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Introduction

Analytics at Scale: Full Data Set Analysis
With Aster Database, you have the ability to efficiently perform analytical tasks on your full 
dataset, in place, rather than using samples or bulk-exporting data to a dedicated computing 
cluster.

Why run your analytics on your full data set? While applying analytics to a small sample of the 
data outside the database might work for some problems, it cannot provide the accurate, 
reproducible results that can be obtained by analyzing a complete dataset.

One important application of in-database analytics is to speed up iterations of analysis. Since the 
cycle of iteration time is so critical, many organizations want a solution that is faster then 
exporting a data sample, analyzing it, and exporting another sample, and so on. In such cases, it 
makes sense to push down those analytics into an MPP system to decrease the iteration cycle. We 
are working with partners, including the SAS Institute, Inc., to make this process straightforward, 
and are additionally developing our functions where appropriate (for example, functionality that 
really takes advantage of the MapReduce paradigm).

However, there is a much stronger set of reasons to develop analytics on the entire data set, 
within Aster Database:

• “Needle in a Haystack,” “False Negative,” and “Exceptional Cases” searches: Very rare 
events can only be found (and defined) against the background of the entire data set 
(consider trying to define 'elite baseball player' by looking at the 2008 SF Giants, vs every 
player in MLB history).

• Statistical significance: Reliable analytics may require using a large portion of the data, 
which cannot be fit on a typical, single database machine.

• Model tuning: The parameters to predictive models depend on aggregate statistics of the 
entire data set (for example, residual away from the mean).

• No meaningful way to sample: Sampling a graph is not straightforward, especially if one is 
interested in critical behavior that only appears when a certain threshold of connections is 
reached.

• Larger data sets are just different: The resulting analytics will be applied to the entire data 
set in the cluster. Algorithms developed on smaller data sets may not scale appropriately to 
the full data set, requiring redevelopment.

List of Aster Analytical Functions by Type
Below, we list the Aster SQL-MapReduce analytical functions, grouped by the type of analysis 
or utility function that each handles.
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Time Series, Path, and Attribution Analysis
• Pattern Matching with nPath (page 39): nPath is a function for pattern matching that 

allows you to specify a pattern in an ordered collection of rows, specify additional 
conditions on the rows matching these symbols, and extract useful information from these 
row sequences.

• Path Generator (page 13): This function takes as input a set of paths where each path is a 
route (series of pageviews) taken by a user from start to end. For each path, it generates the 
correctly formatted sequence and all possible sub-sequences for further analysis by the Path 
Summarizer function. The first element in the path is the first page a user could visit. The 
last element of the path is the last page visited by the user.

• Path Starter (page 16): Generates all the children for a particular parent and sums up their 
count. Note that the input data has to be partitioned by the parent column.

• Path Summarizer (page 18): The output of the Path Generator function is the input to this 
function. This function is used to sum counts on nodes. “Node” can either be a plain 
sub-sequence or an exit sub-sequence. Exit sub-sequence is the one in which both sequence 
and the sub-sequence are same. Exit sub-sequences are denoted by appending '$' to the end 
of the sequence.

• Sessionization (page 21): Sessionization is the process of mapping each click in a 
clickstream to a unique session identifier. One can define a session as a sequence of clicks 
by a particular user where no more than n seconds pass between successive clicks (that is, if 
we don't see a click from a user for n seconds, we start a new session).

• Attribution (page 24): The attribution operator is often used in web page analysis. 
Companies would like to assign weights to pages before certain events, such as a 'click' or a 
'buy'. This attribution function enables you to calculate attributions by using a wide range of 
distribution models.

Statistical Analysis
• Approximate Distinct Count (count_approx_distinct) (page 51): Computes an 

approximate global distinct count of the values in the specified column or combination of 
columns. Based on probabilistic counting algorithms, this algorithm counts the approximate 
distinct values for any number of columns or combination of columns, while scanning the 
table only once. Evaluates all the children for a particular parent and sums up their count. 
Note that the input data has to be partitioned by the parent column.

• Approximate Percentile (approx percentile) (page 54): Computes approximate percentiles 
for one or more columns of data where the accuracy of the approximation is a parameter 
specified by the user.

• Correlation (stats correlation) (page 57): Computes a global correlation between any pair 
of columns from a table.

• Histogram (page 59): Counts the number of occurrences of a given data value that fall into 
each of a series of user-defined bins.

• Linear Regression (stats linear reg) (page 63): Outputs the coefficients of the linear 
regression model represented by the input matrices.

• Logistic Regression (page 65): A series of row functions and partition functions that 
establish the weights sequence for the logistic regression.

• Generalized Linear Model (stats glm) (page 68): GLM performs linear regression analysis 
for any of a number of distribution functions using a user-specified distribution family and 
link function. Supported models in Aster Database are ordinary linear regression, logistic 
regression (logit model), and Poisson log-linear model.

http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Arithmetic_mean
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/6/webnotes/install/index.html
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• Principal Component Analysis (PCA) (page 75): Principal component analysis (PCA) is a 
common unsupervised learning technique that is useful for both exploratory data analysis 
and dimensionality reduction. It is often used as the core procedure for factor analysis.

• Simple Moving Average (stats smavg) (page 77): Computes the average over a number of 
points in a series.

• Weighted Moving Average (stats wmavg) (page 81): Computes the average over a number 
of points in a time series while applying an arithmetically-decreasing weighting to older 
values.

• Exponential Moving Average (stats emavg) (page 84): Computes the average over a 
number of points in a time series while applying an exponentially decaying damping 
(weighting) factor to older values so that more recent values are given a heavier weight in 
the calculation.

• Volume-Weighted Average Price (stats vwap) (page 88): Computes the average price of a 
traded item (usually an equity share) over a specified time interval.

Text Analysis
• Levenshtein Distance (page 95): Computes the Levenshtein distance between two text 

values, i.e. the number of edits needed to transform one string into the other, where edits 
include insertions, deletions, or substitutions of individual characters.

• nGram (page 97): Tokenizes (or splits) an input stream and emits n multi-grams based on 
the specified delimiter and reset parameters. This function is useful for performing sentiment 
analysis, topic identification, and document classification.

• Text Parser (text_parser) (page 100): A general tool for working with text fields that can 
tokenize an input stream of words, optionally stem them, and then emit the individual words 
and counts for the each word appearance.

• “Named Entity Recognition (NER)” on page 103: Named entity recognition (NER) is a 
process of finding instances of specified entities in text (e.g. person, location, organization, 
etc.) It has functions to train, evaluate and apply models which perform this analysis.

• “Sentiment Extraction Functions” on page 109: The sentiment extraction functions enable 
the process of deducing a user's opinion (positive, negative, neutral) from text-based content.

Cluster Analysis
• k-Means (page 111): Simple unsupervised learning algorithm that solves the well-known 

clustering problem. The procedure follows a simple and easy way to classify a given data set 
through a certain number of clusters (assume k clusters) fixed a priori. The goal is to define 
k centroids, one for each cluster.

• Minhash (page 117): A probabilistic clustering method that assigns a pair of users to the 
same cluster with probability proportional to the overlap between the set of items that these 
users have bought (this relationship between users and items mimics various other 
transactional models).

• Canopy (page 122): A simple, fast, accurate method for grouping objects into preliminary 
clusters. Each object is represented as a point in a multidimensional feature space. Canopy 
clustering is often used as an initial step in more rigorous clustering techniques, such as 
k-means clustering.

http://portal.acm.org/author_page.cfm?id=81100334856&coll=GUIDE&dl=GUIDE&trk=0&CFID=78554557&CFTOKEN=41072132
http://portal.acm.org/author_page.cfm?id=81100334856&coll=GUIDE&dl=GUIDE&trk=0&CFID=78554557&CFTOKEN=41072132
http://en.wikipedia.org/wiki/Exponentiation
http://en.wikipedia.org/wiki/Exponentiation
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Naive Bayes
The Naive Bayes (page 125) set of functions lets you train a Naive Bayes classification model, 
and use the model to predict new outcomes. Observed data from a sample set with known 
outcomes is input to the function. The function then creates a model that can later be applied to 
observed or hypothetical data where the outcome is not known. Predicted outcomes with 
statistical probability are then determined and output by the model.

Decision Trees
The Decision Trees (page 129) suite of functions lets you create a predictive model based on a 
combination of the CART algorithm for training decision trees, and the ensemble learning 
method of bagging.

Relational Analysis
• Basket Generator (page 137): Generates sets or “baskets” of items that occur together in 

records in data, typically transaction records or web page logs.

• Collaborative Filtering (page 140): Helps discover which items or events are frequently 
paired with other items or events.

Graph Analysis
• nTree (page 137): nTree is a hierarchical analysis SQL-MR function which can build and 

traverse through tree structures on all worker machines.

• Single Source Shortest Path (SSSP) (page 142): Given a graph with vertices and edges 
between these vertices, the Single Source Shortest Path (SSSP) function finds the shortest 
paths from a given vertex to all the other vertices in the graph.

Data Transformation
• Antiselect (page 159): Returns all columns except the columns specified.

• Multicase (page 160): Extends the capability of the SQL CASE statement by supporting 
matches to multiple options. The function iterates through the input data set only once and 
emits matches whenever a match occurs whereas as soon as CASE has a match it emits the 
result and then moves on to the next row.

• Pack (page 163): Compress data in multiple columns into a single “packed” data column.

• Unpack (page 165): Take data from a single “packed” column and expand it to multiple 
columns.

• Pivot (page 167): Pivot data stored in rows into columns.

• XML Parser (page 170): Extract the data from XML documents. and flatten it into a 
relational table.

• Apache Log Parser (page 176): Parses Apache log file content and extracts multiple 
columns of structural information, including search engines and search terms.
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Aster Database Utilities
Aster Database System Utility Functions (page 173): Used for querying data from local 
v-workers. Useful for querying local catalog tables to support database administration activities.

Contacting Aster Technical Support
For assistance and updated documentation, contact Aster Database technical support. Support 
during non-business hours is only available to Aster Database Platinum Support customers.

Support Portal: http://www.teradataatyourservice.com/

Email: coresupport@teradata.com

Telephone: +1-650-273-5599

You have an Aster Database account manager and Aster Database support manager whom you 
can talk with directly about important issues. Use the portal to find the name of your account 
manager and support manager.

Aster Database offers two Service Level Agreements: Aster Database Platinum Support, and 
Aster Database Gold Support. With Aster Database Platinum Support, the Aster Database 
support team will respond to your needs 24 hours a day, 365 days a year. You can call our 
dedicated support line to be immediately connected with a member of our team. With Aster 
Database Gold Support, the Aster Database support team will be available between 9 a.m. and 5 
p.m. PST on standard business days. If an issue arises outside of these hours, we will respond the 
next business day.

Aster Database will use all commercially reasonable best efforts to provide support services 
within the following timelines, taking into consideration the complexity of detecting and 
correcting the specific issue. These response times apply to both Platinum and Gold Support.

Note: Support during non-business hours is only available to Aster Database Platinum Support 
customers.

Copyright and Legal Statements  

The product or products described in this book are licensed products of Teradata Corporation or 
its affiliates.

Teradata, Aster Data, Aster Database, Aster MapReduce, nCluster, SQL-MapReduce, Aprimo, 
BYNET, DBC/1012, DecisionCast, DecisionFlow, DecisionPoint, Eye logo design, InfoWise, 
Meta Warehouse, MyCommerce, SeeChain, SeeCommerce, SeeRisk, Teradata Decision Experts, 

Level Description Solution 
Timeline

Update 
Frequency

Initial 
Response 
Within

Severity 0 Issues that affect external, customer-facing 
operations

24 hours 2 hours 4 hours 

Severity 1 Issues that cause an important component of Aster 
Database to be inaccessible

48 hours 4 hours 8 hours 

Severity 2 Issues that cause a major degradation in the 
functionality of Aster Database, resulting in a 
significant inconvenience

96 hours 8 hours 16 hours 

Severity 3 Issues that impact operations but are not severe 
enough to impact the use of Aster Database

1 month 24 hours, 
upon request

48 hours

http://www.teradataatyourservice.com/
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2

Installing Analytical Functions in Aster 
Database

This section shows you how to install the analytical functions as a set and individually.

Installation Procedure
To make the functions usable, you must download, install, and set permissions on the functions 
as explained in the sections below.

Download the Analytics Foundation Bundle
The fastest way to install the Aster SQL-MapReduce analytical functions is to run the 
install.sql script provided in each Analytics Foundation bundle. Follow these steps:

1. Download the desired Analytics Foundation bundle from www.asterdata.com/support. The 
file name depends on which package of analytical functions you have purchased, but the 
name will be similar to this: “Analytics_Foundation.zip”. Contact Aster Database 
support if you need login credentials. See “Contacting Aster Technical Support” on page 5.

2. Unpack the zip archive on the machine where you run ACT. You will use ACT to install the 
functions from the bundle. On Windows, use a tool such as WinRAR to extract the archive’s 
contents. On Linux, use a tool such as Info-Zip unzip.

For this example, we will assume you have extracted the zip’s contents to 
C:\analyticslibs on a Windows machine.

Next Step  Proceed to “Install the Functions” on page 7, below.

Install the Functions
3. Working at the command line, change to the directory where you extracted the files.

4. Run ACT, logging in with an Aster Database user account that has rights to install functions 
in the public schema. Ideally, your account should also have rights to grant EXECUTE and 
other permissions on the functions you install. (Note: It doesn’t matter which database you 
connect to; the functions will be added to the public schema and will be usable in all 
databases.)

    $ act -h <Queen IP Address> -U db_superuser
    Password: ************

5. In ACT, use the \i command to run the install.sql script:

http://www.asterdata.com/support/index.php


Using ACT’s \install Command to Install  Aster Data proprietary and confidential

8 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

    beehive=>\i install.sql

The script installs the set of functions you purchased. 

Note: If you would like to install some but not all of the functions from your package, see 
the section below, “Using ACT’s \install Command to Install” on page 8.

6. Type \dF to review the list of installed functions.

Next Step  Proceed to “Set Permissions to Allows Users to Run Functions” on page 8, below.

Set Permissions to Allows Users to Run Functions
7. Type \dF <function name> to check which schema the functions belong to. 

8. Use the GRANT command to give the EXECUTE privilege to users who will run each 
function. The syntax is:

    GRANT EXECUTE 
      ON FUNCTION <schema-name>.<function-name>
      TO <user-name or group-name or PUBLIC>;

For example, to give user beehive the right to run the function path_start.jar, you would 
type:

    GRANT EXECUTE 
      ON FUNCTION public.path_start
      TO beehive;

Note that in most ACT commands for managing functions, when you type the function 
name, you do not type its suffix (like “.jar” in this example).

9. Repeat the preceding step for all functions and users. To quickly grant broad access, grant 
the EXECUTE privilege on each function to PUBLIC.

To learn more about the rules that govern who can install and run functions in Aster Database, 
see the section, “SQL-MapReduce Security” in the Aster Database User’s Guide.

Test the Functions
After you have performed the preceding steps, the function is installed and usable by all users to 
whom you’ve granted EXECUTE rights. Test your functions by following the steps below to run 
them:

1. Run Aster Database ACT and log in as an SQL user who has the EXECUTE privilege on a 
function.

2. Invoke the function in a statement such as a SELECT or other data-retrieval statement. 
Make sure you schema-qualify the function’s name, or have its schema in your schema 
search path.

Using ACT’s \install Command to Install
You can install and manage individual Aster SQL-MapReduce Analytics functions, 
SQL-MapReduce functions, stream() functions, and other installed files using the \install 
command and related commands in the Aster Database ACT tool. (Note that if you’re installing 
all the analytics functions, it’s faster to use the install.sql script as explained in “Download the 
Analytics Foundation Bundle” on page 7.) 

Using \install, you can install:
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• SQL-MapReduce functions: Compiled Java and C executables that can be called by name 
in the FROM clause of a SELECT.

• Scripts for stream(): Each script is installed as a file that you will invoke in a call to 
stream().

• Files: Installed files are typically used to provide settings to SQL-MapReduce functions and 
to stream() functions. Installed files can only be used in your SQL-MapReduce and stream() 
functions. Installed files are not directly invokable or accessible via SQL.

The ACT commands for installing and removing files and functions are listed below. Here, we 
refer to a file or function as “local” when it resides on your local file system, and as “remote” 
when it resides in Aster Database.

The install and \remove commands can be used transactionally in a BEGIN / COMMIT 
block just like any transactional SQL command.

Tip! You can only install files in the public schema of your database.

Installing Aster Database’s Driver-Based Analytical 
Functions

Some Aster SQL-MapReduce analytical functions are packaged as driver-based applications that 
connect to the database over JDBC. These functions can be thought of as stored procedures, but 

Command Meaning

\dF Lists all installed files and functions.

\install file [installed_filename] Installs the file or function called file. The 
argument, file, is the path name of the file 
relative to the directory where ACT is running.

Optionally, you can give the file or function an 
installed_filename alias. Aliases are provided 
as a convenience that’s mainly useful for renaming 
helper files you install. Using an alias for an 
SQL-MapReduce function can be confusing, so we 
don’t recommend doing it.

If no installed_filename is specified, the file’s 
name will be used as its name in Aster Database. 
Keep in mind that, when you call an 
SQL-MapReduce function in your queries, you 
drop its filename suffix. If the file or function does 
have an installed_filename, then all calls to it 
from other functions or from queries must use its 
installed_filename.

\download installed_filename [newfilename] Downloads the specified, installed file or function 
(identified by its installed_filename) to the 
machine where ACT is running. 

Optionally, you can specify a new name for the file 
by supplying the newfilename argument. This 
argument can be a path, but the destination 
directory must exist on the file system where 
you’re running ACT.

\remove installed_filename Removes the file or function specified by its FILE_
ALIAS.
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with more capability for developing logical applications. These JDBC programs typically consist 
of two components: a JDBC client-function and one or more SQL-MapReduce functions. The 
JDBC client-function executes on the client machine (which can be of any platform). The 
SQL-MapReduce functions reside in a database in your Aster Database cluster, and they are 
executed on the cluster. The JDBC client-function interacts with the SQL-MapReduce functions 
over the network.

This section shows you how to install and set up the components you need in order to use 
driver-based analytical functions.

Required Components
To run a JDBC-based Aster Analytics function, the function’s components must be installed in 
your cluster, and on your client machine you must have:

• the JDK (Java SE Development Kit) version 5 or later

• the Aster Database JDBC driver

• the Aster SQL-MapReduce API library

Below, we will show you how to set these up.

Install SQL-MapReduce Functions in Aster Database
1. If you have already installed all the SQL-MapReduce functions by running the install script 

install.sql, you may skip this step and proceed to Step 2. Otherwise:

Install in Aster Database the desired Aster Analytics SQL-MapReduce functions. You can 
find the list of needed functions in the description of the function (for example, in “Single 
Source Shortest Path (SSSP)” on page 110) To do this:

a. Run ACT, connecting as a database administrator who has the INSTALL FILE privilege 
and the CREATE FUNCTION privilege in the schema where you will install the 
function:

    # act -h 10.50.52.100 -U db_superuser

b. Run the \install command, passing the name of the function to be installed: 

     \install <function_name>.<jar/zip>

For example, to use the Single-Source Shortest Path (SSSP) function, you must install three 
SQL-MapReduce functions on your cluster. These functions can be installed using the 
following commands in ACT:

     beehive=> \install sssp_prepare.jar
     beehive=> \install sssp_map.jar
     beehive=> \install sssp_reduce.jar

Install the JDK on the client machine
2. Download the JDK from http://java.sun.com/javase/downloads/index.jsp and 

3. Install the JDK on your client machine according to the JDK installation instructions at 
http://java.sun.com/javase/6/webnotes/install/index.html

Install the Aster Database JDBC driver on the client machine  

4. Get the Aster Database JDBC driver, noarch-ncluster-jdbc-driver.jar, in one of 
these ways:
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a. copy the package from your queen node. On the queen, you can find the installers in 
/home/beehive/clients_all/platform (where platform is the name of your 
client machine’s operating system); or

b. download the driver from asterdata.com/support.

5. Copy the driver to a location in your CLASSPATH on the client machine, or edit the client 
machine’s CLASSPATH to include its directory.

Install the Aster SQL-MapReduce API on the client 
machine
6. Download the Aster SQL-MapReduce API, ncluster-sqlmr-api.jar, from the queen to 

your client machine. This library can be found on your Aster Database queen in the 
directory, saved as /home/beehive/bin/lib/sqlmr/ncluster-sqlmr-api.jar

7. Copy the SQL-MapReduce API library to a location in your CLASSPATH on the client 
machine, or edit the client machine’s CLASSPATH to include its directory.

Testing Your Installation of a JDBC-Based Analytics 
Function

Optional approach: Run it directly on the Aster Database queen
beehive@coordinator:~$ java -jar <JDBC-Client-Function>.jar  <Command line arguments>

Typical approach: Run it from your client machine
user@machine:~$ java -classpath 
<JDBC-Client-Function>.jar:<ncluster-sqlmr-apr>.jar:<JDBC-Driver>.jar <main-class to 
be invoked with the full package name> <Command line arguments>

Command-Line Arguments for Driver-Based Functions

Typically you will pass a set of mandatory arguments and a set of optional arguments. Mandatory 
arguments are of two types, generic arguments and function-specific arguments. The mandatory 
generic arguments include:

• domain: Required argument. Host is the Aster Database queen hostname or IP address. (To 
specify an IPv6 address, enclose the host parameter in square brackets. For example, "[:: 
1]:2406".) The Port is the port number where the Aster Database queen accepts client 
connections. Default is the Aster Database standard port number (2406). For example: 
-domain=10.51.23.100:2406

• database: Required argument. This is the name of the database where the input table is 
present. For example: -database=beehive

• userid: Required argument. The database user name of the user in Aster Database. For 
example: -userid=beehive

• password: Required argument. The database password of the user in Aster Database. For 
example: -password=beehive

The rest of the arguments are specific to the function and are listed in the function’s 
documentation, such as “Single Source Shortest Path (SSSP)” on page 110 or “Collaborative 
Filtering” on page 113, or “Canopy” on page 97.

http://www.asterdata.com/support


Installing Aster Database’s Driver-Based Analytical Functions  Aster Data proprietary and confidential

12 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data



March 21, 2012 Aster Data proprietary and confidential 13

3

Time Series, Path, and Attribution Analysis

In this section we describe:

• “Path Generator” on page 13

• “Path Starter” on page 16

• “Path Summarizer” on page 187

• “Sessionization” on page 21

• “Attribution” on page 24

• See also “Pattern Matching with nPath” on page 39

Path Generator

Summary
This function takes as input a set of paths where each path is a route (series of pageviews) taken 
by a user in a single session from the start of the session until its end. For each path, Path 
Generator generates the correctly formatted sequence and all possible sub-sequences for further 
analysis by the Path Summarizer function. The first element in the path is the first page a user 
could visit. The last element of a path is the last page visited by the user.

Together, the Path Generator, Path Summarizer, and Path Starter functions are used to perform 
clickstream analysis of common sequences of users’ pageviews on a website. The roles of the 
three functions are:

• Path Generator generates all the possible paths (sequences of pageviews on a website);

• Path Summarizer counts the number of times various paths were traveled and measures the 
depth in pageviews of each path; and

• Path Starter generates all the child paths for a particular parent path and sums up the count 
of times each child path was traveled.

In the discussion below, we will use the terms:

• Path: An ordered, start-to-finish series of actions (for example, pageviews) for which you 
wish to generate sequences and sub-sequences. You will run Path Generator on the set of all 
observed paths users have traveled while navigating your website.

• Sequence: The sequence is the path prefixed with a carat ('^') to indicate the start of the 
path. For example, if a user visited page a, page b, and page c in that order, we would say 
that his session had the sequence, ^,a,b,c.
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• Sub-sequence: For a given sequence of actions, a sub-sequence is one possible subset of the 
steps that begins with the initial action. For example, the path a,b,c generates three 
sub-sequences: ^,a; ^,a,b; and ^,a,b,c.

Background
This tool is useful for performing clickstream analysis of website traffic. These functions can 
also be used for doing other types of sequence/path analysis, such as the analysis required for 
advertisement attribution and referral attribution.

