/software-development-tools/hpc/documentation
https://developer.arm.com/docs/101136/latest/ddt

© 2018 Arm Limited q rm

+ + + + + + + + + + +

Obtaining Support

* For simple queries, use the web form at
https://www.arm.com/products/development-tools/hpc-
tools/contact-support

* For more advanced issues, email support-hpc-sw@arm.com
This allows you attach screenshots, source code, and debug log

files

60 © 2018 Arm Limited a r m

https://www.arm.com/products/development-tools/hpc-tools/contact-support
mailto:support-hpc-sw@arm.com

© 2018 Arm Limited q rm

+ + + + + + + + + + +

Debug Log Files

62

In the event that DDT crashes or does not work like expected, a

debug log file will be helpful to the arm support team

Debug log files can be generated by passing arguments to DDT

For Example:

ddt --debug --log=crash.log aprun -n 16 ./myProgram.exe

© 2018 Arm Limited

arm

Thank You
Danke
Merci

G
HYMES
Gracias
Kiitos
ZArg L O}
o-AdIc
NTIN

Arm Limited