Usage

Permissions

You must grant EXECUTE on the function “path_generator” to the database user who will run 
the function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * 
  FROM path_generator 
   (
     ON { table_name | view_name | ( query ) }
     SEQ('sequence_column') 
    [DELIMITER('delimiter_character')]
   )

Arguments

SEQ: Required. Name of the column in the input relation that contains the paths to be analyzed. 
The SEQ column must be of type varchar. Each path string is a delimited list of alphanumeric 
symbols that represents an ordered sequence of pageviews (or actions). Typically each symbol is 
a code that represents a unique pageview.

DELIMITER: Optional. Specifies the single-character delimiter you used in the path string 
(default is ",").

Input Data
You specify your path column in the SEQ parameter. The data source can be rows from a table or 
the result of an nPath query. In the query that generates the input data, you must GROUP BY 
your path column so that there is one row for each unique path traveled on your website, with a 
count of times that path was traveled.

Output
The function emits a row for each sub-sequence it generates. Each output row contains:

• The sub-sequence (called the “prefix”)
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• The formatted sequence with a carat (“^”) character added as the first element in the 
sequence; the carat indicates the start of the sequence. For example, a sequence in which a 
user viewed pages a, b, c, and then d would be expressed as the sequence ^,a,b,c,d.

• The path and all other columns of the input row that generated this sub-sequence.

Example
The input table user_flows contains the columns user_id, path, and cnt. Path Generator operates 
only on the path data, and outputs the other columns’ data untouched.

Example Input Data

Table 3-1  Example input table user_flows

Example SQL-MapReduce call
SELECT * 
  FROM PATH_GENERATOR 
   (
    ON user_flows 
    SEQ('path') 
    DELIMITER(',')
   );

Example Output from Path Generator

As mentioned above, the function generates a row for every sub-sequence it generates. The 
sub-sequence itself is output in the “prefix” column. All input columns (user_id, path, and cnt, 
here) are returned in the results, as well.

Table 3-2  Example output from Path Generator

user_id path cnt

1 a,b,c,d 1

2 a,b 2

3 b,e,g 5

4 a 7

5 a,e 5

user_id path cnt prefix sequence

1 a,b,c,d 1 ^,a ^,a,b,c,d

1 a,b,c,d 1 ^,a,b ^,a,b,c,d

1 a,b,c,d 1 ^,a,b,c ^,a,b,c,d

1 a,b,c,d 1 ^,a,b,c,d ^,a,b,c,d

2 a,b 2 ^,a ^,a,b

2 a,b 2 ^,a,b ^,a,b

3 b,e,g 5 ^,b ^,b,e,g

3 b,e,g 5 ^,b,e ^,b,e,g
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Error Messages
You may see the following error message:

• ERROR: “Please provide the SEQ argument, usage: SEQ(<columnname>)”

REASON: SEQ argument is missing

Path Starter

Summary
The output of Path Summarizer function is the input to this function. This function generates all 
the children for a particular parent and sums up their count. Note that the input data has to be 
partitioned by the parent column.

Background
This function is useful for website clickstream analysis and other sequence/path analysis tasks 
such as advertisement attribution.

Usage

Permissions

You must grant EXECUTE on the function “path_start” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
  FROM PATH_START
   (
    ON { table_name | view_name | ( query ) }
    PARTITION BY expression [, ...]
    CNT('count-column')
   [DELIMITER(',')]
    PARENT('parent-column')
    PARTITIONNAMES('partitionby-col-name' [ , ... ] )
    NODE('node-column')
   )

3 b,e,g 5 ^,b,e,g ^,b,e,g

4 a 7 ^,a ^,a

5 a,e 5 ^,a ^,a,e

5 a,e 5 ^,a,e ^,a,e



Aster Data proprietary and confidential Path Starter

March 21, 2012 Time Series, Path, and Attribution Analysis 17

Arguments

CNT: Required. Name of the column that contains the count values.

DELIMITER: Optional. Single-character delimiter to use (default is “,”).

PARENT: Required. Name of the column that contains the path of the parent node. You must 
partition the input data on this column.

PARTITIONNAMES: Required. This is a comma-delimited list of names to be used in the output 
as the names of the partition-by columns. Make sure you specify one name in this clause for each 
column you included in the PARTITION BY clause.

NODE: Required. Name of column that contains the path of the current node.

Assumptions

The user is expected to partition the input data based on the PARENT column (required) and 
optionally on any additional columns. All the columns used for partitioning will be emitted as-is. 
The PARTITIONNAMES argument clause is used to give output-column names to all the 
columns that are being used to partition the input data set. The number of columns in the 
PARTITION BY clause must same as the number of names in the PARTITIONNAMES 
argument. The NODE argument clause is used to specify the column containing the path to the 
node.

Input Data

Input column datatype requirements:

• The node column and the parent column should be of type varchar.

• The cnt column should be of type bigint or int.

All other columns are ignored unless they are part of the partition function. 

Output

The function emits node, parent, children, cnt, depth, and all columns that are part of the 
partition function.

Example
Input table user_flow_subpaths contains node, cnt, parent, prefix, depth, and children.

Example Input Data

Table 3-3  Example input table user_flow_subpaths

node cnt parent prefix depth children

^,a 15 ^ ^,a 1 [(^,a,$),(^,a,b),(^,a,e)]

^,a,$ 7 ^,a ^,a 2  

^,a,b 3 ^,a ^,a,b 2 [(^,a,b,$),(^,a,b,c)]

^,a,b,$ 2 ^,a,b ^,a,b 3  

^,a,b,c 1 ^,a,b ^,a,b,c 3 [(^,a,b,c,d)]

^,a,b,c,d 1 ^,a,b,c ^,a,b,c,d 4 [(^,a,b,c,d,$)]
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Example SQL-MapReduce call
SELECT * 
  FROM PATH_START 
   (
    ON user_flow_subpaths
    PARTITION BY (parent)
    CNT('cnt') 
    DELIMITER(',') 
    PARENT('parent') 
    PARTITIONNAMES('partitioned')
    NODE('node')
   );

Example Output from Path Start

Table 3-4  Example output table from Path Start

Path Summarizer

Summary
The output of the Path Generator function is the input to this function. This function is used to 
sum counts on nodes. A node can either be a plain sub-sequence or an exit sub-sequence. An exit 
sub-sequence is one in which the sequence and the sub-sequence are the same. Exit 
sub-sequences are denoted by appending a dollar sign ('$') to the end of the sequence.

^,a,b,c,d,$ 1 ^,a,b,c,d ^,a,b,c,d 5  

^,a,e 5 ^,a ^,a,e 2 [(^,a,e,$)]

^,a,e,$ 5 ^,a,e ^,a,e 3  

^,b 5 ^ ^,b 1 [(^,b,e)]

^,b,e 5 ^,b ^,b,e 2 [(^,b,e,g)]

^,b,e,g 5 ^,b,e ^,b,e,g 3 [(^,b,e,g,$)]

^,b,e,g,$ 5 ^,b,e,g ^,b,e,g 4  

node parent children cnt depth partitioned

^  [(^,a),(^,b)] 20 0 ^

^,a ^ [(^,a,$),( ^,a,b), 
(^,a,e)]

15 1 ^,a

^,b ^ [(^,b,e)] 5 1 ^, b

^,a,b ^,a [(^,a,b,$),(^,a,b,c)] 3 2 ^,a,b

^,a,e ^,a [(^,a,e,$)] 5 2 ^,a,e

^,b,e ^,b [(^,b,e,g)] 5 2 ^,b,e

^,a,b,c ^,a,b [(^,a,b,c,d)] 1 3 ^,a,b,c

^,b,e,g ^,b,e [(^,b,e,g,$)] 5 3 ^,b,e,g

^,a,b,c,d ^,a,b,c [(^,a,b,c,d,$)] 1 4 ^,a,b,c,d
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Background
This function is useful for website clickstream analysis and other sequence/path analysis tasks 
such as advertisement attribution.

Usage

Permissions

You must grant EXECUTE on the function “path_summarizer” to the database user who will run 
the function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
  FROM PATH_SUMMARIZER
   (
     ON {table_name|view_name|(query)}
     PARTITION BY expression [, ...]
     CNT('count_column')
     DELIMITER(',')
     SEQ('sequence-column')
     PARTITIONNAMES('partitionby-col-name' [ , ... ] )
     HASH('true|false')
     PREFIX('prefix-column')
   )

Arguments

CNT: Required. Name of the column containing the count values. If an input row has no CNT 
value, then the row is assumed to have a count of 1.

DELIMITER: Optional. Single-character delimiter to use (default is ",").

SEQ: Required. Name of the column containing the path of the current node.

PARTITIONNAMES: Required. Names for the columns specified in the PARTITION BY clause. 
The number of names specified in this argument must match the number of columns in the 
PARTITION BY clause.

HASH: Optional. Boolean that specifies whether the hash code of the NODE column should be 
included in the output. (Default is “false”.)

PREFIX: Required. Name of the column containing the prefix of a given node.

Assumptions

The user is expected to partition the input data on the PREFIX column (required) and optionally 
on additional columns. All the columns used for partitioning will be emitted as-is. The 
PARTITIONNAMES argument clause is used to name all the columns being used to partition the 
input data set. The number of columns in the PARTITION BY clause must be same as the 
number of names in the PARTITIONNAMES argument. Use the SEQ argument clause to specify 
the column containing the path to the node.
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Input Data

All other columns are ignored unless part of the partition function. Observe the following 
datatype requirements for input columns to Path Summarizer:

• The PREFIX and SEQ columns should be of type varchar.

• The CNT column should be of type bigint or int.

Output

The function emits the node, parent to the node, children, cnt (the sum of input counts), depth, 
and columns part of the partition function. The parent of the node is the route traversed by the 
users before visiting this node. Children of the node are the set of routes traversed by the users 
after visiting this node. Depth is the number of elements visited before entering this node.

Example
Input table output_of_path_generator contains user_id, path, prefix, sequence, and cnt.

Example Input Data

Table 3-5  Example input table output_of_path_generator

Example SQL-MapReduce call
SELECT * 
  FROM PATH_SUMMARIZER
   (
    ON output_of_path_generator 
    PARTITION BY prefix 
    SEQ('sequence') 
    PREFIX('prefix')
    PARTITIONNAMES('prefix') 
    DELIMITER(',') 
    CNT('cnt') 
    HASH('false')

user_id path prefix sequence cnt

1 a,b,c,d ^,a ^,a,b,c,d 1

1 a,b,c,d ^,a,b ^,a,b,c,d 1

1 a,b,c,d ^,a,b,c ^,a,b,c,d 1

1 a,b,c,d ^,a,b,c,d ^,a,b,c,d 1

2 a,b ^,a ^,a,b 2

2 a,b ^,a,b ^,a,b 2

3 b,e,g ^,b ^,b,e,g 5

3 b,e,g ^,b,e ^,b,e,g 5

3 b,e,g ^,b,e,g ^,b,e,g 5

4 a ^,a ^,a 7

5 a,e ^,a ^,a,e 5

5 a,e ^,a,e ^,a,e 5
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   );

Example Output from Path Summarizer

Table 3-6  Example output table from Path Summarizer

Error Messages
You may see one or more of the following error messages when you attempt to use this function:

• ERROR: Please provide the SEQ argument, usage: SEQ(<columnname>)

REASON: SEQ argument is missing

• ERROR: Please specify the column containing the prefix

REASON: PREFIX argument is missing

• ERROR: Please specify the column containing the cnt

REASON: CNT argument is missing

• ERROR: Please specify the names for the partition columns

REASON: PARTITIONNAMES argument is missing

Sessionization

Background
Sessionization is the process of mapping each click in a clickstream to a unique session 
identifier. We define a session as a sequence of clicks by a particular user where no more than n 
seconds pass between successive clicks (that is, if we don't see a click from a user for n seconds, 
we start a new session). Sessionization can be easily done with the Sessionize SQL-MapReduce 
function. Sample code is included with the Aster SQL-MapReduce Java API. This sessionize 

node parent children cnt depth prefix

^,a ^ [(^,a,$),(^,a,b),(^,a,e)] 15 1 ^,a

^,a,$ ^,a  7 2 ^,a

^,a,b ^,a [(^,a,b,$),(^,a,b,c)] 3 2 ^,a,b

^,a,b,$ ^,a,b  2 3 ^,a,b

^,a,b,c ^,a,b [(^,a,b,c,d)] 1 3 ^,a,b,c

^,a,b,c,d ^,a,b,c [(^,a,b,c,d,$)] 1 4 ^,a,b,c,d

^,a,b,c,d,$ ^,a,b,c,d  1 5 ^,a,b,c,d

^,a,e ^,a [(^,a,e,$)] 5 2 ^,a,e

^,a,e,$ ^,a,e  5 3 ^,a,e

^,b ^ [(^,b,e)] 5 1 ^,b

^,b,e ^,b [(^,b,e,g)] 5 2 ^,b,e

^,b,e,g ^,b,e [(^,b,e,g,$)] 5 3 ^,b,e,g

^,b,e,g,$ ^,b,e,g  5 4 ^,b,e,g
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SQL-MapReduce function can also be used to detect web crawler (“bot”) activity. If the time 
between successive clicks is less than the user-specified threshold, bot activity will be flagged.

Usage

Permissions

You must grant EXECUTE on the function “sessionize” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
  FROM SESSIONIZE(
      ON { table_name | view_name | ( query ) }
      PARTITION BY expression [, ...] 
      ORDER BY order_by_columns
      TIMECOLUMN ( 'timestamp_column' )
      TIMEOUT ( session_timeout_value )
      [ RAPIDFIRE ( min_human_click_lag ) ]
      [ EMITNULL ]
  )

Arguments

TIMECOLUMN: Specifies the column name containing the timing information. The specified 
column can be of type TIME, TIMESTAMP, INT, BIGINT, or SMALLINT. If the column is of 
type INT, BIGINT, or SMALLINT, it is assumed to contain timestamp values in milliseconds.

TIMEOUT: Specifies the maximum number of seconds a user can wait between one pageview 
and the next, before it the new pageview is considered to be part of a new session. This value can 
have the datatype REAL.

RAPIDFIRE: Optional. Specifies minimum number of seconds that must elapse between clicks 
in order for this session to be considered a real (human) session. If the time between clicks is less 
than the min_human_click_lag, SESSIONIZE considers the session to be a bot session and 
ignores it. RAPIDFIRE must be less than TIMEOUT. The datatype of this value is REAL.

EMITNULL: Optional. If true, emits the row with null values for sessionid and rapidfire even if 
the TIMECOLUMN has null value. If false, rows with null values for TIMECOLUMN would 
not be emitted. By default EMITNULL is false.

Assumptions

Data is assumed to be partitioned such that each partition contains all the rows of an entity. 
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Example
Example Input Data

Table 3-7  Example Input Data, table sessionize_table

Example SQL-MapReduce call
SELECT *
  FROM SESSIONIZE
  (
   ON sessionize_table
   PARTITION BY partition_id
   ORDER BY clicktime
   TIMECOLUMN('clicktime')
   TIMEOUT('60')
   RAPIDFIRE('0.2')
  )
  ORDER BY partition_id, clicktime;

Example Output from Sessionize

Table 3-8  Example Output from Sessionize

partition_id clicktime userid productname pagetype referrer productprice

1 1110000 333   home www.yahoo.com  

1 1112000 333 ipod checkout www.yahoo.com 200.2

1 1160000 333 bose checkout   340

1 1200000 333   home www.google.com  

1 1203000 67403   home www.google.com  

1 1300000 67403   home www.google.com  

1 1301000 67403   home    

1 1302000 67403   home    

1 1340000 67403 iphone checkout   650

1 1450000 67403 bose checkout   750

1 1450200 80000   home www.godaddy.com  

1 1450600 80000 bose checkout   340

1 1450800 80000 itrip checkout   450

1 1452000 80000 iphone checkout   650

partition
_id

click 
time

userid product 
name

pagetype referrer product 
price

session 
id

rapid 
fire

1 1110000 333   home www.yahoo.com   0 f

1 1112000 333 ipod checkout www.yahoo.com 200.2 0 f

1 1160000 333 bose checkout   340 0 f

1 1200000 333   home www.google.com   0 f

1 1203000 67403   home www.google.com   0 f
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Output contains all the input columns; in addition it contains sessionid and rapidfire columns.

Error Messages
You may see the following error messages when using this function:

• ERROR: Requires specified timecolumn column (<column_name>)) to have 
any of the following types:integer, smallint, bigint, timestamp, 
time

REASON: column specified in the TIMECOLUMN argument is not among any of the 
allowed datatypes.

• ERROR: TIMEOUT should be a real value greater than 0

REASON: TIMEOUT argument is not a real value greater than 0

• ERROR: RAPIDFIRE should be a real value greater than 0

REASON: RAPIDFIRE argument is not a real value greater than 0

• ERROR: rapidfire should be less than the timeout

REASON: RAPIDFIRE argument should be less than the TIMEOUT argument

Attribution

Background
The attribution operator is often used in web page analysis. Companies would like to assign 
weights to pages before certain events, such as a 'click' or a 'buy'. This attribution function 
enables you to calculate attributions by using a wide range of distribution models.

1 1300000 67403   home www.google.com   1 f

1 1301000 67403   home     1 f

1 1302000 67403   home     1 f

1 1340000 67403 iphone checkout   650 1 f

1 1450000 67403 bose checkout   750 2 f

1 1450200 80000   home www.godaddy.com   2 t

1 1450600 80000 bose checkout   340 2 f

1 1450800 80000 itrip checkout   450 2 t

1 1452000 80000 iphone checkout   650 2 f 

partition
_id

click 
time

userid product 
name

pagetype referrer product 
price

session 
id

rapid 
fire



Aster Data proprietary and confidential Attribution

March 21, 2012 Time Series, Path, and Attribution Analysis 25

Usage

Permissions

You must grant EXECUTE on the function “attribution” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * FROM attribution
(
    ON { input_table | view | query }
    PARTITION BY expression [, ...] 
    ORDER BY order_by_columns
    EVENT_COLUMN_NAME('event_column')
    CONVERSION_EVENT_TYPE_VALUE('click1', 'click2', ...)
    [ EXCLUDING_EVENT_TYPE_VALUE('email') ]
    [ OPTIONAL_EVENT_TYPE_VALUE('optional1', 'optional2') ]
    TIMESTAMP_COLUMN_NAME('timestamp_column')
    WINDOW('rows:K | seconds:K | rows:K&seconds:K')
    MODEL1('TYPE', 'K|EVENT:WEIGHT:MODEL:PARAMETERS', ...)
    [ MODEL2('TYPE', 'K|EVENT:WEIGHT:MODEL:PARAMETERS', ...) ]
);

Simple arguments

EVENT_COLUMN_NAME: Required argument. This is the name of the event column.

CONVERSION_EVENT_TYPE_VALUE: Required argument. A list of strings or integers that 
define the impact events.

EXCLUDING_EVENT_TYPE_VALUE: Optional argument. A list of strings or integers that 
define the cause events which need to be excluded from the attribution calculation. A row with 
one of these event type values will be ignored. Note that the excluding event type values can not 
overlap with the conversion event type values.

OPTIONAL_EVENT_TYPE_VALUE: Optional argument. A list of strings or integers that define 
the cause events that are optional, which means if there are no other cause events, they will be 
attributed, otherwise they will be excluded. These values also can not overlap with conversion 
event and excluding event.

TIMESTAMP_COLUMN_NAME: Required argument. This is the name of the timestamp column. 
The column type can be integer, smallint, bigint, timestamp, and time.

Window arguments

WINDOW: Required argument. This argument specifies the maximum window size used in the 
attribution calculation. There are three modes:

• The 'rows:K' mode considers the maximum number of cause events to be attributed, 
excluding cause events with an event type value specified in the 'excludingEventTypeValue' 
argument, which means assigning attributions to at most K effective cause events before 
current impact event.

• The 'seconds:K' considers the maximum time difference between current impact event and 
the earliest effective cause event to be attributed.
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• And the mixed mode 'rows:K&seconds:K' (two K's are not necessarily the same) considers 
both constraints and complies to the more strict one.

MODEL1/MODEL2 arguments

TYPE will be one of:

• 'SIMPLE' - Using a single distribution model for all the events. In this case, you can specify 
only one distribution model following the 'TYPE' argument, which is in the format of 
'MODEL:PARAMETERS'.

• 'EVENT_REGULAR' - In this case, you specify a list of 
'EVENT:WEIGHT:MODEL:PARAMETERS', which is a list of regular event models. All 
the weights have to sum to 1.

• 'EVENT_OPTIONAL' - In this case, you specify a list of 
'EVENT:WEIGHT:MODEL:PARAMETERS', which is a list of optional event models. 
'EVENT' should be one of those in the 'OPTIONAL_EVENT_TYPE_VALUE' list. All the 
weights have to sum to 1.

• 'SEGMENT_ROWS' - In this case, you specify a list of 
'K:WEIGHT:MODEL:PARAMETERS', which is a list of window slices by rows, from the 
newest (the most recent happened) to the oldest. All the K_i's have to sum to K as specified 
in the 'rows:K' mode. All the Ks have to sum to the 'K' specified in 'rows:K'. All the weights 
have to sum to 1.

• 'SEGMENT_SECONDS' - In this case, you specify a list of 
'K:WEIGHT:MODEL:PARAMETERS', which is a list of window slices by seconds, from 
the newest (the most recent happened) to the oldest. All the K_i's have to sum to K as 
specified in the 'seconds:K' mode. All the Ks have to sum to the 'K' specified in 'seconds:K'. 
All the weights have to sum to 1.

The allowed MODEL1/MODEL2 combinations are:

• MODEL1('SIMPLE')

• MODEL1('EVENT_REGULAR')

• MODEL1('EVENT_REGULAR'), MODEL2('EVENT_OPTIONAL') - When specify 
'OPTIONAL_EVENT_TYPE_VALUE'.

• MODEL1('SEGMENT_ROWS')

• MODEL1('SEGMENT_SECONDS')

• MODEL1('SEGMENT_ROWS'), MODEL2('SEGMENT_SECONDS') - When specify 
'rows:K&seconds:K' in the WINDOW argument.

MODEL: This is the model used to calculate the attribution. Currently supported models are 
'LAST_CLICK', 'UNIFORM', 'WEIGHTED', 'EXPONENTIAL', 'FIRST_CLICK'. This 
argument is case sensitive.

PARAMETERS:

• When the distribution model is 'LAST_CLICK', 'UNIFORM', or 'FIRST_CLICK', parameter 
should be 'NA', otherwise you will get an error.

• When the distribution model is 'WEIGHTED': If it is in 'rows:K' mode, you need to specify 
a list of weights whose size should be equal to 'K', which is specified in the 'window' 
argument (or equal to K_i which is specified in corresponding 'K_i:MODEL_i:WEIGHT_i'). 
Otherwise (in 'seconds:K' mode or in an event model) you can specify as many weights as 
you want, since they will be dynamically re-normalized. Each weight should be in range 
[0,1], and all the weights must sum to 1. The weights are specified in the order from left to 
right as newest to oldest attributed cause event. Semantic of the weights: suppose we have 
sequence "impression1,impression2,click1,impression3,click2,click3", the window is row 
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based for 3 preceding rows, the user specified weights are "0.5,0.3,0.2". For click1, 
impression1 has attribution 0.375 (0.3 normalized by 0.3+0.5), impression2 has attribution 
0.625 (0.5 normalized by 0.3+0.5). For click2, there is only 1 qualifying cause event: 
impression3 has attribution 1.0 (0.5 normalized by 0.5).

• When the distribution model is 'EXPONENTIAL', you need to specify a single parameter 
'alpha' in range (0,1). Consider the power series: 

which sum to 1. These exponential weights can be considered in the same fashion as above 
(relative weights) when the actual rows being looked back are not infinite.

Example Input Data

Table 3-9  The input table, attribution_sample_table2

user_id event time_stamp

1 impression 2001-09-27 23:00:01

1 impression 2001-09-27 23:00:03

1 impression 2001-09-27 23:00:05

1 impression 2001-09-27 23:00:07

1 impression 2001-09-27 23:00:09

1 impression 2001-09-27 23:00:11

1 impression 2001-09-27 23:00:13

1 email 2001-09-27 23:00:15

1 impression 2001-09-27 23:00:17

1 impression 2001-09-27 23:00:19

1 click1 2001-09-27 23:00:20

1 optional1 2001-09-27 23:00:21

1 optional2 2001-09-27 23:00:22

1 click2 2001-09-27 23:00:23

2 impression 2001-09-27 23:00:29

2 impression 2001-09-27 23:00:31

2 impression 2001-09-27 23:00:33

2 impression 2001-09-27 23:00:36

2 impression 2001-09-27 23:00:38

2 impression 2001-09-27 23:00:43

2 impression 2001-09-27 23:00:47

2 optional 2001-09-27 23:00:49

2 impression 2001-09-27 23:00:51

2 impression 2001-09-27 23:00:53

2 impression 2001-09-27 23:00:55

2 click1 2001-09-27 23:00:59 
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Some explanation about the input table:

• The 'user_id = 1' partition is mainly used to test the 'rows:K' mode.

• The 'user_id = 2' partition is mainly used to test the 'seconds:K' mode.

• Conversion events are 'click1', 'click2'.

• 'email' serves as potential 'excluding cause event'.

• 'optional', 'optional1', and 'optional2' are potential 'optional cause events'.

Example 1: Event models (with multiple optional event 
models)
In this example, we specify one distribution model for each type of 'regular' cause event, and one 
distribution model for each type of optional cause event.

Example 1 SQL-MR Call
SELECT * FROM attribution
(
    ON attribution_sample_table2
    PARTITION BY user_id
    ORDER BY time_stamp

    EVENT_COLUMN_NAME('event')
    CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
    OPTIONAL_EVENT_TYPE_VALUE('optional','optional1', 'optional2')
    TIMESTAMP_COLUMN_NAME('time_stamp')
    WINDOW('rows:10&seconds:20')
    MODEL1('EVENT_REGULAR', 'email:0.19:LAST_CLICK:NA', 'impression:0.81:UNIFORM:NA')
    MODEL2('EVENT_OPTIONAL', 'optional:0.5:UNIFORM:NA', 'optional1:0.3:UNIFORM:NA', 
'optional2:0.2:UNIFORM:NA')
)
ORDER BY user_id, time_stamp;

Example 1 Output from Attribution

Table 3-10  Example 1 Output from the attribution function

user_id event time_stamp attribution time_to_conversion

1 impression 2001-09-27 23:00:01 0.09 -19

1 impression 2001-09-27 23:00:03 0.09 -17

1 impression 2001-09-27 23:00:05 0.09 -15

1 impression 2001-09-27 23:00:07 0.09 -13

1 impression 2001-09-27 23:00:09 0.09 -11

1 impression 2001-09-27 23:00:11 0.09 -9

1 impression 2001-09-27 23:00:13 0.09 -7

1 email 2001-09-27 23:00:15 0.19 -5

1 impression 2001-09-27 23:00:17 0.09 -3

1 impression 2001-09-27 23:00:19 0.09 -1
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Example 3: Event models (using dynamic weighted 
distribution model)
In this example, we show that a WEIGHTED distribution model can be used in event models. 
You can specify as many weights as you want, which determine the maximum number of cause 
events you want to attribute for an impact event. If the number of effective cause events is larger 
than the number of weights, then the extra (from oldest) cause events will get zero attribution. If 
the opposite happens, then the weights will be re-normalized.

Example 3 SQL-MR Call
SELECT * FROM attribution
(
    ON attribution_sample_table2
    PARTITION BY user_id
    ORDER BY time_stamp

    EVENT_COLUMN_NAME('event')
    CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
    OPTIONAL_EVENT_TYPE_VALUE('optional','optional1', 'optional2')
    TIMESTAMP_COLUMN_NAME('time_stamp')
    WINDOW('rows:10&seconds:20')
    MODEL1('EVENT_REGULAR', 'email:0.19:LAST_CLICK:NA', 
           'impression:0.81:WEIGHTED:0.4,0.3,0.2,0.1')
    MODEL2('EVENT_OPTIONAL', 'ALL:1:WEIGHTED:0.4,0.3,0.2,0.1')
)
ORDER BY user_id, time_stamp;

1 click1 2001-09-27 23:00:20    

1 optional1 2001-09-27 23:00:21 0.6 -2

1 optional2 2001-09-27 23:00:22 0.4 -1

1 click2 2001-09-27 23:00:23    

2 impression 2001-09-27 23:00:29 0  

2 impression 2001-09-27 23:00:31 0  

2 impression 2001-09-27 23:00:33 0  

2 impression 2001-09-27 23:00:36 0  

2 impression 2001-09-27 23:00:38 0  

2 impression 2001-09-27 23:00:43 0.2 -16

2 impression 2001-09-27 23:00:47 0.2 -12

2 impression 2001-09-27 23:00:51 0.2 -8

2 impression 2001-09-27 23:00:53 0.2 -6

2 impression 2001-09-27 23:00:55 0.2 -4

2 click1 2001-09-27 23:00:59    

user_id event time_stamp attribution time_to_conversion
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Example 3 Output

Table 3-11  Example 3 Output of Attribution

Comments on Example 3

Please note:

• See click1 in 'user_id = 1'. Based on 'rows:10' mode, the one 'email' and all nine 
'impression's are effective. According to the event models 'email:LAST_CLICK:0.19' and 
'impression:WEIGHTED:0.81', all 'email's get 0.19 attribution, and all 'impression's get 0.81 
attribution. It is clear for 'email' here, while for 'impression's, since we use a WEIGHTED 
distribution with weights '0.4:0.3:0.2:0.1', so only the newest four 'impression's are 
attributed, and all the extra older 'impression's get zero attribution. The analysis for click1 in 
'user_id = 2' is similar.

• See click2 in 'user_id = 1'. We use a single WEIGHTED distribution model for all types of 
optional cause event. Since the number of weights is four but the number of effective cause 

user_id  event  time_stamp  attribution  time_to_conversion

1  impression  2001-09-27 23:00:01  0  

1  impression  2001-09-27 23:00:03  0  

1  impression  2001-09-27 23:00:05  0  

1  impression  2001-09-27 23:00:07  0  

1  impression  2001-09-27 23:00:09  0  

1 impression  2001-09-27 23:00:11 0.081  -9

1 impression  2001-09-27 23:00:13 0.162  -7

1  email  2001-09-27 23:00:15  0.19  -5

1 impression  2001-09-27 23:00:17 0.243  -3

1 impression  2001-09-27 23:00:19 0.324  -1

1  click1  2001-09-27 23:00:20   

1 optional1  2001-09-27 23:00:21 0.428571  -2

1 optional2  2001-09-27 23:00:22 0.571429  -1

1  click2  2001-09-27 23:00:23   

2  impression  2001-09-27 23:00:29  0  

2  impression  2001-09-27 23:00:31  0  

2  impression  2001-09-27 23:00:33  0  

2  impression  2001-09-27 23:00:36  0  

2  impression  2001-09-27 23:00:38  0  

2  impression  2001-09-27 23:00:43  0  

2 impression  2001-09-27 23:00:47 0.1  -12

2 impression  2001-09-27 23:00:51 0.2  -8

2 impression  2001-09-27 23:00:53 0.3  -6

2 impression  2001-09-27 23:00:55 0.4  -4

2  click1  2001-09-27 23:00:59   
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events is only two, so the weights get re-normalized to 0.4/(0.4+0.3) = 0.571429, and 
0.3/(0.4+0.3) = 0.428571.

Example 4: Window models
In this example we specify both the 'WINDOW_SEGMENTATION_BY_ROWS' and the 
'WINDOW_SEGMENTATION_BY_SECONDS' distribution model lists.

Example 4 SQL-MR Call
SELECT * FROM attribution
(
    ON attribution_sample_table2
    PARTITION BY user_id
    ORDER BY time_stamp

    EVENT_COLUMN_NAME('event')
    CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
    EXCLUDING_EVENT_TYPE_VALUE('email')
    OPTIONAL_EVENT_TYPE_VALUE('optional', 'optional1', 'optional2')
    TIMESTAMP_COLUMN_NAME('time_stamp')
    WINDOW('rows:10&seconds:20')
    MODEL1('SEGMENT_ROWS', '3:0.5:EXPONENTIAL:0.5', 
           '4:0.3:WEIGHTED:0.4,0.3,0.2,0.1', '3:0.2:FIRST_CLICK:NA')
    MODEL2('SEGMENT_SECONDS', '6:0.5:UNIFORM:NA', '8:0.3:LAST_CLICK:NA', 
           '6:0.2:FIRST_CLICK:NA')
)
ORDER BY user_id, time_stamp;

Example 4 Output of Attribution

Table 3-12  Example 4 Output of Attribution

user_id  event  time_stamp  attribution  time_to_conversion

1  impression  2001-09-27 23:00:01  0.2  -19

1  impression  2001-09-27 23:00:03  0  

1  impression  2001-09-27 23:00:05  0.03  -15

1  impression  2001-09-27 23:00:07  0.06  -13

1  impression  2001-09-27 23:00:09  0.09  -11

1  impression  2001-09-27 23:00:11  0.12  -9

1  impression  2001-09-27 23:00:13  0.0714286  -7

1  impression  2001-09-27 23:00:17  0.142857  -3

1  impression  2001-09-27 23:00:19  0.285714  -1

1  click1  2001-09-27 23:00:20   

1  optional1  2001-09-27 23:00:21  0.333333  -2

1  optional2  2001-09-27 23:00:22  0.666667  -1

1  click2  2001-09-27 23:00:23   

2  impression  2001-09-27 23:00:29  0  

2  impression  2001-09-27 23:00:31  0  
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Comments on Attribution Example 4
• In this example we excluded the 'email'.

• For 'user_id = 1', the 'rows:K' mode was triggered, and the 'WINDOW_SEGMENTATION_
BY_ROWS' models were applied to compute attributions.

• For 'user_id = 2', the 'seconds:K' mode was triggered, and the 'WINDOW_
SEGMENTATION_BY_SECONDS' models were applied to compute attributions. The three 
segmentation windows are (from newest to oldest): [58,53], [52,45], [44,39].

Additional Sample Input Data
Here we introduce more sample data, in the input table “attribution_sample_table3.” We’ll use 
this data in examples 5 and 6.

Table 3-13  The input table, attribution_sample_table2

2  impression  2001-09-27 23:00:33  0  

2  impression  2001-09-27 23:00:36  0  

2  impression  2001-09-27 23:00:38  0  

2  impression  2001-09-27 23:00:43  0.2  -16

2  impression  2001-09-27 23:00:47  0  

2  impression  2001-09-27 23:00:51  0.3  -8

2  impression  2001-09-27 23:00:53  0.25  -6

2  impression  2001-09-27 23:00:55  0.25  -4

2  click1  2001-09-27 23:00:59   

user_id  event  time_stamp

1  impression  2001-09-27 23:00:07

1  impression  2001-09-27 23:00:09

1  impression  2001-09-27 23:00:11

1  impression  2001-09-27 23:00:13

1  email  2001-09-27 23:00:15

1  impression  2001-09-27 23:00:17

1  impression  2001-09-27 23:00:19

1  click1  2001-09-27 23:00:21

1  click2  2001-09-27 23:00:23

2  impression  2001-09-27 23:00:29

2  impression  2001-09-27 23:00:31

2  impression  2001-09-27 23:00:33

2  impression  2001-09-27 23:00:47

2  impression  2001-09-27 23:00:51

2  impression  2001-09-27 23:00:53

user_id  event  time_stamp  attribution  time_to_conversion
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Example 5: A single-window model

Example 5 SQL-MR Call
SELECT * FROM attribution
(
    ON attribution_sample_table3
    PARTITION BY user_id
    ORDER BY time_stamp

    EVENT_COLUMN_NAME('event')
    CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
    EXCLUDING_EVENT_TYPE_VALUE('email')
    TIMESTAMP_COLUMN_NAME('time_stamp')
    WINDOW('rows:10&seconds:20')
    MODEL1('SIMPLE', 'UNIFORM:NA')
)
ORDER BY user_id, time_stamp;

Example 5 Output from Attribution 

Table 3-14  Example 5 Output from Attribution

2  impression  2001-09-27 23:00:55

2  click1  2001-09-27 23:00:59

user_id  event  time_stamp  attribution  time_to_conversion

1  impression  2001-09-27 23:00:07  0.166667  -14

1  impression  2001-09-27 23:00:09  0.166667  -12

1  impression  2001-09-27 23:00:11  0.166667  -10

1  impression  2001-09-27 23:00:13  0.166667  -8

1  impression  2001-09-27 23:00:17  0.166667  -4

1  impression  2001-09-27 23:00:19  0.166667  -2

1  click1  2001-09-27 23:00:21   

1  click2  2001-09-27 23:00:23   

2  impression  2001-09-27 23:00:29  0  

2  impression  2001-09-27 23:00:31  0  

2  impression  2001-09-27 23:00:33  0  

2  impression  2001-09-27 23:00:47  0.25  -12

2  impression  2001-09-27 23:00:51  0.25  -8

2  impression  2001-09-27 23:00:53  0.25  -6

2  impression  2001-09-27 23:00:55  0.25  -4

2  click1  2001-09-27 23:00:59   

user_id  event  time_stamp
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Example 6: Not all segment windows are used
In this example, we show that in case that not all segment window models are used, certain 
re-normalization scheme will come into play to ensure that all attributions add up to 1 for one 
impact event.

Example 6 SQL-MR Call
SELECT * FROM attribution
(
    ON attribution_sample_table3
    PARTITION BY user_id
    ORDER BY time_stamp

    EVENT_COLUMN_NAME('event')
    CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
    TIMESTAMP_COLUMN_NAME('time_stamp')
    WINDOW('rows:10&seconds:20')
    MODEL1('SEGMENT_ROWS', '3:0.5:EXPONENTIAL:0.5', 
           '4:0.3:WEIGHTED:0.4,0.3,0.2,0.1', '3:0.2:FIRST_CLICK:NA')
    MODEL2('SEGMENT_SECONDS', '6:0.5:UNIFORM:NA', '8:0.3:LAST_CLICK:NA', 
           '6:0.2:FIRST_CLICK:NA')
)
ORDER BY user_id, time_stamp;

Example 6 Output from Attribution 

Table 3-15  Example 6 Output from Attribution

user_id  event  time_stamp  attribution  time_to_conversion

1  impression  2001-09-27 23:00:07  0.0375  -14

1  impression  2001-09-27 23:00:09  0.075  -12

1  impression  2001-09-27 23:00:11  0.1125  -10

1  impression  2001-09-27 23:00:13  0.15  -8

1  email  2001-09-27 23:00:15  0.0892857  -6

1  impression  2001-09-27 23:00:17  0.178571  -4

1  impression  2001-09-27 23:00:19  0.357143  -2

1  click1  2001-09-27 23:00:21   

1  click2  2001-09-27 23:00:23   

2  impression  2001-09-27 23:00:29  0  

2  impression  2001-09-27 23:00:31  0  

2  impression  2001-09-27 23:00:33  0  

2  impression  2001-09-27 23:00:47  0  

2  impression  2001-09-27 23:00:51  0.375  -8

2  impression  2001-09-27 23:00:53  0.3125  -6

2  impression  2001-09-27 23:00:55  0.3125  -4

2  click1  2001-09-27 23:00:59   
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Comments on Attribution Example 6
• For 'user_id = 1', the 'rows:K' mode was triggered, so the 'WINDOW_SEGMENTATION_

BY_ROWS' model list was used. But there are only seven rows before click1, so only the 
first two distribution models, '3:EXPONENTIAL:0.5' and '4:WEIGHTED:0.3' were used. In 
this situation, we need to re-normalize the window weights to 0.5/(0.5+0.3) = 0.625, and 
0.3/(0.5+0.3) = 0.375. That is almost exactly what we see here: (0.357143 + 0.178571 + 
0.0892857) = 0.625, and (0.15 + 0.1125 + 0.075 + 0.0375) = 0.375.

• For 'user_id = 2', the 'seconds:K' mode was triggered. In this situation, we have rows in 
segments [58,53] and [52,45], but we do not have any rows in segment [44,39]. So as above, 
only the first two distribution models, '6:UNIFORM:0.5' and '8:LAST_CLICK:0.3' were 
used. We can see that similar re-normalization scheme plays here.
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4

Pattern Matching with nPath 

This section shows you how to use Aster Data nPath to perform regular pattern matching over a 
sequence of rows. Aster Data nPath is an SQL extension designed to perform fast analysis on 
ordered data. The clauses in nPath let you express complicated pathing queries and ordering 
relationships that might otherwise require you to write multi-level joins of relations in ANSI 
SQL. With nPath, you indicate a desired ordering and then specify a pattern that will be matched 
across the ordered rows of data. For each matched PATTERN in the sequence of rows, nPath 
generates a row of output that contains SQL aggregates computed over the rows in the matched 
PATTERN.

This section is divided into the following segments:

• “What is nPath?” on page 39

• “nPath Syntax and Semantics” on page 40

• “Patterns, Symbols, and Operators in nPath” on page 42

• “Pattern Matching in nPath” on page 44

• “Matching Repeated Patterns in nPath” on page 44

• “LAG expressions in symbol predicates” on page 45

• “Applying an SQL aggregate to an nPath result” on page 46

• “nPath Examples” on page 47

What is nPath?
The Aster Database nPath function allows you to perform regular pattern matching over a 
sequence of rows. With it, you can find sequences of rows that match a pattern you’ve specified 
and easily extract information from these matched PATTERNs using symbols that represent the 
matched rows in the pattern. For clarity, we’ll refer to each sequence of matched rows as a 
“matched PATTERN” in this discussion.

Depicted in a step-by-step fashion, nPath lets you:

• use a regular expression to specify a pattern you want to match in an ordered collection of 
rows and label individual matching rows with symbols; and

• compute SQL aggregates on or find particular values in each matched PATTERN (your 
nPath RESULTS clause operates on the symbols to get these aggregates and values).

nPath uses regular expressions because they are simple, widely understood, and flexible enough 
to express most search criteria. While most uses of regular expressions focus on matching 
patterns in strings of text; nPath enables matching patterns in sequences of rows.
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In its simplest application, nPath can be used to compute SQL 1999 aggregates such as RANK, 
LAG/LEAD, running aggregates, FIRST_VALUE, LAST_VALUE, and others. Many 
applications of nPath can compute aggregates over sequences that cannot be expressed in SQL 
1999, or that would require self-joins for multiple passes over the data if expressed in SQL 1999.

nPath Permissions
You must grant EXECUTE on the function “nPath” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

nPath Syntax and Semantics
nPath has the following syntax:

SELECT ...
  FROM NPATH
    (
      ON { table_name | view_name | ( query ) }
      PARTITION BY expression [, ...]
      ORDER BY expression [ ASC | DESC ] [, ...]
      MODE ( { OVERLAPPING | NONOVERLAPPING } )
      PATTERN ( 'pattern_of_symbols' )
      SYMBOLS ( symbol_predicate AS symbol [, ...] )
      RESULT ( aggregate_function( expression OF symbol ) 
        AS alias [, ...] )
    ) [, ... ]
 [ WHERE ... ]
 [ GROUP BY ... ]
 [ HAVING ... ]
 [ ORDER BY ... ]
 [ LIMIT ... ]
 [ OFFSET ... ]

Below, we describe the Arguments you pass to the nPath clause.

ON clause
The ON clause specifies the input relation, which can be a table, view, or query. If you provide a 
query, you must enclose it in parentheses.

PARTITION BY expression
The PARTITION BY expression defines the scope of a partition of input rows over which nPath 
searches for pattern matches.

ORDER BY expression
The ORDER BY expression specifies the sort-order of the input rows.
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MODE clause
The MODE clause indicates whether matched PATTERNs may overlap. After we have found one 
sequence of rows that matches our desired pattern, we look for the next match. To begin the next 
pattern search, the choice of the starting row depends on the match mode you have chosen:

• In OVERLAPPING match mode, nPath finds every occurrence of the pattern in the 
partition, regardless of whether it might have been part of a previously found match. This 
means that, in OVERLAPPING mode, one row can match multiple symbols in a given 
matched PATTERN.

• In NONOVERLAPPING match mode, nPath begins the next pattern search at the row that 
follows the last PATTERN match. Note that this is the default behavior of many commonly 
used pattern matching utilities like the popular grep utility in UNIX systems.

PATTERN clause
The PATTERN clause defines the sequence of rows nPath searches for. You express the pattern 
using symbols and operators. For example, to match every instance in which a row that matches 
symbol A is followed directly by a row that matches symbol B, you would write “A.B” (the dot 
operator means “is followed by”). See “Patterns, Symbols, and Operators in nPath” on page 42.

SYMBOLS clause
The SYMBOLS clause defines the row-elements in the pattern, expressed as a comma-separated 
list of symbol definitions. Each symbol definition is written in the form “symbol_predicate AS 
symbol” where symbol_predicate is an SQL predicate and symbol is a case-insensitive string 
you’ll use to represent rows that match this predicate. It’s common to define each symbol as just 
one or two uppercase letters, since short symbols are easy to read when assembled into a pattern 
expression.

For example, a SYMBOLS clause for analyzing website visits might look like this:

    SYMBOLS(
      pagetype =  'homepage' AS H, 
      pagetype <> 'homepage' AND pagetype <> 'checkout' AS PP, 
      pagetype =  'checkout' AS CO )

A symbol is applied to a row only if the row satisfies the symbol’s predicate. If a null value is 
encountered when trying to match the symbol predicate, it’s treated as a non-match. A symbol 
may be associated with the predicate “true”, meaning that the symbol can match any row. Note 
that the predicates for different symbols may overlap, and therefore multiple symbols may match 
the same row.

In your symbol predicate, you can compare the current row to a preceding row to determine if it 
is considered a match for the symbol. See “LAG expressions in symbol predicates” on page 45.

RESULT clause: nPath Output
The RESULT clause defines the output columns of this nPath query as a comma-separated list of 
expressions. The RESULT clause is evaluated once for each matched PATTERN in the partition. 
In other words, nPath generates one output row per PATTERN match.

In the RESULT clause, each expression operates on one or more symbols, and each expression is 
followed by the alias to be applied to this column of output. The form of an output column 
definition in the RESULTS clause is:



Patterns, Symbols, and Operators in nPath  Aster Data proprietary and confidential

42 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

    aggregate_function ( expression OF symbol ) AS alias

Since each symbol represents all the rows that matched that symbol’s predicate in this particular 
matched PATTERN, you must specify an expression (often just the column name) to state what 
values you want to retrieve from the matched rows, and then apply an aggregate function to the 
results of that expression, in order to generate a single, useful value from the set of matched rows 
in the symbol. 

For example, imagine that we want to count how many product pages a web visitor viewed 
during a visit to our website. To do this, our output column definition in the RESULT clause 
might look like the following. Let’s assume we’ve defined the symbol PP to represent rows that 
record a user’s views of our product pages on the website:

    COUNT ( * OF PP ) AS count_product_pages_visited

For a list of supported aggregate functions, see “Applying an SQL aggregate to an nPath result” 
on page 46.

Working with nPath Output 
The output rows from nPath can subsequently be used like the results of any SQL query. Rows 
from nPath may be filtered outside nPath using WHERE, aggregated using GROUP BY (with 
groups optionally vetted using a HAVING clause), sorted using ORDER BY, de-duplicated using 
DISTINCT/DISTINCT ON, truncated using LIMIT/OFFSET, and so on.

Patterns, Symbols, and Operators in nPath
nPath performs pattern matching and returns a row with aggregates for each matched PATTERN. 
In this section, we illustrate what we mean by a pattern, what it means to match the pattern 
against a sequence of rows, and how each matched PATTERN translates to an output row.

Patterns
A pattern consists of several elements: symbols, operators, nesting parentheses, and anchors. 
Below is a simple pattern that matches every instance in which a row of type B follows a row of 
type A. In this example, A and B are symbols, and the dot is the operator:

    A.B

You can write a PATTERN definition so that it matches only those patterns that repeat, or that 
contain repeated elements. See “Matching Repeated Patterns in nPath” on page 44.

Symbols 
The meaning of a symbol depends on its context:

• In a PATTERN clause, a symbol represents a row of a particular type that you’re searching 
for as part of a row sequence. (In the SYMBOLS clause, you write a predicate to define the 
type of row that matches the symbol.)

• In the RESULT clause, a symbol represents all the rows that matched that symbol’s predicate 
in this particular matched PATTERN. This allows you to apply an aggregate function to all 
the symbol’s rows in the matched PATTERN.
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nPath uses any valid identifier (a character, followed by characters and digits) as a symbol. 
Symbols are not case sensitive; for example A and a refer to the same symbol. It’s common to 
use short symbols of one or two letters to make your patterns easier to read.

Each symbol is the result of a match of a symbol predicate you defined in your SYMBOLS 
clause (see “nPath Syntax and Semantics” on page 40 for instructions). Here’s a simple symbol 
predicate that defines a symbol, H, to match any row in which a column “pagetype” contains the 
value “homepage”:

    pagetype =  'homepage' AS H

Operators
You form patterns to be matched by combining symbols with operators. The following operators 
may be used in a pattern.

Table 4-1  nPath Operators

The precedence of operators is, from highest to lowest:

1. Cascade operator (“.”)

2. Alternative operator (“|”)

3. Frequency operators (“?”, “*”, “+”)

Operators with equal precedence associate left to right.

Nesting parentheses
Patterns can be nested using parentheses “(” and “)”.

Anchors
The special characters “^” and “$” are placeholders for the start and the end of the sequence 
respectively. The character “^” only makes sense at the start of a pattern, and “$” only makes 
sense at the end of a pattern.

Operator Meaning

. is followed by; the cascade operator. The expression A.B means “A is followed 
by B”. (Note! The dot operator does not represent a wildcard as in some other 
regular expression syntaxes.)

| or; alternative

? occurs at most once

* occurs zero or more times

+ occurs at least once. If you want to match the case where a symbol (or pattern) 
repeats a specific number of times, use the range matching feature as explained 
in “Matching Repeated Patterns in nPath” on page 44.
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Pattern Matching in nPath
Conceptually, nPath’s pattern matching proceeds like this: Starting from a row in a partition, 
nPath tries to match the given pattern along the row sequence in the partition (recall that the rows 
within a partition are ordered as specified in the ORDER BY clause). If a match is not possible 
starting at the current row, nothing is output. Otherwise, nPath continues to the next row. When 
nPath finds a sequence of rows that match the PATTERN, it picks the largest set of rows that 
constitute that match and generates an output row based on this match, as discussed next.

Consider a match starting at a row t1 and ending at the row t4. For this example, let’s assume the 
pattern to be matched is 'A.B+'. In this case, let’s assume further that t1 maps to the symbol A, 
and each row from t2 through t4 maps to the symbol B. (This means that each of the rows t2, t3, 
and t4 individually satisfies the symbol predicate for B.) After the matching is complete, our 
symbol A represents row t1, and symbol B represents rows t2, t3, and t4 in the matched 
PATTERN.

Now that the symbols are populated with rows from the match, nPath evaluates the RESULT 
clause to generate output using the data in the symbols. Typically, this amounts to applying an 
SQL aggregate to each symbol for the match. nPath returns one row with the result values, and 
proceeds to search for the next PATTERN match.

Matching Repeated Patterns in nPath
If a particular sub-sequence has to appear multiple times within the PATTERN, you can easily 
represent this requirement using the range matching feature in nPath. (Here, we use the term 
“sub-sequence” to refer to any portion of the PATTERN that you enclose in parentheses.) The 
range matching feature allows you to specify the minimum and maximum number of times a 
sub-sequence must appear in the sequence. The repetition count thresholds for sub-sequences can 
be specified in one of the following formats:

• sub-sequence{n} or 

• sub-sequence{n,} or 

• sub-sequence{n,m}

where

• {n} means exactly n times

• {n,} means at least n times

• {n,m} means at least n times, but no more than m times

For example, if the sub-sequence (A.B|C) should appear exactly three times in the sequence, 
then you can represent the pattern in the following way using the PATTERN clause:

  PATTERN('X.(Y.Z).(A.B|C){3}')

This is equivalent to the pattern 

  PATTERN('X.(Y.Z).(A.B|C).(A.B|C).(A.B|C)')

If the sub-sequence (A.B|C) should appear at least four times, you can represent the pattern in 
the following way:

  PATTERN('X.(Y.Z).(A.B|C){4,}')

which is same as 

  PATTERN('X.(Y.Z).(A.B|C).(A.B|C).(A.B|C).(A.B|C).(A.B|C)*')
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If the sub-sequence (A.B|C) should appear at least two times and at most four times, you can 
represent the pattern in the following way:

  PATTERN('X.(Y.Z).(A.B|C){2,4}') 

which is same as

  PATTERN('X.(Y.Z).(A.B|C).(A.B|C).(A.B|C)?(A.B|C)?')

LAG expressions in symbol predicates
You can compare the current row with previously seen rows to decide if a symbol applies to it. 
To do this, use the LAG expression in your SYMBOLS clause. You write the LAG expression in 
either of the following formats:

 LAG ( expression-prev, lag-rows [, default-value ] )  operator  expression-current

or

 expression-current  operator  LAG ( expression-prev, lag-rows, [ default_value ] )

where:

• expression-current is the name of the column from the current row, or an expression 
operating on this column.

• the operator can be >, >=, <, <=, =, or !=

• expression-prev is the name of the column from the current row, or an expression operating 
on this column. 

• lag-rows is the number of rows to count back from the current row to reach the row we 
designate as the earlier row. For example, to compare with the immediately preceding row, 
use “1”.

• default-value is the optional value to be used when there are no rows which can be 
designated as “earlier row,” in such a case the default-value will be evaluated on the current 
row and used in place of the expression-prev.

To evaluate the LAG expression, Aster Database uses the operator to compare the value of 
expression-current with the value of column-previous.

Notes:
• You can use multiple LAG expressions to define a symbol. 

• If your symbol definition includes a LAG expression, the definition cannot contain a 
disjunctions (OR operator).

Tip! When using the LAG() function to define a symbol, the left-hand side (LHS) of the 
expression (the portion to the left of the relational operator) may only contain the LAG() function 
as a single term; e.g:

Lag(rec_date, 1)  <=  expr ...  AS alias

So, if you want to check that the time interval between the last row and the current row is less 
than one hour, the following will not work:

rec_date - Lag(rec_date,1) < '1 hour'::Interval AS B

However, the following equivalent form will work:

Lag(rec_date,1) > rec_date - '1 hour'::Interval AS B
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Lag expression example
The example below uses a LAG expression in a symbol definition. Here, for all the patterns 
where the user visits the home page, then visits checkout pages and buys increasingly expensive 
products (in sequence), this nPath query will find the first product bought and the most expensive 
product bought.

SELECT * 
  FROM NPATH
        ( 
         ON aggregate_clicks 
         PARTITION BY sessionid 
         ORDER BY clicktime ASC 
         MODE ( NONOVERLAPPING ) 
         PATTERN ( 'H+.D*.X*.P1.P2+' ) 
         SYMBOLS 
          ( 
           'true' AS X, 
           pagetype = 'home' AS H, 
           pagetype <> 'home' AND pagetype <> 'checkout' AS D, 
           pagetype = 'checkout' AS P1,
           pagetype = 'checkout' AND 
             productprice > 100 AND 
             productprice > LAG (productprice, 1, 100::REAL ) AS P2 
          ) 
         RESULT 
          ( 
           FIRST ( productprice OF P1 ) AS first_product, 
           MAX_CHOOSE ( productprice, productname OF P2 ) AS max_product, 
           FIRST ( sessionid OF P2 ) AS sessionid 
          ) 
        )
  ORDER BY sessionid ;

Applying an SQL aggregate to an nPath result
In the nPath RESULT clause, you compute SQL aggregates such as COUNT, SUM, MAX, MIN, 
AVG, and the special nPath sequence aggregates  FIRST, LAST, FIRST_NOTNULL, LAST_
NOTNULL, MAX_CHOOSE, and MIN_CHOOSE over each matched pattern.

For example, for a pattern match:

• COUNT ( * OF B ) gives the number of rows that map to symbol B in this matched 
PATTERN, 

• FIRST ( pageid OF B ) gives the pageid (here we use “pageid” as an example column 
name) of the first row in the match that maps to B (row t2 in our example in “Pattern 
Matching in nPath” on page 44)

• LAST ( pageid OF B ) gives the pageid of the last row that maps to symbol B in the 
match.

• FIRST_NOTNULL ( pageid OF B ) gives the first non-null pageid among the rows that 
map to B.

• LAST_NOTNULL ( pageid OF B ) gives the last non-null pageid among the rows that 
map to B.

• MAX_CHOOSE ( product_price, product_name OF B ) gives the product_name of 
the most expensive product among the rows that map to B. The MAX_CHOOSE function 
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takes the form, MAX_CHOOSE ( quantifying_column, descriptive_column OF 
symbol ) and returns the descriptive_column value of the row with the highest-sorted 
quantifying_column value. The qualifying_column has a sortable datatype (smallint, integer, 
biginteger, real, date, time, timestamp, varchar, and character are supported) and the 
descriptive_column can be of any datatype.

• MIN_CHOOSE ( product_price, product_name OF B ) gives the product_name of 
the least expensive product among the rows that map to B. The MIN_CHOOSE function 
operates like MAX_CHOOSE, but returns the descriptive_column value of the lowest-sorted 
row. It supports the same argument datatypes as MAX_CHOOSE.

You can compute an aggregate over more than one symbol. For example, SUM ( val OF ANY 
( A,B ) ) computes the sum of the values of the attribute val across all rows in the matched 
segment that map to A or B.

nPath Examples
This section includes the following examples:

• “Clickstream Data: An nPath Example” on page 47

• “Lead: An nPath Example” on page 48

• “Rank: An nPath Example” on page 49

• “Complex Path Query: An nPath Example” on page 49

Clickstream Data: An nPath Example
Consider a table with clickstream data. The table is defined as:

clicks
  ( ts time,
    userid int,
    pageid int,
    category int,
    val float,
    refurl varchar(256)
   )
  DISTRIBUTE BY HASH(category)

To consider a sequence of rows for each user, ordered by time, the first clauses of nPath are 
written like this:

SELECT ...
FROM NPATH(
      ON clicks
      PARTITION BY userid
      ORDER BY ts
      ...
      )
...

For this example, let’s define the following symbols:
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Table 4-2  Symbols for nPath Example

To match a symbol shown in the first column, a row must satisfy the associated predicate shown 
in the second column. In the nPath syntax, this is written as the SYMBOLS clause:

SELECT ...
  FROM nPath
    (
      ...
      SYMBOLS 
        (
         pageid IN (10, 25) AS A,
         category = 10 OR (category = 20 AND pageid <> 33 ) AS B,
         category IN 
          (
           SELECT catid 
             FROM categories 
             GROUP BY catid 
             HAVING COUNT(*) > 10 
          ) AS C,
         refurl LIKE '%google%' AS D,
         true AS X
         )
      ...
      )
...

These symbols can now be used with the operators to construct a pattern. The pattern

  A.(B|C)+.D?.X*.A

for instance, will match a pattern of rows in which the first row satisfies the predicate for A, 
followed by a non-empty sequence of rows, each satisfying the predicate for B or C, followed by 
at most one row satisfying the predicate for D, followed by a sequence of arbitrary rows ending 
at a row satisfying the predicate for A.

Lead: An nPath Example
nPath is also handy for cases when you don’t want to match a particular pattern but instead want 
to create output that combines values from one row in a sequence with values from the next row 
in the sequence. For example, imagine that you’re analyze pageviews on your website, and you 
want to find out what pageview follows each other pageview. In this example, for each row, we 
get its pageid as well as the pageid of the next row in sequence:

SELECT sessionid, pageid, next_pageid
  FROM nPath(
      ON clicks 
      PARTITION BY sessionid 

Symbol Predicate

A pageid IN ( 10, 25 )

B category = 10 OR (category = 20 AND pageid <> 33 )

C category IN ( SELECT catid FROM categories GROUP BY catid 
HAVING COUNT(*) > 10 )

D refurl LIKE '%google%'

X true
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      ORDER BY ts
      MODE ( OVERLAPPING ) 
      PATTERN ( 'A.B' )
      SYMBOLS ( true AS A, 
                true AS B )
      RESULT ( FIRST( sessionid OF A) AS sessionid,
               FIRST( pageid OF A ) AS pageid,
               FIRST( pageid OF B ) AS next_pageid )
      )

Rank: An nPath Example
For each row, count the number of preceding rows including this row in a given sequence.

SELECT sessionid, pageid, rank
  FROM nPath(
      ON clicks 
      PARTITION BY sessionid 
      ORDER BY ts DESC
      MODE ( OVERLAPPING ) 
      PATTERN( 'A*' )
      SYMBOLS ( true AS A )
      RESULT ( FIRST( sessionid OF A ) AS sessionid,
               FIRST( pageid OF A ) AS pageid,
               COUNT( * OF A ) AS rank )
      )

Note the use of DESC in the ORDER BY clause. The reason is that the pattern needs to be 
matched over the rows preceding the start row, while the semantics dictates that the pattern be 
matched over the rows following the start row. Reversing the ordering of the rows resolves the 
issue.

Complex Path Query: An nPath Example
Find user click-paths starting at pageid 50 and passing exclusively through either pageid 80 or 
pages in category 9 or category 10. Find the pageid of the last page in the path and count the 
number of times page 80 was visited. Report the maximum count for each last page, and sort the 
output by the latter. Restrict to paths containing at least 5 pages. Ignore pages in the sequence 
with category < 0.

SELECT last_pageid, MAX( count_page80 )
  FROM nPath(
      ON ( SELECT * FROM clicks WHERE category >= 0 )
      PARTITION BY sessionid
      ORDER BY ts
      PATTERN ( 'A.(B|C)*' ) 
      MODE ( OVERLAPPING )
      SYMBOLS ( pageid = 50 AS A,
                pageid = 80 AS B,
                pageid <> 80 AND category IN (9,10) AS C )
      RESULT  ( LAST ( pageid OF ANY ( A,B,C ) ) AS last_pageid,
                COUNT ( * OF B ) AS count_page80,
                COUNT ( * OF ANY ( A,B,C ) ) AS count_any )
      )
  WHERE count_any >= 5
  GROUP BY last_pageid
  ORDER BY MAX( count_page80 )
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5

Statistical Analysis

In this section we describe:

• “Approximate Distinct Count (count_approx_distinct)” on page 51

• “Approximate Percentile (approx percentile)” on page 54

• “Correlation (stats correlation)” on page 57

• “Linear Regression (stats linear reg)” on page 63

• “Logistic Regression” on page 65

• “Generalized Linear Model (stats glm)” on page 68

• “Simple Moving Average (stats smavg)” on page 77

• “Weighted Moving Average (stats wmavg)” on page 81

• “Exponential Moving Average (stats emavg)” on page 84

• “Volume-Weighted Average Price (stats vwap)” on page 88

Approximate Distinct Count (count_approx_distinct)

Summary
Based on probabilistic counting algorithms, this function quickly estimates the number of 
distinct values in a column or combination of columns, while scanning the table only once.

For a column or column combination with large cardinality, it can calculate an approximate 
count of the distinct values in much less time than would be required to calculate a precise 
distinct count using SQL’s DISTINCT.

Background
Probabilistic Counting Algorithms for Data Base Applications by Philippe Flajolet and G. Nigel 
Martin ( See http://portal.acm.org/citation.cfm?id=5215 )

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

http://portal.acm.org/citation.cfm?id=5215
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• approx_dcount_combine

• approx_dcount_partial

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax

You call this function by combining a local row function followed by a partition function:

SELECT * 
  FROM APPROX_DCOUNT_COMBINE
     (
       ON
         (SELECT * 
          FROM APPROX_DCOUNT_PARTIAL
               (
                    ON { table_name | view_name | ( query ) }
                    COLUMNS ('column_name') 
                   [ERROR ('error_tolerance')]
               )
         ) 
       PARTITION BY expression [, ...]
     );

Note! You may choose to omit the SELECT statements inside internal function calls in 
SQL-MR, in which case this function has this synopsis:

SELECT * 
  FROM APPROX_DCOUNT_COMBINE
     (
       ON
         ( APPROX_DCOUNT_PARTIAL
           (
             ON { table_name | view_name | ( query ) }
             COLUMNS ('column_name') 
            [ERROR ('error_tolerance')]
           )
         )
       PARTITION BY expression [, ...]
     );

Arguments

COLUMNS: Required. Specifies the name(s) of the column or columns for which an 
approximate distinct count will be calculated. This can by any column(s) or combinations of 
columns, such as, for example: ('col1', 'col2', '(col5:col9)')

ERROR: Optional. Specifies the acceptable error rate, expressed using decimal representation. 
Ten percent is written as 10, one percent as 1. The default error tolerance rate is ten percent, or 
10. Permissible values are any value x, where x is between five one-hundredths of a percent and 
ten percent (that is, 0.05 < x <= 10).

Output
The output consists of these columns:

column_name: The name of the input column or columns for which the approximate distinct 
count was computed. Multiple column names are joined with underscores. 
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cnt: The approximate distinct count. 

method: The approach used for calculating the approximate distinct count.

Example

Example Input Data

The example table page_tracking contains the columns member_id, page_key, referrer, and pg_
seq.

Table 5-1  Example Input Data, table page_tracking

Example SQL-MapReduce call
SELECT * 
  FROM APPROX_DCOUNT_COMBINE
     (
       ON APPROX_DCOUNT_PARTIAL
          (
            ON page_tracking
            COLUMNS ('member_id', 'page_key', '(member_id:page_key)') 
            ERROR (1)
          )
       PARTITION BY column_name
     );

Example Output

Table 5-2  Example Output of Approximate Distinct Count

Error Messages
You may encounter these errors when attempting to run this function:

• ERROR: Maximum error threshold is 10. Select value for error <= 10 
or omit error clause. 

REASON: Specified error value is greater than the maximum error threshold.

member_id page_key referrer pg_seq

1 Home http://google... 1

1 Profile  2

2 Jobs  1

4 News http://yahoo... 1

5 Profile  1

column_name cnt method

member_id 4 nearExact

member_id_page_key 5 nearExact

page_key 4 nearExact
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• ERROR: must be > 0.05. Select value for error > 0.05 or omit error 
clause. 

REASON: Specified error values is less than the minimum error threshold.

Approximate Percentile (approx percentile)

Summary
This function computes approximate percentiles for one or more columns of data. The accuracy 
of the approximation is a parameter the user can vary. Higher accuracy requires longer compute 
time and vice versa. Optionally, you can specify a column to group by, to compute approximate 
percentiles over different groups.

Background
The function is based on an algorithm developed by Greenwald and Khanna. It gives 
e-approximate quantile summaries of a set of N elements, where e is the value you specify as the 
function’s ERROR parameter. Given any rank r, an e-approximate summary returns a value 
whose rank r' is guaranteed to be within the interval [r - eN, r + eN]. The algorithm has a worst 
case space requirement of O((1/e) * log(eN)).

Usage
This section describes the syntax for using the function, parameter options and data types, and a 
description of the expected output.

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• approx_percentile

• approx_percentile_summary

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax

The synopsis below shows the syntax for invoking the approximate percentile function for a 
column of data, grouping the data by a different set of columns:

SELECT *
  FROM approx_percentile
   (
    ON(
       SELECT *
         FROM approx_percentile_summary
           (
            ON { table_name | view_name | ( query ) }
            TARGET_COLUMN( 'column_name' )
            ERROR( tolerance_value )
            [ GROUP_COLUMNS('column_name' [ , ...] ) ]
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           )
      )
    PARTITION BY expression [, ...]
    PERCENTILE( percentile [, ... ] )
    [ GROUP_COLUMNS('column_name' [ , ...] ) ]
   )

Arguments

TARGET_COLUMN: Required. Specifies the column for which we want to compute the quantile 
summary. The column must contain data of type smallint, integer, bigint, numeric, real or double 
precision.

ERROR: Optional. Specifies the desired accuracy of the approximation. Lower error is more 
accurate. Must be between .01 and 50.  Error of 10 means the quantile will be correct within 10% 
in either direction. Default value is 1.

GROUP_COLUMNS: Optional. Specifies the columns to group the data by. Omitting the group_
columns clause results in no grouping, and quantiles are computed for the entire column. Note 
that if you include this clause, you must include it in both the approx_percentile and the approx_
percentile_summary functions.

PERCENTILE: Optional. A comma separated list of integers that specifies which approximate 
percentiles you wish to compute. Default is to compute the quartiles: 0, 25, 50, 75 and 100.

Input Data
TARGET_COLUMN: Required. A column of type smallint, integer, bigint, numeric, real or 
double. This is the column for which we calculate the percentiles.

GROUP_COLUMNS: Optional. Columns can be of type varchar or integer. These are group 
identifying columns. Suppose we have a table with the columns State (varchar), Town (varchar), 
and Population (integer), and we specify GROUP_COLUMNS('STATE'). Instead of computing 
quantiles for Population across all towns, each state would have its quantiles computed 
individually.

Output
GROUP_COLUMNS: (if group_columns clause was specified) Column(s) specifying which 
group the percentile belongs to.

PERCENTILE: The percentile we are estimating. E.g., percentile: 50 is the median, 75 is the 
upper quartile, 100 is the maximum.

VALUE: The approximate value of the corresponding percentile, accurate to the degree specified 
in the ERROR argument.

Example

Example Input Data

A sample table called “some_values” with two columns, “segment” and “value”:
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Table 5-3  Example Input Data, table some_values

Example SQL-MapReduce call:
SELECT *
  FROM approx_percentile
   (
    ON
     (
      SELECT *
        FROM approx_percentile_summary
         (
          ON some_values
          TARGET_COLUMN( 'value' )
          GROUP_COLUMNS( 'segment' )
          ERROR( 1 )
         )
     )
    PARTITION BY segment
    GROUP_COLUMNS('segment')
    PERCENTILE( 50 )
   );

Example Output from Approximate Percentile
Note that the Approximate Percentile SQL-MR function returns an “approximate” percentile and 
not the exact percentile. This function will return a more accurate approximate percentile when 
the dataset is large.

Table 5-4  Example Output from Approximate Percentile

segment value

A 0

A 2

A 4

A 6

A 8

B 1

B 3

B 5

B 7

B 9

segment percentile value

A 50 2

B 50 3 
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Correlation (stats correlation)

Summary
The correlation functions, CORR_REDUCE and CORR_MAP, compute a global correlation 
between any pair of columns from a table. You may run this pair of functions on multiple pairs of 
columns in a single invocation. Measuring correlation allows you to determine if the value of one 
variable is useful in predicting the value of another.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• corr_reduce

• corr_map

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax
SELECT * 
  FROM CORR_REDUCE
     (
       ON CORR_MAP
          ( 
            ON { table_name | view_name | ( query ) }
            COLUMNS ( '[col1:col2][,...]' ) 
            KEY_NAME ( 'key_name' )
          ) 
       PARTITION BY key_name
     );

Arguments

COLUMNS: Required. The list of pairs of columns for which correlation will be calculated. 
Columns whose correlations you calculate must be of type int, bigint, or real. If the columns are 
of any other compatible type, you must type cast it to one of these three types. Each pair is 
specified as a colon-separated pair inside square brackets, in the form [col1:col2]. To retrieve 
multiple correlations in a single function invocation, list multiple pairs separated by commas. 
Enclose the entire list in single quotes. For example, COLUMNS ( 
'[col1:col2],[col2:col3],[col3:col4]' ). There must be no spaces between the pairs.

KEY_NAME: Required. The column name you wish to give to an intermediate column generated 
by the CORR_MAP function. This intermediate data should then be partitioned on this newly 
named column before passing it to the CORR_REDUCE function. 
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Example

Example Input Data

The input table, income_statistics, contains the columns:

• participant [int]

• income [bigint]

• years_of_education [real]

• years_of_experience [real]

Table 5-5  Example Input Data, table income_statistics

Example SQL-MapReduce call
SELECT * 
  FROM CORR_REDUCE
     (
       ON CORR_MAP
          ( 
            ON income_statistics
            COLUMNS 
             ('[income:years_of_education],[income:years_of_experience]'
             ) 
            KEY_NAME ('key')
          ) 
       PARTITION BY key
     );

Example Output from Correlation Reduce
The example output shows the correlation between the requested columns:

Table 5-6  Example Output from Correlation Reduce

Participant Income Years_of_education Years_of_experience

2 100000 20 5

4 35000 16 1

5 41000 18 1

6 29000 12 1

8 24000 12 0

9 50000 16 3

10 60000 17 2

1 125000 19 8

3 40000 16 2

7 35000 14 1

Corr value

Income:Years_of_Education 0.788726
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Error Messages
You may encounter the following error message when you run this function:

• ERROR: COLUMNS should be of the form "[X1:Y1],[X2:Y2],[X3:Y3]"

REASON: Columns argument is not specified in the proper format. Each pair should be in 
the form "[<col1>:<col2>]" and multiple pairs should be separated by "," (comma). Please 
note that there should not be any white space between the pairs.

Histogram

Summary
The histogram function maps each input row to one or more bins based on criteria you specify 
and returns the row count for each bin. The SQL-MapReduce histogram function is a 
combination of SQL-MapReduce row function (histogram_map) and an SQL-MapReduce 
partition function (histogram_reduce). The output of the histogram function is useful for 
assessing the shape of a data distribution.

Usage
In order to generate a histogram on an input data set you must run a map and reduce step on the 
data. Below is the syntax for running the map phase.

Permissions
You must grant EXECUTE on the following functions to the database user who will run them:

• histogram_reduce

• histogram_map

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax of the Map Function
SELECT * 
  FROM histogram_map
   (
    ON {table_name | view_name | subquery }
    VALUE_COLUMN (column-name)
    [ BIN_SIZE ( bin-size ) ]
    [ START_VALUE( start-value ) ]
    [ INTERVALS( 'interval-spec', ... ) ]
    [ BIN_COLUMN_NAME( output-column-name ) ]
    [ START_COLUMN_NAME( output-column-name ) ]
    [ END_COLUMN_NAME( output-column-name ) ]
    [ FREQUENCY_COLUMN_NAME ( output-column-name ) ]
)

Income:Years_of_Experience 0.970773



Histogram  Aster Data proprietary and confidential

60 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Arguments

to the Map Function

VALUE_COLUMN: Required. Name of the column the histogram will run on; only one column 
is permitted.

BIN_SIZE: Optional. For equally sized bins, specifies the width of the bin. Omit this argument if 
you are not using equally sized bins.

START_VALUE: Optional. For equally sized bins, specifies the minimum (starting) value for the 
first bin. Omit this argument if you are not using equally sized bins.

INTERVALS: Optional. If the bins are not all equally sized, you can use the INTERVALS clause 
to specify the minimum value and maximum value of each bin. Intervals are expressed as a 
comma-separated list of interval-specs. Each interval-spec has the form, 'min:max'. Bins can 
overlap. Using the INTERVALS clause is an alternative to using BIN_SIZE and START_
VALUE argument clauses.

BIN_COLUMN_NAME: Optional. Name of output column that shows which bin one or more 
subject rows were sorted into. Each bin is identified by its bin number. The default name is "bin".

START_COLUMN_NAME: Optional. Name of output column that shows the start (min.) value of 
this bin. Default name is "start_bin".

END_COLUMN_NAME: Optional. Name of output column that shows the end (max.) value of 
this bin. Default name is "end_bin".

FREQUENCY_COLUMN_NAME: Optional. Name of output column that shows the count 
("local frequency") of rows that sorted into this bin on this partition. Default name is 
"frequency".

Syntax of the Reduce Function
SELECT * 
  FROM histogram_reduce
    (
     ON { histogram_map_subquery }
     [ ACCUMULATE ( column_name [, ...] ) ]
     [ FREQUENCY_COLUMN_NAME ( column-name ) ]
    )

Arguments to the Reduce Function

ON: Required. The ON clause supplies the results of a histogram_map query.

ACCUMULATE: Optional. List of input columns that will be piped directly through to the 
output. By default, no input columns are included in the output.

FREQUENCY_COLUMN_NAME: Optional. Name of the input column that contains the local, 
per-v-worker row counts. This must be the same name you used as the FREQUENCY_
COLUMN_NAME in histogram_map. The default name is “frequency”. (The default values in 
both functions are same, so you can safely omit this clause.) This name will also be used as the 
name of the frequency output column. 

Output
The histogram function returns one row per bin. Each row describes the bin, shows the count 
(“frequency”) of rows in that bin, and includes any piped-through columns you specified in 
ACCUMULATE clause.
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Example

Example Input Data

Table 5-7  Example Input Data, table am_histogram_data

Example Query 1: Fixed-size bins

The first example shows how to define bins of a fixed size using the BIN_SIZE and START_
VALUE clauses:

SELECT * 
  FROM histogram_reduce
   (
    ON histogram_map
      (
       ON am_histogram_data
       BIN_SIZE('10')
       START_VALUE('0')
       VALUE_COLUMN('age')
      ) 
    PARTITION BY bin
    ACCUMULATE('bin','start_bin','end_bin')
   ) 
  ORDER BY bin;

Output of Example Query 1

Table 5-8  Output of Example Query 1 for Histogram Reduce

id name age graduate

100 Henry Cavendish 12 f

200 Sir William 15 f

300 Johann August 19 f

400 Martin Heinrich 20 f

500 Ralph Arthur 25 t

600 Marguerite Catherine 35 t

700 Philip Hauge 40 t

800 Joseph Louis 28 f

900 Marie Curie 12 t

bin start_bin end_bin frequency 

1 10 20 4 

2 20 30 3 

3 30 40 1 

4 40 50 1 



Histogram  Aster Data proprietary and confidential

62 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example Query 2: Custom-sized bins

The second example shows how to use the INTERVALS clause to define each bin individually:

SELECT * 
  FROM histogram_reduce
   (
    ON histogram_map
      (
       ON am_histogram_data
       VALUE_COLUMN('age')
       INTERVALS('0:30','20:30','40:70','70:100000')
      ) 
    PARTITION BY bin
    ACCUMULATE('bin','start_bin','end_bin')
   ) ORDER BY bin;

Output of Example Query 2

Table 5-9  Output of Example Query 2 for Histogram Reduce

Algorithm
histogram_map is a row function that sorts and counts rows on a per-v-worker basis. It reads 
each row, determines which bin(s) the row belongs to, and updates a locally maintained 
hashmap. The hashmap's key is the bin number, and its value is the count. If a row belongs to 
more than one bin (because of overlapping bins) then the function updates the hashmap for all 
the matched bins. Once all v-worker-local rows are processed, the hashmap is complete. The 
function then emits the counts for all bins in the hashmap.

histogram_reduce is a partition function that sums each bin’s count across all v-workers and 
emits each bin’s global count.

Error Messages
You may encounter the following error messages from the function:

• ERROR: Please specify either the INTERVAL clause or all of the 
following clauses: BIN_SIZE, START_VALUE.

• ERROR: INTERVALS should be in the form of <min>:<max>. <min> should 
be less than or equal to <max>. For example 10:20.

bin start_bin end_bin frequency 

0 0 30 7 

1 20 30 3 

2 40 70 1 
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Linear Regression (stats linear reg)

Summary
Outputs coefficients of the linear regression model represented by the input matrices. The zero'th 
coefficient corresponds to the slope intercept.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• linreg

• linregmatrix

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax
SELECT * 
FROM LINREG
     (
       ON LINREGMATRIX
          ( 
             ON { table_name | view_name | ( query ) }
          ) 
       PARTITION BY 1
     )

Assumptions

All the data should be submitted to one worker which means that user needs to perform a 
"PARTITION BY 1". It is also assumed that the Y component of the data point is provided in the 
last input column. 

Example

Example Input Data

The sample table data_set contains:

• X1 [int]

• X2 [int]

• Y [int]

Table 5-10  Example Input Data, table data_set

X1 X2 Y

300 1000 30000
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Example SQL-MapReduce call
SELECT * 
  FROM LINREG
     (
       ON LINREGMATRIX
          ( 
            ON data_set 
          ) 
       PARTITION BY 1
     );

Example Output from Linear Regression

Table 5-11  Example Output from Linear Regression

Notes
Please note that all the rows should be provided to one worker. Hence "PARTITION BY 1" 
should be used.

Error Messages
You may encounter the following errors when using this function:

• ERROR: The input data results in a singular matrix and hence there 
is no solution. The input data set provided is perfectly linear.

If two or more input columns are co-linear, or very closely correlated, then no solution to linear 
regression exists, so the function will fail. Looking at correlations between columns using Aster 
Database’s Correlation (stats correlation) function can help uncover sources of co-linearity. 
Removing co-linear columns should resolve the issue.

300 3000 10000

100 1000 10000

100 2000 20000

100 3000 30000

200 1000 20000

200 2000 10000

coeffecient_index value

0 19696.9696969697

1 -3.03030303030308

2 -0.303030303030308
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Logistic Regression

Summary
This is a series of row functions and partition functions on the training data, which establishes 
the weights sequence for the logistic regression based on the gradient descent algorithm. A 
SQL-MapReduce driving program written using the JDBC API allows for the iteration of the 
series of training functions until the weights converge within a user-specified window. The 
weight sequence generated by the logistic regression function can then be used to predict any 
future data points.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• log_regression

• log_regression_partition

• log_regression_row

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax
SELECT *
  FROM log_regression
   (
    ON (SELECT 1)
    PARTITION BY 1
   [DOMAIN(ip_address)]
   [DATABASE(database_name)]
   [USERID(user_id)]
    PASSWORD(password)
    INPUTTABLE(inputtable_name)
    OUTPUTTABLE(outputtable_name)
   [WEIGHTS(weights_list)]
   [COLUMNNAMES(columnnames_list)]
   [LEARNINGRATE(learning_rate)]
   [THRESHOLD(threshold)
   [MAXITERNUM(maximum_number_of_iterations)]
);

Arguments

DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address 
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for 
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the 
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default 
database is beehive.
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USERID: Optional. The Aster Database user name of the user running this function. The default 
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user running this function.

INPUTTABLE: Required. The inputtable is the table containing the list of features and the 
associated labels.

OUTPUTTABLE: Required. This is the name of the output table where this function will store its 
output. This table should not exist before you run the function; the function will create the 
outputtable for you. If the output table does exist, the function drops it and recreates it, so any 
values it held will be lost when you run the log_regression function. The output table contains 
the columns listed in “Output” below.

WEIGHTS: Optional. This is the initial set of weights for each of the features. Default weight is 
0.1 for all the label and all the features.

COLUMNNAMES: Optional. This is the list of columns containing the label and the features. By 
default, all the columns in the input table will be considered as input columns.

LEARNINGRATE: Optional. This is the learning rate of the algorithm. This should be a value 
between 0 and 1. Default learningRate is 0.1

THRESHOLD: Optional. This is the threshold for convergence. The algorithm converges if the 
least mean square distance between the old set of weights and new set of weights is less than the 
threshold. Default threshold is 0.05

MAXITERNUM: Optional. This is the maximum number of times the algorithm would attempt to 
converge. If the convergence does not happen within the specified MAXITERNUM, the latest 
weights would be emitted. Default MAXITERNUM is 10.

Assumptions

For this implementation we consider binary classification where each example is labeled +1 or 
-1. We assume that an example has l (that’s a lower case letter “L”) features, each of which can 
take the value zero or one. We denote an example by x and the value of the kth feature as xk. We 
define an additional feature, x0 = 1, and call it the bias feature.

Input

In the columnNames argument, you pass the list of columns containing the label and the features. 
All the label columns and the feature columns should be of type Boolean. You pass the input 
column names as a comma-separated list, as shown in this example:

   COLUMNNAMES('Y','X1','X2','X3','X4','X5')

The example above describes input columns of the following form:

The first column represents the label, and rest of the columns represent the features.

In the WEIGHTS argument, you pass the initial set of weights for each of the features in the 
form:

   WEIGHTS('0.1','0.1','0.1','0.1','0.1','0.1')

Y X1 X2 X3 X4 X5 X6

Y X1 X2 X3 X4 X5 X6

Y X1 X2 X3 X4 X5 X6
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This example specifies six weights, which we can picture as:

where W0 represents the bias weight. W1 represents the weight for feature X1, W2 represents the 
weight for feature X2 and so on.

Output

The output is both returned to the SQL prompt or client and saved to the table you specify in the 
OUTPUTTABLE argument. This table should not exist before you run the function. If a table of 
this name exists already, the existing table will be dropped and its data lost. The output table 
contains the following columns:

• attribute: the feature

• weight: the weight of the feature

Example

Example Input Table

Table 5-12  Example Input Data, table log_reg_driver_data

Example SQL-MapReduce call
SELECT *
  FROM log_regression
   (
    ON (select 1)
    PARTITION BY 1
    DATABASE('beehive')
    USERID('beehive')
    PASSWORD('beehive')
    INPUTTABLE('log_reg_driver_data')
    OUTPUTTABLE('log_reg_output')
    WEIGHTS('0.1','0.1','0.1','0.1','0.1','0.1')
    COLUMNNAMES('Y','X1','X2','X3','X4','X5')
    MAXITERNUM('20')
   );

W0 W1 W2 W3 W4 W5 W6

id Y X1 X2 X3 X4 X5

1 true false true true true true

2 true false false true true true

3 true false false false true true

4 true false false false false true

5 true false false false false false
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Example Output Table

Table 5-13  Example Output from Logistic Regression

In the above table, attribute 0 represents the intercept and rest of the attributes represent the 
weights of the features.

Error Messages
When you run this function, you may encounter one or more of these errors:

• ERROR: Please specify the name of the input table with an 
'inputTable' clause.

REASON: If the input table is not specified.

• ERROR: Please specify the name of the output table with an 
'outputTable' clause.

REASON: If the output table is not specified.

• ERROR: Weight should be a double value in decimal point notation.

REASON: If the input weights are not real values.

• ERROR: Feature vector should be real, integer, or boolean values.

REASON: If the input feature columns are not of number types.

• ERROR: Response can only take boolean values.

REASON: If the input label column is not of boolean type.

• ERROR: Number of weights should be equal to the number of input 
columns.

REASON: If the number of weights does not match the number of input columns.

Generalized Linear Model (stats glm)

Summary
Generalized linear model (GLM) is an extension of the linear regression model that enables the 
linear equation to be related to the dependent variable(s) via a link function. GLM performs 
linear regression analysis for any of a number of distribution functions using a user-specified 
distribution family and link function. The link function is chosen based upon the distribution 
family used and the assumed nonlinear distribution of expected outcomes. Supported link models 
in Aster Database are ordinary linear regression, logistic regression (logit model), and Poisson 
log-linear model.

Attribute Weight

0 1.38262

1 0.1

2 0.251579

3 0.426133

4 0.642104

5 0.93531
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A GLM has three parts:

1. A random component - the probability distribution of Y from the exponential family 

2. A fixed linear component - the linear expression of the predictor values (X1,X2,...,Xp), 
expressed as  or 

3. A link function that describes the relationship of the distribution function to the expected 
value of Y (e.g. linear regression, logistic or logit regression, or Poisson loglinear model)

Background
The table below, from Venables and Ripley 2002, pages 184-185, describes the common 
Families and Link Functions. In the table, 'D' denotes the default link for each family.

Table 5-14  Common Families and Link Functions

Table 5-15  Canonical (default) Links and Variance Functions

More information on the canonical links follows:

• Binomial (or logistic) regression is used when the dependent variable (Y) has only two 
different possible values (0 and 1, "yes" and "no", "true" and "false"). The analysis applies 
the model to the data and predicts the most likely of the two possible outcomes for each 
input. A logit, or logarithm of odds is supplied for each outcome.

• Poisson regression is used to model count data (non-negative integers) and contingency 
models (matrices of the frequency distribution of variables). It assumes that the dependent 

Link Symbol in GLM binomial 
(logistic)

Gamma Gaussian inverse-

Gaussian

Poisson negative-

binomial

logit LOGIT D

probit PROBIT *

cloglog
COMPLEMENTARY_
LOG_LOG

*

identity IDENTITY * D * * *

inverse INVERSE D * *

log LOG * * * * D D

INVERSE_MU_
SQUARED

D

sqrt SQUARE_ROOT *

Family Symbol in GLM Canonical link Name Variance function 

binomial 
(logistic) 

BINOMIAL / LOGISTIC logit

Poisson POISSON log

Gaussian GAUSSIAN identity

η Xβ

1

μ2
------

μ
1 μ–
------------log μ 1 μ–( )

μlog μ

μ σ2
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variable (Y) has a Poisson distribution. A Poisson distribution segments the data into 
intervals (e.g. of time, geographic location, etc.) It then calculates the discrete probability of 
one or more events occurring within these segments. The logarithm link is used.

• Gaussian regression happens when the data is grouped around a single mean, and can be 
graphed in a "normal" or bell curve distribution.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• glm

• glm_reducesolveandupdate

• glm_reducebymatrixindex

• glm_map

• glm_reduceasymptoticstats

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax
SELECT *
FROM GLM (
  ON (SELECT 1)
  PARTITION BY 1
  [ DOMAIN( 'host_ip' ) ]
  [ DATABASE('db_name') ]
  [ USERID('user_id') ]
  [ PASSWORD('password') ]
  INPUTTABLE('input_table_name')
  OUTPUTTABLE('output_table_name')
  COLUMNNAMES('column_names')
  [ FAMILY('family') ]
  [ LINK('link') ]
  [ WEIGHT('weight_column_name') ]
  [ THRESHOLD('threshold') ]
  [ MAXITERNUM('max_iterations') ]
);

Arguments
DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address 
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for 
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the 
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default 
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default 
USERID is “beehive”.

PASSWORD: Required. The Aster database password of the user.
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INPUTTABLE: Required. Input table is a table with several columns containing the list of 
features by which we are clustering the data. One of them is the response, and some other 
columns are the predictors. There can also be columns used as 'weight' or 'offset'.

OUTPUTTABLE: Required. Specify a name for the output table for the coefficients. This table 
must not exist, so if it does exist, you must DROP it before running the function again. For Stats 
GLM, the output is written to the screen, and the output table is the table where the coefficients 
are stored. 

COLUMNNAMES: Required. First supply the dependent variable column name and then the 
predictor column names from the input table. The list of input column names must be in the 
format of 'Y,X1,X2,...,Xp'.

FAMILY: Optional. The default value is 'BINOMIAL', which is equivalent to 'LOGISTIC'. The 
allowed families are: BINOMIAL/LOGISTIC, POISSON, GAUSSIAN, GAMMA, INVERSE_
GAUSSIAN, NEGATIVE_BINOMIAL.

LINK: Optional. The default value is 'CANONICAL'. The canonical link functions and the link 
functions that are allowed for a particular exponential family are listed in the table “Common 
Families and Link Functions” on page 69.

WEIGHT: Optional. The default value is '1'. You may specify an integer, or a column name in the 
input table whose type must be real or integer. The 'weight' is primarily used to assign some 
weight to each response. You may find the following explanation in R useful:

"Non-‘NULL’ ‘weights’ can be used to indicate that different observations have different 
dispersions (with the values in ‘weights’ being inversely proportional to the dispersions); or 
equivalently, when the elements of ‘weights’ are positive integers w_i, that each response y_i is 
the mean of w_i unit-weight observations. For a binomial GLM prior weights are used to give 
the number of trials when the response is the proportion of successes: they would rarely be used 
for a Poisson GLM."

THRESHOLD: Optional. Specify the convergence threshold. The default value is 0.01.

MAXITERNUM: Optional. This is the maximum number of iterations that the algorithm will run 
before quitting if the convergence threshold has not been met. The default value is 25. 

Input
In the columnNames argument, you pass the list of columns containing the variables. You must 
pass the dependent variable first, before passing the predictors. You pass the input column names 
as a comma-separated list, as shown in this example:

   COLUMNNAMES('Y','X1','X2','X3','X4','X5')

The example above describes input columns of the following form:

The first column represents the dependent variable, and rest of the columns represent the 
predictors.

There may optionally be one or more other columns containing values used as a 'weight' or 
'offset'. In the WEIGHT argument, you can optionally pass a weight as an integer. Alternatively, 
you can specify a column that contains weight values for each record. The column values must 
be of the type real or integer. The weight column is used to assign a relative weight to each 
response. An example of the use of weight or offset might be to give data that were observed 

Y X1 X2 X3 X4 X5 X6

Y X1 X2 X3 X4 X5 X6

Y X1 X2 X3 X4 X5 X6
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more than ten years ago a lower weight in the calculation, and gradually increase the weight until 
the data are current. Another example might be to weight product reviews more heavily by 
reviewer based on the number of reviews submitted or on the number of followers.

Output
The onscreen output of the Stats GLM function is a regression analysis of the data, using the 
family and link function(s) specified. 

Output Columns

When a particular column is not used for its corresponding row, the column will contain a value 
of zero (0). The following is a description of the columns that appear in the output:

• predictor - This column contains the column name for each predictor that was input to the 
function. It is also used to label the other (non-predictor) rows (Intercept, ITERATIONS#, 
ROWS#, Residual deviance, AIC and BIC).

• estimate - The mean of the supplied values for each predictor.

• std_error - Standard deviation of the mean for each predictor (standard error)

• z_score - The z-score is a measure of the likelihood that the null hypothesis is true, given 
this sample. It is derived by taking the difference between the observed sample mean and the 
hypothesized mean, divided by the standard error.

• p_value - The significance level (p-value) for each predictor

• significance - The likelihood that the predictor is significant. The most significant predictor 
in the analysis will be designated with “***”. Less significant predictors will be designated 
with “.”, and variables without significance will have nothing in this column.

Output Rows

Output includes a row for each of the following with a value for estimated value, standard error, 
z-score, p-value, and significance:

• Intercept - the value of the logit (Y) when all predictors are 0.

• Predictors - A row for each predictor value (X1,X2,...,Xp)

The following values are also output in the second column (estimate). The description is given 
for each item below in the last (significance) column:

• ITERATIONS# - The number of Fisher Scoring iterations performed on the function

• ROWS# - The number of rows of data received as input

• Residual deviance - The deviance, with degrees of freedom noted in the significance column

• AIC - Akaike information criterion

• BIC - Bayesian information criterion

The coefficients are also stored in the table outputtable for later use.
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Examples
Example Input Data

The example table shows the temperature and the level of damage recorded at each temperature 
for a piece of equipment.

Table 5-16  Example Input Data, table glm_test1

Example SQL-MapReduce call
SELECT * FROM GLM (
    ON (SELECT 1)
    PARTITION BY 1
    database('beehive')
    userid('beehive')
    password('beehive')
    inputTable('glm_test1')
    outputTable('glm_output1')
    columnNames('damage','temp')
    family('LOGISTIC')
    link('CANONICAL')

id temp damage

1 53 5

2 57 1

3 58 1

4 63 1

5 66 0

6 67 0

7 67 0

8 67 0

9 68 0

10 69 0

11 70 1

12 70 0

13 70 1

14 70 0

15 72 0

16 73 0

17 75 0

18 75 1

19 76 0

20 76 0

21 78 0

22 79 0

23 81 0
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    weight('6')
    threshold('0.01')
    maxIterNum('10')
);

Example Output of Stats GLM

The output of the stats GLM function is a regression analysis of the data, using the family and 
link function(s) specified. The table is output to the screen, and has the following format:

Table 5-17  Example Output of stats GLM to screen

The coefficients are also stored in the ‘glm_output1’ table for later use. You may issue a 
SELECT statement to view them:

SELECT * FROM glm_output1;

Table 5-18  Example Output of stats GLM glm_output1 table

Error Messages
You may see the following errors:

• ERROR:  SQL-MR function GLM failed: ERROR: SQL-MR function GLM_MAP 
failed unexpectedly.

The following is information that may be useful to the developer of 
GLM_MAP: org.apache.commons.math.MathRuntimeException$4: the Poisson 
mean must be positive (0)

REASON: The Poisson mean is negative. This type of link cannot be applied to this data.

• ERROR: SQL-MR function GLM failed: The table glm_output1 already 
exists.

REASON: You must drop the output table before running the function.

• ERROR:  SQL-MR function GLM failed: Connection to 
jdbc:ncluster://10.50.129.100/beehive could not be established

REASON: JDBC connection could not be made. Test your JDBC connection.

predictor estimate std_error z-score p_value significance

(Intercept) 11.663 3.29627 3.53823 0.000402812 ***

temp -0.216234 0.0531772 -4.06628 4.7769e-05 ***

ITERATIONS # 6 0 0 0 Number of Fisher Scoring iterations

ROWS # 23 0 0 0 Number of rows

Residual deviance 16.9123 0 0 0 on 21 degrees of freedom

AIC 33.6748 0 0 0 Akaike information criterion

BIC 35.9458 0 0 0 Bayesian information criterion

attribute predictor estimate std_error z-score p_value significance

0 (Intercept) 11.663 3.29627 3.53823  0.000402812 ***

1 temp -0.216234 0.0531772 -4.06628 4.7769e-05 ***



Aster Data proprietary and confidential Principal Component Analysis (PCA)

March 21, 2012 Statistical Analysis 75

Principal Component Analysis (PCA)

Summary
Principal component analysis (PCA) is a common unsupervised learning technique that is useful 
for both exploratory data analysis and dimensionality reduction. It is often used as the core 
procedure for factor analysis.

Background
PCA takes an  data matrix (N observations, M variables), and generates an  
“rotation matrix.” Each column of the rotation matrix represents an axis in M-dimensional space. 
The first k columns are the k dimensions along which the data varies most, and thus in some 
cases can be considered the most important. We can throw away the remaining  columns, 
and we are left with a  rotation matrix. To get the values of our dataset in the coordinate 
system of our principal components, we multiply the original  dataset by the  
rotation matrix to get a final  matrix. This matrix represents our dataset with a reduced 
dimensionality of 

Usage

Syntax
SELECT * FROM pca_reduce (
  ON (
    SELECT * FROM pca_map (
      ON target_table
      [ TARGET_COLUMNS( target_columns ) ]
    )
  )
  [ COMPONENTS( num_components ) ]
  PARTITION BY 1
) ORDER BY component_rank;

Arguments

TARGET_COLUMNS: Optional argument. The columns containing the data. The user can either 
explicitly list all the names, e.g., target_columns('input1','input2', ... ), or specify 
a range of columns, e.g., target_columns('[4:33]'), or some combination of the above, 
e.g., target_columns('input1','[4:21]','[25:53]','input73'). Ranges are 
specified with the syntax: “[<start_column>:<end_column>]”, and the column index starts 
from 0. These columns must contain numeric values. If this parameter is not specified, the 
function assumes that every column is part of the data matrix.

COMPONENTS: Optional argument. The number of principal components to return. If K is 
specified here, the function will emit the top K components. If this parameter is omitted, the 
function emits every principle component.

Input Data
See the TARGET_COLUMNS parameter, above.

N M× M M×

M k–
M k×

N M× M k×
N k×

k M≤
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Output
Each row of output represents one eigenvector. The number of eigenvectors output is equal to the 
number of input columns. The PCA function outputs as its first row the row whose 
corresponding eigenvalue is the largest eigenvalue in the matrix. The output rows are ranked 
(component_rank) in descending order by the standard deviation of the combination of 
components along the eigenvector of each row. The sd column shows the standard deviation.

Example

Table 5-19  Example Input Data: The swap_rates Table

Example SQL-MapReduce call
SELECT * FROM pca_reduce (
  ON (
    SELECT * FROM pca_map (
      ON swap_rates
      TARGET_COLUMNS( '[1:8]' )
    )
  )
  PARTITION BY 1
) ORDER BY component_rank;

month year_1 year_2 year_3 year_4 year_5 year_7 year_10 year_30

Jul-2000 7.05 7.12 7.14 7.15 7.17 7.2 7.24 7.2

Aug-2001 3.73 4.27 4.74 5.06 5.29 5.57 5.8 6.18

Aug-2000 6.95 6.98 6.99 7 7.02 7.04 7.07 7.05

Dec-2001 2.44 3.56 4.33 4.8 5.11 5.5 5.82 6.2

Oct-2001 2.52 3.2 3.8 4.21 4.5 4.9 5.24 5.84

Apr-2001 4.51 4.81 5.12 5.33 5.5 5.75 6 6.41

Mar-2001 4.77 4.95 5.17 5.33 5.46 5.65 5.82 6.14

Nov-2000 6.65 6.58 6.61 6.66 6.7 6.78 6.85 6.91

Jun-2001 4.06 4.63 5.08 5.37 5.58 5.85 6.07 6.41

Nov-2001 2.4 3.2 3.84 4.27 4.57 4.95 5.25 5.74

Sep-2001 3.05 3.69 4.2 4.56 4.82 5.18 5.49 6.04

Dec-2000 6.18 6.06 6.07 6.11 6.14 6.2 6.27 6.41

Jul-2001 3.99 4.58 5.05 5.36 5.57 5.84 6.05 6.38

Jan-2001 5.38 5.44 5.56 5.66 5.74 5.87 6.02 6.26

Oct-2000 6.7 6.65 6.67 6.7 6.73 6.8 6.88 6.94

Feb-2001 5.14 5.28 5.44 5.57 5.68 5.84 6.01 6.29

Sep-2000 6.8 6.79 6.81 6.83 6.86 6.92 7 7.04

May-2001 4.29 4.8 5.19 5.45 5.64 5.9 6.15 6.49
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Example Output of the PCA Function

Table 5-20  Example output, first five columns

Table 5-21  Example output, last five columns

Here we include the component_rank column again for orientation.

Simple Moving Average (stats smavg)

Summary
The Simple Moving Average function computes the average over a number of points in a series.

Background
A simple moving average (SMA) is the unweighted mean of the previous n data points. For 
example, a 10-day simple moving average of closing price is the mean of the previous 10 days' 
closing prices. 

To calculate this, we compute the arithmetic average of first R rows as specified by the 
WINDOW_SIZE argument. Then, for each subsequent row, compute new value as 

  new_smavg  = old_smavg - (PM-n+PM) / N

where N is the number of rows as specified by the WINDOW_SIZE argument.

component
_rank

year_1 year_2 year_3 year_4

1 0.573453763336183 0.463152945479102 0.379424599328294 0.325478575999851

2 -0.621714840761568 -0.14985696974009 0.0983355735945921 0.225150624401579

3 0.316337107240867 -0.116113737446476 -0.256160840847205 -0.29799452273954

4 0.409297871228184 -0.636553812994135 -0.340702659940797 0.104357634897204

5 0.0694489805603556 0.000442880934856472 -0.010814100943979 -0.120994144003131

6 -0.103341677470819 0.554738957638507 -0.520033578471959 -0.384527271283778

7 -0.0177100062755995 0.189836624633163 -0.627785211273145 0.619016764376793

8 0.034802553890609 -0.0239922807523107 -0.00206652008482501 -0.444968629825824

com- 
po- 
nent_
rank

year_5 year_7 year_10 year_30 sd

1 0.289238489135625 0.243798977083416 0.208603116772691 0.141875633029829 2.74055709909578

2 0.300760470623755 0.373536522222103 0.412004179651348 0.361824568708033 0.357539829216913

3 -0.255888704035256 -0.0624809367397319 0.212436076304392 0.785822715227842 0.0647221703465131

4 0.277638446570702 0.42439032934183 0.00524218802496824 -0.207576342896498 0.017949188755367

5 -0.354106515662139 -0.0280853636453506 0.824467507743213 -0.417723870377971 0.00781553352448869

6 0.105271027044617 0.488659485360552 -0.0466968194431294 -0.106011163385703 0.00455943666200235

7 0.0921410171266871 -0.401738622179051 0.124874329862384 0.02957870360213 0.00245643939148816

8 0.733729322869908 -0.464812548679898 0.209904421207981 -0.0417433824763499 0.00216985409614942
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Usage

Permissions

You must grant EXECUTE on the function “smavg” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM SMAVG
     (
       ON {table_name|view_name|(query)}
       PARTITION BY partition_column
       ORDER BY order_by_column
       COLUMNS('column_names')
       RETURN_ALL('true|false')
       WINDOW_SIZE('window_size')
     )

Arguments

COLUMNS: Optional. Specifies the column name for which exponential moving average is 
required. If this clause is omitted, all the input rows are output as is.

WINDOW_SIZE: Optional. Specifies the number of old values to be considered for calculating 
the new weighted moving average. Default window_size is 10.

RETURN_ALL: Optional. Specifies if the first WINDOW_SIZE rows should be output or not. 
Since exponential moving average for the first WINDOW_SIZE is not defined, null's will be 
returned for those columns. Default value is false.

Assumptions

Data is assumed to be partitioned such that each partition contains all the rows of an entity. For 
example if the simple moving average of a particular share is required, then all transactions of 
that share should be part of one partition. It is assumed that the input rows are provided in the 
correct order.

Example

Example Input Data

Table 5-22  Example Input Data, table stock_data

symbol price volume ts

APPL 60.33 200 2011-10-04 04:40:00

APPL 59.44 150 2011-10-04 04:41:00

APPL 59.38 200 2011-10-04 04:42:00

APPL 59.38 100 2011-10-04 04:43:00

APPL 59.22 200 2011-10-04 04:44:00
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Example SQL-MapReduce call
SELECT * 
  FROM SMAVG
     (
       ON stock_data 
       PARTITION BY symbol 
       ORDER BY ts
       COLUMNS('price','volume')
       WINDOW_SIZE('10') 
       RETURN_ALL('true')
     ) 
  ORDER BY ts;

Example Output

Output contains all the input columns, in addition one extra column is output for each of the 
columns on which simple moving average is requested.

Table 5-23  Example Output from SMAVG

APPL 59.88 300 2011-10-04 04:45:00

APPL 59.55 100 2011-10-04 04:46:00

APPL 59.5 400 2011-10-04 04:47:00

APPL 58.66 410 2011-10-04 04:48:00

APPL 59.05 810 2011-10-04 04:49:00

APPL 57.15 370 2011-10-04 04:50:00

APPL 57.32 470 2011-10-04 04:51:00

APPL 57.65 520 2011-10-04 04:52:00

APPL 56.14 120 2011-10-04 04:53:00

APPL 55.33 420 2011-10-04 04:54:00

APPL 55.86 360 2011-10-04 04:55:00

APPL 54.92 3260 2011-10-04 04:56:00

APPL 53.74 1260 2011-10-04 04:57:00

APPL 54.80 160 2011-10-04 04:58:00

APPL 54.86 1650 2011-10-04 04:59:00

symbol price volume ts price_mavg volume_mavg

APPL 60.33 200 2011-10-0
4 04:40:00

  

APPL 59.44 150 2011-10-0
4 04:41:00

  

APPL 59.38 200 2011-10-0
4 04:42:00

  

APPL 59.38 100 2011-10-0
4 04:43:00

  

APPL 59.22 200 2011-10-0
4 04:44:00
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Note

Note that the new columns being added for moving averages are of type real.

Error Messages
You may see this error message:

• ERROR: Moving Average requires datatype of columns to be Double 
Precision or Integer or BigInteger or Numeric

REASON: One or more columns specified in the COLUMNS arguments are not of correct 
type.

APPL 59.88 300 2011-10-0
4 04:45:00

  

APPL 59.55 100 2011-10-0
4 04:46:00

  

APPL 59.50 400 2011-10-0
4 04:47:00

  

APPL 58.66 410 2011-10-0
4 04:48:00

  

APPL 59.05 810 2011-10-0
4 04:49:00

59.439 287.0

APPL 57.15 370 2011-10-0
4 04:50:00

59.121 304.0

APPL 57.32 470 2011-10-0
4 04:51:00

58.909000000000006 336.0

APPL 57.65 520 2011-10-0
4 04:52:00

58.736000000000004 368.0

APPL 56.14 120 2011-10-0
4 04:53:00

58.412000000000006 370.0

APPL 55.33 420 2011-10-0
4 04:54:00

58.023 392.0

APPL 55.86 360 2011-10-0
4 04:55:00

57.621 398.0

APPL 54.92 3260 2011-10-0
4 04:56:00

57.158 714.0

APPL 53.74 1260 2011-10-0
4 04:57:00

56.582 800.0

APPL 54.80 160 2011-10-0
4 04:58:00

56.196 775.0

APPL 54.86 1650 2011-10-0
4 04:59:00

55.777 859.0
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Weighted Moving Average (stats wmavg)

Summary
The weighted moving average computes the average over a number of points in a time series but 
applies a weighting to older values. The weighting for the older values decreases arithmetically. 

Background
A weighted average is any average that has multiplying factors to give different weights to 
different data points. Mathematically, the moving average is the convolution of the data points 
with a moving average function. In technical analysis, a weighted moving average (WMA) has 
the specific meaning of weights that decrease arithmetically. In an n-day WMA, the latest day 
has weight n, the second latest has (n - 1), and so on, counting down to zero.

Total_[M+1] = Total_[M] + P_[M+1] - P_[M-n+1]

Numerator_[M+1] = Numerator_[M] +n*P_[M+1] - Total[M]

new_WMAVG  = Numerator_[M+1]/(n(n+1)/2)

Where n is the number of rows as specified by the WINDOW_SIZE argument.

Usage

Permissions

You must grant EXECUTE on the function “wmavg” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM WMAVG
     (
       ON {table_name|view_name|(query)}
       PARTITION BY partition_column
       ORDER BY order_by_column
       COLUMNS('column_names')
       RETURN_ALL('true|false')
       WINDOW_SIZE('window_size')
     )

Arguments

COLUMNS: Optional. Specifies the column name for which the weighted moving average will 
be calculated. If this clause is omitted, all the input rows are output as-is.

RETURN_ALL: Optional. Specifies if the first WINDOW_SIZE rows should be output or not. 
Since exponential moving average for the first WINDOW_SIZE is not defined, nulls will be 
returned for those columns. Default value is false.
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WINDOW_SIZE: Optional. Specifies the number of old values to be considered for calculating 
the new weighted moving average. Default window_size is 10.

Assumptions

Data is assumed to be partitioned such that each partition contains all the rows of an entity. For 
example if the exponential moving average of a particular equity share price is required, then all 
transactions of that equity share should be part of one partition. It is assumed that the input rows 
are provided in the correct order.

Example

Example Input Data

Table 5-24  Example Input Data for Weighted Moving Average, table stock_data

symbol price volume ts

APPL 60.33 200 2011-10-04 
04:40:00

APPL 59.44 150 2011-10-04 
04:41:00

APPL 59.38 200 2011-10-04 
04:42:00

APPL 59.38 100 2011-10-04 
04:43:00

APPL 59.22 200 2011-10-04 
04:44:00

APPL 59.88 300 2011-10-04 
04:45:00

APPL 59.55 100 2011-10-04 
04:46:00

APPL 59.5 400 2011-10-04 
04:47:00

APPL 58.66 410 2011-10-04 
04:48:00

APPL 59.05 810 2011-10-04 
04:49:00

APPL 57.15 370 2011-10-04 
04:50:00

APPL 57.32 470 2011-10-04 
04:51:00

APPL 57.65 520 2011-10-04 
04:52:00

APPL 56.14 120 2011-10-04 
04:53:00

APPL 55.33 420 2011-10-04 
04:54:00
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Example SQL-MapReduce call
SELECT *
FROM WMAVG
     (
       ON stock_data
       PARTITION BY symbol
       ORDER BY ts
       COLUMNS('price','volume')
       WINDOW_SIZE('10')
       RETURN_ALL('true')
     )
ORDER BY ts;

Example Output

Table 5-25  Example Output from Weighted Moving Average

APPL 55.86 360 2011-10-04 
04:55:00

APPL 54.92 3260 2011-10-04 
04:56:00

APPL 53.74 1260 2011-10-04 
04:57:00

APPL 54.80 160 2011-10-04 
04:58:00

APPL 54.86 1650 2011-10-04 
04:59:00

symbol price volume ts price_mavg volume_mavg

APPL 60.33 200 2011-10-04 
04:40:00

  

APPL 59.44 150 2011-10-04 
04:41:00

  

APPL 59.38 200 2011-10-04 
04:42:00

  

APPL 59.38 100 2011-10-04 
04:43:00

  

APPL 59.22 200 2011-10-04 
04:44:00

  

APPL 59.88 300 2011-10-04 
04:45:00

  

APPL 59.55 100 2011-10-04 
04:46:00

  

APPL 59.5 400 2011-10-04 
04:47:00

  

APPL 58.66 410 2011-10-04 
04:48:00

  

APPL 59.05 810 2011-10-04 
04:49:00

59.30072727272727 363.45454545454544
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Output contains the input columns plus a column for each weighted moving average. The 
weighted moving average output columns have a datatype of real.

Error Messages
You may see the following error:

• ERROR: Moving Average requires datatype of columns to be Double 
Precision or Integer or BigInteger or Numeric. 

REASON: One or more columns specified in the COLUMNS arguments are not of correct 
type.

Exponential Moving Average (stats emavg)

Summary
The exponential moving average function, EMAVG, computes the average over a number of 
points in a time series but applies a damping (weighting) factor to older values. The weighting 
for the older values decreases exponentially without entirely discarding the older values.

Background
Exponential moving average (EMA), sometimes also called an exponentially weighted moving 
average (EWMA), applies weighting factors that decrease exponentially. The weighting for each 
older data point decreases exponentially, giving much more importance to recent observations 
while still not discarding older observations entirely. 

APPL 57.15 370 2011-10-04 
04:50:00

58.88454545454545 378.54545454545456

APPL 57.32 470 2011-10-04 
04:51:00

58.55709090909092 408.72727272727275

APPL 57.65 520 2011-10-04 
04:52:00

58.32818181818182 442.1818181818182

APPL 56.14 120 2011-10-04 
04:53:00

57.856181818181824 397.09090909090907

APPL 55.33 420 2011-10-04 
04:54:00

57.29581818181819 406.1818181818182

APPL 55.86 360 2011-10-04 
04:55:00

56.90254545454546 400.3636363636364

APPL 54.92 3260 2011-10-04 
04:56:00

56.411454545454546 920.7272727272727

APPL 53.74 1260 2011-10-04 
04:57:00

55.790000000000006 1020.0

APPL 54.8 160 2011-10-04 
04:58:00

55.466 903.6363636363636

APPL 54.86 1650 2011-10-04 
04:59:00

55.22309090909091 1062.7272727272727
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We compute the arithmetic average of the first n rows as specified by START_ROWS argument. 
Then, for each subsequent row, we compute the new value as:

    new_emavg = alpha * new_value + (1-alpha) * old_emavg

Usage

Permissions

You must grant EXECUTE on the function “emavg” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM EMAVG
     (
      ON {table_name|view_name|(query)}
      PARTITION BY partition_column
      ORDER BY order_by_column
      [COLUMNS('column_names')]
      [RETURN_ALL('true|false')]
      [START_ROWS('number')]
      [ALPHA('alpha_value')]
     )

Arguments

COLUMNS: Optional. Name of the column name for which the exponential moving average will 
be calculated. If this clause is omitted, all the input rows are output as-is.

ALPHA: Optional. Specifies the damping factor, which is the degree of weighting decrease. The 
damping factor must have a value between 0 and 1, which translates to a percentage value of 
zero to 100. For example, specify an ALPHA of 0.2 to specify a 20% damping factor. A higher 
ALPHA discounts older observations faster. The default value is 0.1.

START_ROWS: Optional. Specifies the lag, expressed in rows, after which exponential moving 
average will start to be calculated. The exponential moving average for the first START_ROWS 
rows is not defined. The default number of START_ROWS is 2.

RETURN_ALL: Optional. Specifies whether the first START_ROWS rows should be included in 
the output or not. Since exponential moving average for the first START_ROWS is not defined, 
setting START_ROWS to true causes your query to return nulls for those columns. Default value 
is false.

Assumptions

This function makes the following assumptions:

• Data is assumed to be partitioned such that each partition contains all the rows of an entity. 
For example if the exponential moving average of a particular exchange-traded equity share 
price is required, then all transactions of that equity share should be part of one partition. 

It is assumed that the input rows are provided in historical order.
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Output

For each column on which you calculate an average, the function returns a column containing the 
moving average. The name of each moving average column is the corresponding input column’s 
name with the suffix, “_mavg” appended to it. All input columns are also returned.

Example

Example Input Data

Table 5-26  Example Input Data, table stock_data

symbol price volume ts

APPL 60.33 200 2011-10-04 
04:40:00

APPL 59.44 150 2011-10-04 
04:41:00

APPL 59.38 200 2011-10-04 
04:42:00

APPL 59.38 100 2011-10-04 
04:43:00

APPL 59.22 200 2011-10-04 
04:44:00

APPL 59.88 300 2011-10-04 
04:45:00

APPL 59.55 100 2011-10-04 
04:46:00

APPL 59.5 400 2011-10-04 
04:47:00

APPL 58.66 410 2011-10-04 
04:48:00

APPL 59.05 810 2011-10-04 
04:49:00

APPL 57.15 370 2011-10-04 
04:50:00

APPL 57.32 470 2011-10-04 
04:51:00

APPL 57.65 520 2011-10-04 
04:52:00

APPL 56.14 120 2011-10-04 
04:53:00

APPL 55.33 420 2011-10-04 
04:54:00

APPL 55.86 360 2011-10-04 
04:55:00

APPL 54.92 3260 2011-10-04 
04:56:00
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Example SQL-MapReduce call
SELECT *
FROM EMAVG
     (
       ON stock_data
       PARTITION BY symbol
       ORDER BY ts
       COLUMNS('price','volume')
       ALPHA('0.1818')
       START_ROWS('10')
       RETURN_ALL('true')
     )
ORDER BY ts,price,volume,price_mavg,volume_mavg;

Example Output

from EMAVG

Table 5-27  Example Output from EMAVG

APPL 53.74 1260 2011-10-04 
04:57:00

APPL 54.80 160 2011-10-04 
04:58:00

APPL 54.86 1650 2011-10-04 
04:59:00

symbol price volume ts price_mavg volume_mavg

APPL 60.33 200 2011-10-0
4 04:40:00

  

APPL 59.44 150 2011-10-0
4 04:41:00

  

APPL 59.38 200 2011-10-0
4 04:42:00

  

APPL 59.38 100 2011-10-0
4 04:43:00

  

APPL 59.22 200 2011-10-0
4 04:44:00

  

APPL 59.88 300 2011-10-0
4 04:45:00

  

APPL 59.55 100 2011-10-0
4 04:46:00

  

APPL 59.5 400 2011-10-0
4 04:47:00

  

APPL 58.66 410 2011-10-0
4 04:48:00

  

APPL 59.05 810 2011-10-0
4 04:49:00

59.439 287.0

APPL 57.15 370 2011-10-0
4 04:50:00

59.022859800000006 302.0894
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The output consists of a column for each exponential moving average you are calculating, plus 
all of the input columns returned as-is.

Notes

Note that the new columns being added for moving averages are of type real.

Error Messages
You may see the following error message when you run this function:

• ERROR: Moving Average requires datatype of columns to be Double 
Precision or Integer or BigInteger or Numeric. 

REASON: One or more columns specified in the COLUMNS arguments are not of correct 
type.

Volume-Weighted Average Price (stats vwap)

Summary
This function computes, for each in a series of equal-length intervals, the volume-weighted 
average price of a traded item (usually an equity share). You specify the interval length in the 
TIMEINTERVAL argument. The first interval starts at the time of the earliest timestamp in the 
partition, and it ends with the last row timestamped less than TIMEINTERVAL seconds later. The 
second interval starts immediately after the end of the first, and so on. All intervals have the 
same length.

APPL 57.32 470 2011-10-0
4 04:51:00

58.713279888360006 332.61554708000006

APPL 57.65 520 2011-10-0
4 04:52:00

58.51997560465616 366.68204062085607

APPL 56.14 120 2011-10-0
4 04:53:00

58.08729603972967 321.83524563598445

APPL 55.33 420 2011-10-0
4 04:54:00

57.58601961970682 339.6815979793625

APPL 55.86 360 2011-10-0
4 04:55:00

57.27222925284413 343.3754834667144

APPL 54.92 3260 2011-10-0
4 04:56:00

56.84459397467707 873.6178205724657

APPL 53.74 1260 2011-10-0
4 04:57:00

56.280178790080775 943.8621007923914

APPL 54.8 160 2011-10-0
4 04:58:00

56.01108228604409 801.3559708683347

APPL 54.86 1650 2011-10-0
4 04:59:00

55.80181552644128 955.6394553644714
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Background
Compute the sum of the product of the volume and price divided by the total volume traded in a 
specified window:

    VWAP  =  sum(vol*price)/sum(vol)

NOTE: In the formula above, "sum" refers to the sum within the current window.

Usage

Permissions

You must grant EXECUTE on the function “vwap” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * 
   FROM VWAP 
     (
       ON { table_name | view_name | ( query ) }
       PARTITION BY expression [, ...]
      [PRICE('price_column')]
      [VOLUME ('volume_column')] 
      [TIMEINTERVAL('number_of_seconds')] 
      [DT('date_column')] 
     )

Arguments

PRICE: Optional. Name of the traded price column in the input table. Each row typically records 
one transaction. The PRICE column records the price at which the item traded. Default is 
"price".

VOLUME: Optional. Name of the column that holds the count of units traded in the 
transaction(s) recorded in a given row. Default is "volume".

DT: Optional. Name of the column that records the date and time of the trade. Default is "dt"

TIMEINTERVAL: Optional. Specifies the length of the time interval, expressed in seconds. The 
default is 0, which has the effect of calculating no averages, since every row is considered to be 
an interval unto itself.

Assumptions

The function has been build with these assumptions:

• Partitioning of input data: The function assumes that you will partition the input data so 
that each partition contains all the price quotes for a particular entity. For example, to 
calculate the volume-weighted average of a particular equity share, you should pass to the 
function a single partition containing the records of all transactions of that equity share in 
the period for which you want to calculate an average.

• Sort order of input data: The function assumes that the rows are sorted in ascending order 
based on the DT column. 
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• Start time: The timestamp of the first row in the partition is considered to be the start time 
of the first interval. The next interval starts immediately after the end of the first, and so on.

• Datatypes: The DT input column should be of type timestamp. The PRICE and VOLUME 
input columns are of type numeric, integer, biginteger, or real.

Example Query 1

Input Data for Example 1

The sample table stockdata contains these columns:

• memberid [int]

• name [varchar]

• dt [timestamp]

• price [numeric]

• volume [int]

Table 5-28  Example Input Data for Example 1, table stockdata

Example Query 1
SELECT * 
  FROM VWAP 
     (
       ON 
       (
         SELECT * 
         FROM stockdata 
       ) 
       PARTITION BY memberID
       PRICE('price') 
       VOLUME ('volume') 
       DT('dt')
     );

Example 1 Output from VWAP

Table 5-29  Example 1 Output from VWAP

memberid name dt price volume

1 Google 1989-02-20 09:00:45 40 25

1 Google 1989-02-20 09:50:22 50 21

1 Google 1989-02-21 09:00:46 50 29

1 Google 1989-02-22 09:00:46 40 2

memberid name timestamp vwap

1 Google 1989-02-20 09:00:45 40

1 Google 1989-02-20 09:50:22 50

1 Google 1989-02-21 09:00:46 50

1 Google 1989-02-22 09:00:46 40



Aster Data proprietary and confidential Volume-Weighted Average Price (stats vwap)

March 21, 2012 Statistical Analysis 91

All the input columns are output as-is, except for PRICE, VOLUME, and DT, which are not 
included in the output. In addition, the timestamp and vwap columns are added to the output 
table. This example is really an anti-example. Since we omitted the TIMEINTERVAL argument in 
our sample query, the function used the default value of 0, which had the effect of calculating no 
averages, since every row was considered to be an interval unto itself.

Example Query 2

Input Data for Example 2

Use the same input data you used in Example 1.

Example Query 2
SELECT * FROM VWAP 
  (
  ON 
    (
    SELECT * 
    FROM stockdata 
    ) 
  PARTITION BY MemberID
  PRICE('price') 
  VOLUME ('volume') 
  DT('dt')
  TIMEINTERVAL ('86400')
  );

Example 2 Output from VWAP

Table 5-30  Example 2 Output from VWAP

This time, since we specified a TIMEINTERVAL of 86,400 seconds (one day), the first two rows 
are grouped together, and the last two rows are grouped together, and the function calculates the 
volume-weighted average price for each group.

Error Messages
You may see the following error messages:

• ERROR: Must have column named price or specify name of price column.

REASON: PRICE argument is missing and there exists no column in the input table with the 
name 'Price'

• ERROR: Must have column named volume or specify name of volume 
column.

REASON: VOLUME argument is missing and there exists no column in the input table with 
the name 'Volume

MemberID Name timestamp vwap

1 Google 1989-02-20 09:50:22 44.5652

1 Google 1989-02-22 09:00:46 45.9184
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• ERROR: Must have column named price or specify name of Dt column.

REASON: DT argument is missing and there exists no column in the input table with the 
name 'Dt'
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6

Text Analysis

In this section we describe:

• “Levenshtein Distance” on page 95

• “nGram” on page 97

• “Text Parser (text_parser)” on page 100

• “Named Entity Recognition (NER)” on page 103

• “Sentiment Extraction Functions” on page 109

Levenshtein Distance

Summary
This function computes the Levenshtein distance between two text values. This is useful for 
fuzzy matching of sequences and strings. It is one measure used to compare how "far apart" two 
strings are. The Levenshtein distance computes the number of edits needed to transform one 
string into the other, where edits include insertions, deletions, or substitutions of individual 
characters.

Background
This function is frequently used to resolve a user-entered value to a standard value, such as when 
a person types “Hanning Mankel” when he’s actually searching for Henning Mankell.

Usage

Permissions

You must grant EXECUTE on the function “ldist” to the database user who will run the function. 
For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax

Below, we show how you invoke the Levenshtein distance function. Use a SELECT statement 
that calls the function:



Levenshtein Distance  Aster Data proprietary and confidential

96 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

SELECT *
  FROM ldist
   (
     ON { table_name | view_name | ( query ) }
     SOURCE (column1 [, column2,...])
    TARGET(column1)
   [THRESHOLD(val)]
   [OUTPUT_COLUMN_NAME(column_name)]
   [TARGET_COLUMN_NAME(column_name)]
   [SOURCE_COLUMN_NAME(column_name)]
   [ACCUMULATE(column1 [, column2,...])
   );

Arguments

SOURCE: Required. A comma-delimited list of columns containing the source text whose 
Levenshtein distance from the target text will be calculated. SOURCE columns must be 
character-type columns such as CHAR or VARCHAR.

TARGET: Required. Column containing the target text whose Levenshtein distance from each 
source text will be calculated. Must be character-type column.

THRESHOLD: Optional. Use an integer value greater than zero. This is the minimum 
Levenshtein distance value that will be returned. In other words, if the Levenshtein distance for a 
(source, target) pair is equal to or below this threshold, then the threshold value itself is returned.

OUTPUT_COLUMN_NAME: Optional. Name you wish to apply to the output column 
containing the Levenshtein distance. The default is distance.

TARGET_COLUMN_NAME: Optional. Name for the output column containing the compared 
target text. Default is target.

SOURCE_COLUMN_NAME: Optional. Name for the output column containing the compared 
source text. Default is source.

ACCUMULATE: Optional. List of input columns that will be passed as-is to the output.

Example

Example Input Data

Table 6-1  Example Input Data, table sample_lev_input

Example SQL-MapReduce call
SELECT * 
  FROM ldist
   (
    ON sample_lev_input
    SOURCE('col1', 'col2', 'col3') 
    TARGET('company') 
    ACCUMULATE('company_id')
   );

col1 col2 col3 company company_id 

Astre Astter Astur Aster 749 
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Example Output from Levenshtein Distance

Table 6-2  Example Output from Levenshtein Distance

nGram

Summary 
The nGram function tokenizes (or splits) an input stream of text and emits n multi-grams (which 
we call “n-grams”) based on the specified delimiter and reset parameters. This function is useful 
when trying to do text analysis and allows more flexibility than the standard tokenization. Many 
two-word phrases carry important meaning (e.g. “machine learning”) that uni-grams 
(single-word tokens) do not capture. This, combined with additional analytical techniques, can 
be useful for performing sentiment analysis, topic identification, and document classification.

nGram considers each input row to be one document, and it returns a row for each unique n-gram 
in each document. Optionally, you can have nGram also return the counts of each n-gram and the 
total number of n-grams, per document.

Background
General background on tokenization can be found here: http://en.wikipedia.org/wiki/Lexical_
analysis#Tokenizer

Description
An n-gram is a sub-sequence of n items from a given sequence. This function tokenizes an input 
sequence into sub-sequences of n-grams.

Usage

Permissions

You must grant EXECUTE on the function “nGram” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * 
  FROM nGram
   (
    ON { table_name | view_name | ( query ) }
    TEXT_COLUMN('column_name')

company_id target source distance 

749 Aster Astre 2 

749 Aster Astter 1 

749 Aster Astur 1 

http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer
http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer
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   [DELIMITER('delimiter_regular_expression')]
    GRAMS(gram_number)
   [OVERLAPPING({'true'|'false'})]
   [CASE_INSENSITIVE({'true'|'false'})]
    PUNCTUATION('punctuation_regular_expression')
    RESET('reset_regular_expression')
   [TOTAL]
   [ACCUMULATE('column_name [, ...]')]
   [NGRAM_COLUMN_NAME('column_name')]
   [COUNT_COLUMN_NAME('column_name')]
  )

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be tokenized; only one 
column is permitted

DELIMITER: Optional. In the input text, the DELIMITER is the character or string that divides 
one word from the next. The default is a single space character (‘ ’). You can use a regular 
expression as the DELIMITER value. This is useful, for example, if you wish to recognize both 
tabs and space characters as delimiters.

GRAMS: Required. Integer specifying the desired length, in words, of each n-gram (i.e., the 
value of n)

OVERLAPPING: A true or false value that determines if you allow for overlapping n-grams. The 
default is 'true', which allows overlapping. When running in overlapping more, each word in 
each sentence is the start of an n-gram, provided enough words follow it (in the same sentence) 
to form a whole n-gram of the size you’ve specified. See RESET for information on sentences.

CASE_INSENSITIVE: A true or false value that specifies whether the function will leave the 
lettercase of the text as-is, or convert all letters to lowercase. The default is 'true', which converts 
all text to lowercase.

PUNCTUATION: Optional. A regular expression that specifies the punctuation characters nGram 
will remove before it evaluates the input text. These characters are removed and not replaced 
with any character, so that, for example, “hocus-pocus” becomes “hocuspocus”. The default set 
of PUNCTUATION characters that are removed includes `~#^&*()-

RESET: Optional. A regular expression listing one or more punctuation characters or strings, any 
of which the nGram function will recognize as the end of a sentence of text. The end of each 
sentence resets the search for n-grams, meaning that nGram discards any partial n-grams and 
proceeds to the next sentence to search for the next n-gram. In other words, no n-gram can span 
two sentences. The default set of RESET characters includes .,?!

TOTAL: Optional. A true or false value that specifies whether nGram will return a total n-gram 
count for the document. Each row is considered to be one document. (Note that this count is not 
the distinct number of n-grams, but rather the total number of n-grams in the document.) The 
default is false. If set to true then the column returned is called totalcnt.

ACCUMULATE: Optional. A list of columns you want to return for each word; note that the 
columns accumulated cannot have the same names as those specified by NGRAM_COLUMN_
NAME and COUNT_COLUMN_NAME. By default all input columns are emitted.

NGRAM_COLUMN_NAME: Optional. This is the name of the column for the n-grams 
generated. Default value is 'ngram'.

COUNT_COLUMN_NAME: Optional. This is the name of the count column. Default value is 
'frequency'.
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Output

The output columns include columns specified in the accumulate clause and the column 
containing the n-gram and the count of occurrences of that n-gram.

Example

Example Input Data

Table 6-3  Example Input Data, table my_docs

Example SQL-MapReduce call
SELECT * 
  FROM nGram
      (
       ON my_docs
       TEXT_COLUMN('txt')
       DELIMITER(' ')
       GRAMS(2)
       OVERLAPPING('true')
       CASE_INSENSITIVE('true')
       PUNCTUATION('\[.,?\!\]')
       RESET('\[.,?\!\]')
       ACCUMULATE('id','src')
      );

Example output from nGram

Table 6-4  Example output from nGram

id src txt 

1 wikipedia the Quick brown fox jumps over the lazy dog 

2 sampledoc hello world. again, I say hello world 

id src ngram frequency 

1 wikipedia the quick 1 

1 wikipedia quick brown 1 

1 wikipedia brown fox 1 

1 wikipedia fox jumps 1 

1 wikipedia jumps over 1 

1 wikipedia over the 1 

1 wikipedia the lazy 1 

1 wikipedia lazy dog 1 

2 sampledoc hello world 2 

2 sampledoc again I 1 

2 sampledoc I say 1 

2 sampledoc say hello 1 
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The output includes all the columns specified in the OUTPUT clause, plus an ngram column and 
a count (“cnt”) column.

Text Parser (text_parser)

Summary
Text parser (“text_parser” formerly “tokenize_cnt”) is a general tool for working with text fields. 
It can tokenize an input stream of words, optionally stem them, and then emit the individual 
words and counts for the each word appearance.

Background
General background on tokenization can be found here: http://en.wikipedia.org/wiki/Lexical_
analysis#Tokenizer

Usage

Permissions

You must grant EXECUTE on the function “text_parser” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
  FROM text_parser
     (
       ON {table_name|view_name|(query)}
      [PARTITION BY expression [, ...]]
       TEXT_COLUMN('text_column_name')
      [CASE_INSENSITIVE('true'|'false')]
      [STEMMING('true'|'false')]
      [DELIMITER('delimiter_regular_expression')]
      [TOTAL('true'|'false')]
      [PUNCTUATION('punctuation_regular_expression')]
      [ACCUMULATE('column [, ...]')]
      [TOKEN_COLUMN_NAME('token_column_name')]
      [FREQUENCY_COLUMN_NAME('frequency_column_name')]
      [TOTAL_COLUMN_NAME('total_column_name')]
      [REMOVE_STOP_WORDS('true'|'false')]
      [POSITION_COLUMN_NAME('position_column_name')]
      [LIST_POSITIONS('true'|'false')]
     )

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be tokenized. Only one 
column is permitted.

http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer
http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer
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CASE_INSENSITIVE: Optional. [true|false] Treat text as-is (false) or convert to all lowercase 
(true); (defaults to 'true')

STEMMING: Optional. [true|false] If true, apply Porter Stemming to each token to reduce it to its 
root form (default = false)

DELIMITER: Optional. Regular expression of character or string used to split words. (Default 
value is '[ \t\b\f\r]+')

TOTAL: Optional. [true|false] Return column showing total number of words in document 
(default = 'false')

PUNCTUATION: Optional. List of punctuation characters to be removed, written as a regular 
expression. (default is [.,!?])

ACCUMULATE: Optional. List of columns you want to return in addition to the parse word; note 
that no output column name can be the same as the TOKEN_COLUMN_NAME or TOTAL_
COLUMN_NAME. By default, if ACCUMULATE is not selected, all input columns are 
returned. 

TOKEN_COLUMN_NAME: Optional. Name of the column containing tokens. (default = 'token')

FREQUENCY_COLUMN_NAME: Optional. Name of the column containing frequency counts. 
(default = 'frequency')

TOTAL_COLUMN_NAME: Optional. Name of the column containing the total count for the 
document. (default = 'total_count')

REMOVE_STOP_WORDS: Optional. [true|false] If true, ignore certain common words 
when parsing the text. (default = false)

POSITION_COLUMN_NAME: Optional. Name of the column containing the position of a word 
within a document. (default='position')

LIST_POSITIONS: [true|false]: Optional. Return position of a word in list form (if 'true'), or emit 
a different row for each occurrence (if 'false') (default=false).

PARTITION BY: Optional. The function can be invoked as either a row function or a partition 
function. If a partition by clause is specified, it will assume that all rows in any given partition 
constitute a single document. If no partition by clause is specified, it is invoked as a row 
function, and the function assumes each individual row constitutes a single document.

Output

A row is output for each unique token that is found. Each output row contains the token (in the 
column with the default name "token") and a count of its occurrence in the input (in the column 
with the default name "frequency"). The output also contains all columns specified in 
ACCUMULATE clause.

Example

Example Input Data

Table 6-5  Example Input Data, table my_docs

id src txt 

1 wikipedia the Quick brown fox jumps over the lazy dog 

2 sampledoc hello world. again, I say hello world 
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Example SQL-MapReduce call
SELECT * 
  FROM text_parser
   (
    ON my_docs
    TEXT_COLUMN('txt')
    CASE_INSENSITIVE('true')
    PUNCTUATION('\[.,?\!\]')
    ACCUMULATE('id', 'src')
    LIST_POSITIONS('true')
   )
ORDER BY id, position
;

Example Output from Text Parser

Table 6-6  Example Output from Text Parser

Algorithm
The function reads the full document into the memory buffer and creates a hash table. We 
assume that the dictionary for a document will not exceed the available memory on the machine. 
This assumption is reasonable, since, a million-word dictionary with an average word length of 
ten bytes requires 10 MB of memory.

Error Messages
You will receive error messages under the following conditions:

• ERROR: If input parameters are now properly specified (wrong 
datatype or values outside allowed range)

• ERROR: If the datatype of the text_column parameter is not of type 
character varying.

id src token frequency position

1 wikipedia the 2 0,6

1 wikipedia quick 1 1

1 wikipedia brown 1 2

1 wikipedia fox 1 3

1 wikipedia jumps 1 4

1 wikipedia over 1 5

1 wikipedia lazy 1 7

1 wikipedia dog 1 8

2 sampledoc hello 2 0,5

2 sampledoc world 2 1,6

2 sampledoc again 1 2

2 sampledoc i 1 3

2 sampledoc say 1 4



Aster Data proprietary and confidential Named Entity Recognition (NER)

March 21, 2012 Text Analysis 103

• ERROR: If needed columns are missing from the relation named in the 
ON clause.

• ERROR: If any columns in your ACCUMULATE clause have the disallowed 
column name "token" or "frequency".

Named Entity Recognition (NER)

Summary
Named entity recognition (NER) is a process of finding instances of specified entities in text. For 
example, a simple news named-entity recognizer for the English language might find the person 
mentioned (John J. Smith) and the location mentioned (Seattle) in the text “John J. Smith lives in 
Seattle”.

Background
SQL is not a convenient way to do this type of searching. For each type of item you want to find, 
you would needs to issue an SQL query, or merge together multiple SQL subqueries that are 
joined by OR operators. In addition, you would need a mechanism to label extracted fields that 
were found.

Usage
We use three SQL-MR functions to extract the multiple entities in text content, train and evaluate 
the data models.

• FindNamedEntity: Extracts all the specified name entities from the input document by 
statistical models, regular expressions or a dictionary.

• TrainNamedEntityFinder: Trains statistical models with labeled data. The input labeled 
data has an XML format.

• EvaluateNamedEntityFinderRow and EvaluateNamedEntityFinderPartition: Evaluates 
the statistical models with labeled data. The format for the input labeled data is the same as 
is used for training.

The functions support the following embedded entity types: "person", "location", "organization", 
"phone", "date", "time", "email" and "money".  The types "person", "location", and 
"organization" will use the embedded maximum entropy data model, and  the types "date", 
"time", "email" and "money" will use embedded regular expressions. If the user specifies these 
entity names, the default model types and model file names will be invoked. The user could 
extract "all" the entities using one function call.

Permissions

You must grant EXECUTE on the functions “FindNamedEntity”, “TrainNamedEntityFinder”, 
“EvaluateEntityFinderRow”, and “EvaluateEntityFinderPartition” to the database user who will 
run the functions. For information on how SQL-MR security, see “SQL-MapReduce Security” 
on page 197 of the Aster Database User’s Guide.
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FindNamedEntity

Syntax of FindNamedEntity
SELECT * FROM FindNamedEntity(
  ON { table_name | view_name | (query) }
  TEXT_COLUMN('text_column_name')
  MODEL('entity_type_name' [ ':' 'model_type' ':' 
        'model_file_name|regular_expression'] [, ...])
  [SHOW_POSITION('position_number')]
  [ENTITY_COLUMN ('column_name')]
  [ACCUMULATE ('column_name [, ...]')]
)

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be scanned. Only one 
column is permitted.

MODEL: List of model items. Each item is a triple, of which:

1. The first parameter is the entity type name (eg. PERSON, LOCATION, EMAIL ...) and will 
appear in the output.

2. The second parameter is the model type, there are four possible types:

• "max entropy" means it is a maximum entropy language model generated by training;

• "rule" means it is a rule based model, which is a plain text file: one regular expression 
per line;

• "dictionary" means it is dictionary based model, which is a plain text file: one word per 
line;

• "reg exp" means the entities will be extracted by the following regular expression. Not 
like "rule" which use pre-stored regular expressions, "reg exr" use regular expressions 
in the SQL-MR statement.

3. The third parameter is the model file name (for "max entropy/rule/dictionary" types) or the 
regular expression (for "reg exp" type).

SHOW_POSITION: Optional. Whether to output the position information for each name entity. If 
it's set to a position number, the start position, end position and surrounding phrase (e.g., "entity 
has gained $500 thousand in its equity") of the entities would be emitted. The default is '0', which 
means no position information would be output.

ENTITY_COLUMN: Optional. Name of the column containing entity names. The default is 
'entity'.

ACCUMULATE: List of columns you want to return in the output table; note that no output 
column name can be the same as the ENTITY_COLUMN.

Input to FindNamedEntity

The input table should contain a text column which contains input text.

Output of FindNamedEntity

The output table contains columns specified in the ACCUMULATE clause, the column for the 
entity name, and the columns for the start and end positions and surrounding phrases to the 
entity.
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Example for FindNamedEntity

Table 6-7  Sample input table, mydocs

Example SQL-MR call to FindNamedEntity
SELECT *
FROM FindNamedEntity(
      ON mydocs
   text_column('content')
   model('all')
   accumulate('id', 'src')
   SHOW_POSITION(3)
);

Table 6-8  Example output from FindNamedEntity

Error messages from FindNamedEntity, with explanations
• If the format of model parameter is wrong, the following error message will appear:

SQL-MR function FindNamedEntity failed: Format error for model !

• If the specified model type is not found, the following error message will appear:

SQL-MR function FindNamedEntity failed: No such model type:xxx!

• If the specified model is not found, the following error message will appear:

SQL-MR function FindNamedEntity failed: No such data model:xxx!

• If the specified regular expression is invalid, the following error message will appear:

SQL-MR function FindNamedEntity failed: Fail to compile Regular 
expression!

• If the specified maximum entropy is invalid, the following error message will appear:

SQL-MR function FindNamedEntity failed: Fail to read model:xxx!

Id src Content

1  wiki  U. S. President Barack Obama has arrived in South Korea, where he is expected to show 
solidarity with the country ' s president in demanding North Korea move toward ending its 
nuclear weapons programs.

2  wiki  Please send me email via john@teradata.com .

id src ENTITY TYPE START END POSITION

1  wiki  Barack Obama  person  18  30  ... S . President Barack Obama has arrived 
in ...

1  wiki  U . S .  location  0  7  U . S . President Barack Obama ...

1  wiki  South Korea  location  46  57  ... has arrived in South Korea, where he is ...

1  wiki  North Korea  location  143  154  ... president in demanding North Korea 
move toward ending ...

2  wiki  john@teradata.com  email  25  42  ... email via john@teradata.com .
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TrainNamedEntityFinder

Syntax of TrainNamedEntityFinder
SELECT *
FROM TrainNamedEntityFinder
     (
       ON {table_name|view_name|query}
       PARTITION BY 1
       TEXT_COLUMN('text_column_name')
       ENTITY_TYPE('entity_type')
       MODEL_FILE('model_name')
       [DOMAIN('host_ip')]
       [DATABASE('database_name')]
       [USERID('db_user')]
       PASSWORD('password')
       [ENCODE('encode')]
       [ITERATOR('iterator')]
       [CUTOFF('cutoff')]
     )

Arguments to TrainNamedEntityFinder

TEXT_COLUMN: Required. Name of the column whose contents will be scanned. Only one 
column is permitted.

ENTITY_TYPE: The entity type to be trained. The input training corpus should contain the same 
tag. For example, PERSON. Only one column is permitted.

MODEL_FILE: The name of the data model file to be generated. The SQL-MR function will 
find the data model file in the dictionary fold or in the database.

ITERATOR: Optional. The iterator number for training. This is the training parameter of 
openNLP. The default is 100.

CUTOFF: Optional. The cutoff number for training. This is the training parameter of openNLP. 
The default is 5.

DOMAIN: Optional. The IP address of the queen node. The default is the queen IP.

DATABASE: Optional. This is the name of the database where the input table is present. The 
default is ‘beehive’.

USERID: Optional. The Aster Database user name of the user. The default is ‘beehive’.

PASSWORD: Required. The Aster Database password for the database user.

Input to TrainNamedEntityFinder

The input table should contain an text column which contains training corpus.

Output from TrainNamedEntityFinder

A return value indicates success or failure.
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Example for TrainNamedEntityFinder

Table 6-9  Sample input table “myTraining”

Example SQL-MR call to TrainNamedEntityFinder
SELECT *
FROM TrainNamedEntityFinder(
      ON myTraining
      PARTITION BY 1
      type('location')
      text_column('content')
      model_file('location.dataset2')
      DOMAIN('153.65.197.90')
      DATABASE('sqlmr_test')
      USERID('db_superuser')
      PASSWORD('db_superuser')
);

Table 6-10  Sample output from TrainNamedEntityFinder

EvaluateNamedEntityFinderRow and 
EvaluateNamedEntityFinderPartition
The EvaluateNamedEntityFinder function takes a set of evaluating data and generates the 
precision, recall and f-measure value of a given maximum entropy data model. 
EvaluateNamedEntityFinder functions do not support regular expression based model and 
dictionary based model.

EvaluateNamedEntityFinder includes two SQL-MR functions: 

• EvaluateNamedEntityFinderRow that operates as a row function; and 

• EvaluateNamedEntityFinderPartition that operates as a partition function.

Syntax of EvaluateNamedEntityFinderPartition
SELECT * FROM EvaluateNamedEntityFinderPartition(
     ON EvaluateNamedEntityFinderRow
     (
         ON {table_name|view_name|(query)}
         TEXT_COLUMN('text_column_name')
         MODEL_FILE('model_data_file')
     )
    PARTITION BY 1

Content

<START:location> U. S. <END> has arrived

where he is expected to show solidarity with the country ' s president in demanding 
<START:location> North Korea <END>

has indicated he will send an envoy to <START:location>Pyongyang<END>before the end of 
the year

Train_result

model created to LocationName.bin
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)

Arguments of EvaluateNamedEntityFinderRow and 
EvaluateNamedEntityFinderPartition

TEXT_COLUMN: Required. Name of the column whose contents will be scanned. Only one 
column is permitted.

MODEL_FILE: Required. The model data file that will be evaluated. Only one model is 
permitted.

Input

The EvaluateNamedEntityFinderRow and EvaluateNamedEntityFinderPartition functions take as 
input a table with a text column of input text.

Output

Evaluation results are expressed as precision, Recall and F-measure values.

Example for EvaluateNamedEntityFinder

Table 6-11  Sample input table, “myEvaluation”

Example SQL-MR call
SELECT * FROM EvaluateNamedEntityPartition(
  ON EvaluateNamedEntityRow(
     ON myEvaluation
     model_file('location.dataset2')
     text_column('content')
     )
  PARTITION BY 1
)

In this example case, the entity “United States” is not included in the training data, but the entity 
“U. S.” is in the training data.

Table 6-12  Example output

Error message from EvaluateNamedEntityFinder, with explanation

If the specified maximum entropy is invalid, the following error message will appear:

SQL-MR function EvaluateNamedEntityFinderRow failed: Illegal Max entropy 
model!

id content

1  <START:location> U. S. <END> has arrived

2  the <START:location> United States <END> are trying to coax the North back to six

Precision Recall F-Measure

1  0.5  0.6666666666666



Aster Data proprietary and confidential Sentiment Extraction Functions

March 21, 2012 Text Analysis 109

Sentiment Extraction Functions

Summary
Sentiment extraction is the process of deducing a user's opinion (positive, negative, neutral) from 
text-based content. Sentiment extraction is useful for analyzing users’ opinions as found in the 
content of call centers, forums, social media, etc. 

Usage
The Sentiment Extraction Functions include three SQL-MR functions as follows to extract 
sentiments from text content, train a model, and evaluate the results:

• ExtractSentiment: a map function to extract the opinion of each document/sentence

• EvaluateExtractSentiment: evaluate the precision and recall of ExtractSentiment function

• TrainMeClassifier: train a model using a classification method. TrainMeClassifier supports 
the maximum entropy classification method. 

Permissions

You must grant EXECUTE on the functions “ExtractSentiment”, “EvaluateExtractSentiment” 
and “TrainMeClassifier” to the database user who will run the functions. For information on how 
SQL-MR security, see “SQL-MapReduce Security” on page 197 of the Aster Database User’s 
Guide.

ExtractSentiment

Summary

ExtractSentiment is a map function that extracts the opinion or sentiment from input text. Much 
of user generated content includes the author’s feelings and opinions (happy, angry etc.). This 
function helps to extract the polarity of the content as positive, negative or neutral.

Background

Sentiment extraction has become more and more important over time, with the increase in user 
generated content being produced. 

A few different sentiment extraction use cases follow:

• Support Forum - A company has an online forum where users can share knowledge and 
ask each other questions about how to use a particular software package. If a forum post 
shows the user’s appreciation or involves the sharing of information, there is no need for the 
company’s support staff to get involved in the thread. But if the forum post contains a 
customer's frustration at an unanswered question or the customer seems angry, then the 
support staff should react as soon as possible.

• Mining User Generated Reviews - There is a clothing retailer that wants to get all types of 
feedback for the clothing lines and accessories they sell (sizing, quality, price, style, etc.) 
The company has an online reviews and comments engine, and they want to get this 
feedback through analyzing user’s reviews in the webstore, rather than using a more 
traditional questionnaire.
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• Online Reputation Management - A large company wishes to protect its brand and 
reputation by monitoring negative news, blog entries, reviews and comments on the Internet.

Syntax of ExtractSentiment
SELECT *
FROM ExtractSentiment
(
  ON {table_name|view_name|(query)}
  TEXT_COLUMN('text_column_name')
  [MODEL('model_type[:model_file]')]
  [SUB_MODEL('model_type[:model_file]')]
  [ACCUMULATE ('column [, ...]')]
  [LEVEL ('{DOCUMENT | SENTENCE}')]
  [HIGH_PRIORITY('{ NEGATIVE_RECALL | NEGATIVE_PRECISION | POSITIVE_
RECALL | POSITIVE_PRECISION | NONE}')]
  [FILTER('{POSITIVE | NEGATIVE| ALL}')]
)

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be scanned. Only one 
column is permitted.

LEVEL: Optional. The level of analysis to be performed: document or sentence. The default is 
'document' level.

MODEL: Optional. MODEL can be specified as model pairs, separated by ':'. If MODEL is not 
specified, the opinion word dictionary method will be used. A model pair includes a model type 
and a model file in the format: <model_type>[:model_file]. Note that you must install the 
model file before calling the SQL-MR function.

Supported models include:

• DICTIONARY - use an opinion word dictionary to extract the sentiment

• MAX_ENTROPY - use the maximum entropy classification method to extract the sentiment

SUB_MODEL: Used to filter the objective sentence if needed. The format is same as the format 
for MODEL. Only the MAX_ENTROPY type is supported.

ACCUMULATE: List of columns you want to return in the output table.

HIGH_PRIORITY: Designates the factor that has the highest priority when calculating. This can 
be negative recall, negative precision, positive recall or positive precision. E.g. if negative recall 
has a high priority, the negative results with the lower confidence level are returned also.

FILTER: Optional. Specifies the results that will be returned The default is 'ALL'. The value can 
also be:

• POSITIVE - only results with a positive sentiment are returned

• NEGATIVE - only results with a negative sentiment are returned

• ALL - all results are returned

Input to ExtractSentiment

The input table should contain a text column which contains input text.

Output of ExtractSentiment

The results of the ExtractSentiment function, include:
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• out_content: For document level, NULL will be printed. For sentence level, the sentence 
will be printed.

• out_feature: DOCUMENT or SENTENCE

• out_sentiment: POS, NEG or NEU representing positive, negative or neutral

• out_strength: 1, 2 ... a larger number means a stronger sentiment

Example for ExtractSentiment
This example uses two user reviews of Kindle Fire, from Amazon.

Example Input Data

Create a table of Kindle Fire reviews:

CREATE fact table kindleView(
  id int, content varchar(1024), polarity varchar(3)
  )
  DISTRIBUTE BY HASH(id);

Insert the user review data into the table:

INSERT INTO kindleView values(
  1, 'I just received my Kindle Fire and I love it. I am still learning 
all the features but for me that is part of the fun. I have downloaded 
games, books, music and watched videos just like it advertised. I have 
read a lot of negative articles about the Kindle Fire and its comparison 
to the Nook and the Ipad. I would not trade my Kindle Fire for either of 
those.', 'pos');

INSERT INTO kindleView values(
  2, 'I live in Mongolia and bought Kindle Fire. Now it turns out that 
"due to my geographical location" I can not purchase/ download a single 
application, game, movie... nothing. Nada. The only thing I can do is 
download and read books. I am disapointed.', 'neg');

Example 1 SQL-MR call to ExtractSentiment
SELECT *
FROM ExtractSentiment
(
  ON kindleView
  text_column('content')
  model('dictionary')
  level('document')
);

Table 6-13  Example1 output from ExtractSentiment

Example 2 SQL-MR call to ExtractSentiment
SELECT *
FROM ExtractSentiment
(

out_content out_feature out_polarity out_strength 

DOCUMENT pos 2

DOCUMENT neg 1
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  ON kindleView
  text_column('content')
  model('dictionary')
  level('sentence')
  accumulate('id')
);

Table 6-14  Example 2 output from ExtractSentiment

Errors

Error messages from ExtractSentiment, with explanations:

• If the function is assigned a nonexistent model, the following error message will appear:

SQL-MR function EXTRACTSENTIMENT failed: No model file: ..

• If the model_type of MODEL is assigned a wrong value, the following error message will 
appear:

SQL-MR function EXTRACTSENTIMENT failed: Model_type of MODEL 
argument can be either MAX_ENTROPY or DICTIONARY. Found: ...

• If HIGH_PRIORITY is assigned a wrong value, the following error message will appear:

SQL-MR function EXTRACTSENTIMENT failed: HIGH_PRIORITY argument can 
be NEGATIVE_RECALL, NEGATIVE_PRECISION, POSITIVE_RECALL, POSITIVE_
PRECISION or NONE. Found: ...

• If FILTER is assigned a wrong value, the following error message will appear:

SQL-MR function EXTRACTSENTIMENT failed: FILTER argument can be 
POSITIVE, NEGATIVE or ALL. Found: ...

• If LEVEL is assigned a wrong value, the following error message will appear:

SQL-MR function EXTRACTSENTIMENT failed: LEVEL argument can be 
either DOCUMENT or SENTENCE. Found: ...

id out_content out_feature out_
polarity

out_
strength 

1 I just received my Kindle Fire and I love it. SENTENCE POS 1

1 I am still learning all the features but for me that is 
part of the fun. 

SENTENCE POS 1

1 I have downloaded games, books, music and 
watched videos just like it advertised. 

SENTENCE POS 1

1 I have read a lot of negative articles about the 
Kindle Fire and its comparison to the Nook and the 
Ipad.

SENTENCE NEG 1

1 I would not trade my Kindle Fire for either of 
those. 

SENTENCE NEU 0

2 I live in Mongolia and bought Kindle Fire. SENTENCE NEU 0

2 Now it turns out that "due to my geographical 
location" I can not purchase/ download a single 
application, game, movie... nothing.

SENTENCE NEU 0

2 Nada. SENTENCE NEU 0

2 The only thing I can do is download and read 
books. 

SENTENCE NEU 0

2 I am disappointed. SENTENCE NEG 1
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EvaluateExtractSentiment

Summary

This partition function is used to evaluate the precision and recall of the ExtractSentiment 
function after training a new model or uploading a new sentiment word dictionary.

Background

Sentiment analysis is domain dependent. In other words, a new sentiment classification model or 
domain specific sentiment dictionary may be needed for different uses. After uploading the new 
model file, you can evaluate the model's efficiency by using this function. For basic information 
on precision and recall calculations refer to: http://en.wikipedia.org/wiki/Precision_and_recall

Given the following definitions:

POS_EXPECT = count of expected positive sentiment in test data

NEG_EXPECT = count of expected negative sentiment in test data

NEU_EXPECT = count of expected neutral sentiment in test data

POS_TRUE = count of positive sentiment in predict and its expected is also positive

POS_RETURN = count of positive sentiment in predict, but its expected might be positive, 
negative or neutral.

NEG_TRUE = count of negative sentiment in predict and its expected is also negative

NEG_RETURN = count of negative sentiment in predict, but its expected might be positive, 
negative or neutral.

The precision and recall are calculated as:

Precision of positive sentiment = POS_TRUE / POS_RETURN

Recall of positive sentiment = POS_TRUE / POS_EXPECT

Precision of negative sentiment = NEG_TRUE / NEG_RETURN

Recall of negative sentiment = NEG_TRUE / NEG_EXPECT

Precision of all sentiment = (POS_TRUE + NEG_TRUE) / (POS_RETURN + NEG_RETURN)

Recall of all sentiment = (POS_TRUE + NEG_TRUE) / (POS_EXPECT +NEG_EXPECT)

If there is neutral test data, the formula can be extended following the above definitions.

Syntax of EvaluateExtractSentiment
SELECT * FROM EvaluateExtractSentiment(
  ON {table_name|view_name|(query)}
  EXPECT_COLUMN('expect_column_name')
  RESULT_COLUMN('result_column_name')
  PARTITION BY 1
)

Arguments

EXPECT_COLUMN: Name of the column with the expected polarity POS, NEG or NEU.

RESULT_COLUMN: Name of the column with the result polarity POS, NEG or NEU.

http://en.wikipedia.org/wiki/Precision_and_recall
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Input to EvaluateExtractSentiment

The input table should contain a text column which contains input text.

Output of EvaluateExtractSentiment

The results of the EvaluateExtractSentiment analysis, include:

• out_content: For document level, NULL will be printed. For sentence level, the sentence 
will be printed.

• out_feature: DOCUMENT or SENTENCE

• out_sentiment: POS, NEG or NEU representing positive, negative or neutral

• out_strength: 1, 2 ... a larger number means a stronger sentiment

Example for EvaluateExtractSentiment
Sample Input for this example would be the trained model output by the function 
TrainMeClassifier.

Sample SQL-MR call to EvaluateExtractSentiment
SELECT * FROM EvaluateExtractSentiment(
  ON ExtractSentiment(
    ON pos_train
    text_column('content')
    accumulate('category')
    model('dictionary')
  )
  PARTITION BY 1
  expect_column('category')
  result_column('out_polarity')
);

Table 6-15  Sample output from EvaluateExtractSentiment

Error messages from EvaluateExtractSentiment, with explanations

There are no special errors, other than the Invalid Parameter error.

evaluation_result

positive record (total relevant, relevant, total retrieved): 100 69 96 

recall and precision: 0.69 0.72 

negative record (total relevant, relevant, total retrieved): 100 71 102 

recall and precision: 0.71 0.70

positive and negative record (total relevant, relevant, total retrieved): 200 
140 198

recall and precision: 0.70 0.71 
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TrainMeClassifier

Summary

TrainMeClassifier is a reduce function to train a maximum entropy classifier for sentiment 
analysis. The training result will be saved as a file, and then may be installed into Aster 
Database. The function has to run using PARTITION by 1. 

Background

More information on maximum entropy please refer to the wiki entry at: 
http://en.wikipedia.org/wiki/Maximum_entropy_method

Syntax of TrainMeClassifier
SELECT *
FROM TrainMeClassifier
(
    ON {table_name|view_name|(query)}
    PARTITION BY 1
    [TEXT_COLUMN('text_column_name')]
    [CATEGORY_COLUMN('category_column_name')]
    CATEGORIES('category_type [, ...]')
    MODEL_FILE('model_name’)
    [SUB_MODEL('model_type[:model_file]')]
    [DOMAIN('host_ip')]
    [DATABASE('database_name')]
    [USERID('db_user')]
    PASSWORD('password')
)

Arguments

TEXT_COLUMN: Required. The name of the column whose content will be scanned. Only one 
column is permitted. If not specified, the default, “content”, will be used.

CATEGORY_COLUMN: Required. The name of the column whose contents is the category types 
to be trained. If not specified, the default, “category” will be used.

CATEGORIES: Required. The categories to be trained e.g. pos, neg. The categories are values of 
CATEGORY_COLUMN.

MODEL_FILE: Required. The name of the data model file to be generated.

SUB_MODEL: Used to filter the objective sentence, if needed. The format is the same as 
MODEL. Only the MAX_ENTROPY type is supported.

DOMAIN: Optional. IP address of the queen node. The default domain is the queen in the current 
cluster.

DATABASE: Optional. This is the name of the database where the input table is present. The 
default database is beehive.

USERID: Optional. The Aster Database user name of the user. The default userid is beehive.

PASSWORD: Required. The Aster Database password of the database user.

http://en.wikipedia.org/wiki/Maximum_entropy_method
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Input to TrainMeClassifier

Because TrainMeClassifier is a training program, the content column and category should be 
specified. Also the database information is required in order to install the output model.

Output of TrainMeClassifier

The output model with the name “model_name” will be installed in the database.

Example for TrainMeClassifier

Example Input Data

Create a fact table to hold the data to use to train the model:

CREATE FACT TABLE pos_train(
  id int, 
  category varchar(10), 
  content varchar(15000)
) DISTRIBUTE BY HASH(id);

Insert the data into the table:

INSERT INTO pos_train VALUES(1, 'pos', 'content1');

INSERT INTO pos_train VALUES(1, 'pos', 'content2');

Sample SQL-MR call to TrainMeClassifier
SELECT *
FROM TrainMeClassifier(
  ON (select * from pos_train where mod(id, 2)=0)
  PARTITION BY 1
  text_column('content')
  category_column('category')
  categories('pos','neg')
  model_file('model1.bin')
  DATABASE('***')
  USERID('***')
  PASSWORD('***')
);

Table 6-16  Sample output from TrainMeClassifier

Error messages from TrainMeClassifier, with explanations
• If the model is assigned a nonexistent model, the following error message will appear:

ERROR: SQL-MR function TRAINMECLASSIFIER failed: No model file: ...

• If the model_type of sub_model is not assigned MAX_ENTROPY, the following error 
message will appear:

ERROR: SQL-MR function TRAINMECLASSIFIER failed: Model_type of SUB_
MODEL argument only can be MAX_ENTROPY. Found: ...

train_result

Model generated. 

Model successfully installed 
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7

Cluster Analysis

In this section we describe:

• “k-Means” on page 111

• “kmeansplot” on page 115

• “Minhash” on page 117

• “Canopy” on page 122

k-Means

Summary
K-means is one of the simplest unsupervised learning algorithms that solve the well-known 
clustering problem. The procedure follows a simple and easy way to classify a given data set 
through a certain number of clusters (assume k clusters) fixed a priori. The main idea is to define 
k centroids, one for each cluster. This algorithm aims at minimizing an objective function, in this 
case a squared error function. The objective function, which is a chosen distance measure 
between a data point and the cluster center, is an indicator of the distance of the n data points 
from their respective cluster centers.

The algorithm is composed of the following steps:

1. Place k points into the space represented by the objects that are being clustered. These points 
represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the k centroids.

4. Repeat steps 2 and 3 until the centroids no longer move. This produces a separation of the 
objects into groups from which the metric to be minimized can be calculated.

Although it can be proved that the procedure will always terminate, the k-means algorithm does 
not necessarily find the most optimal configuration, corresponding to the global objective 
function minimum. The algorithm is also significantly sensitive to the initial randomly selected 
cluster centers. The k-means algorithm can be run multiple times to reduce this effect.

Background
The k-means algorithm in map-reduce consists of an iteration (until convergence) of a map and a 
reduce step. The map step assigns each point to a cluster. The reduce step takes all the points in 
each cluster and calculates the new centroid of the cluster.
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Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• kmeans

• kmeansmap

• kmeansreduce

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax
SELECT *
  FROM kmeans
   (
    ON (SELECT 1)
    PARTITION BY 1
   [DOMAIN('host_ip')]
   [DATABASE('database_name')]
   [USERID('db_user')]
   [PASSWORD('password')]
    INPUTTABLE('input_table_name')
    OUTPUTTABLE('output_table_name')
    NUMBERK(number_of_means)
   [MEANS(starting_clusters)]
    THRESHOLD(threshold)
    MAXITERNUM(max_iterations)
   );

Arguments
DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address 
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for 
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the 
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default 
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default 
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user.

INPUTTABLE: Required. Input table is the table containing the list of features by which we are 
clustering the data.

OUTPUTTABLE: Required. Output table is the table where output is stored. The output table 
contains the centroids of the clusters.

NUMBERK: Required if means is not present. Specifies the number of clusters to generate from 
the data.

MEANS: Required if NUMBERK is not present. Specifies the list of initial seed means 
(otherwise, a random choice is made as specified in algorithm description). Must be provided as 
strings of underscore delimited (_) double values, e.g.:



Aster Data proprietary and confidential k-Means

March 21, 2012 Cluster Analysis 113

    means('50_50_50_50_50_50_50_50',
    '150_150_150_150_150_150_150_150',
    '250_250_250_250_250_250_250_250',
    '350_350_350_350_350_350_350_350',
    '450_450_450_450_450_450_450_450',
    '550_550_550_550_550_550_550_550',
    '650_650_650_650_650_650_650_650',
    '750_750_750_750_750_750_750_750')

The example argument clause shown above will initialize eight clusters in eight-dimensional 
space. The dimensionality of the means MUST match the dimensionality of the data (i.e. each 
mean must have n numbers in it, where n is the number of columns minus one).

THRESHOLD: Optional. This is the convergence threshold. When the centroids move by less 
than this amount, the algorithm has converged. Default value is 0.0395.

MAXITERNUM: Optional. This is the maximum number of iterations that the algorithm will run 
before quitting if the convergence threshold has not been met. Default value is 10.

Input Data

This algorithm clusters n-dimensional numeric data (with n assumed to be the number of 
columns in the input data minus the first column, which is assumed to be the userid/itemid). For 
example, if the required application is the clustering of points by latitude/longitude on the Earth's 
surface, each row would have three columns: the point-id, the latitude, and the longitude. 
Clustering would be performed on the latitude and longitude columns. The dimensionality n of 
the data is not specified as an argument, but implicitly derived from the data.

Output

The kmeans function outputs a message to the screen informing the user whether the function 
converged or not, with some additional information (see example below). The function also 
creates a table, whose name you specified in the OUTPUTTABLE argument, where it stores the 
centroids. The name of the centroids table is also given in the output to the screen.

Example

Example Input Data

The sample table kmeanssample contains:

• idnum [int]

• point1 [real]

• point2 [real]

• point3 [real]

• point4 [real]

• point5 [real]

Table 7-1  Example Input Data, table kmeanssample

id point1 point2 point3 point4 point5

1 16.21 9.07 6.19 20.93 8.74

2 18.09 14.05 10.86 6.56 11.35
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Example SQL-M R Call

The following call will attempt to group the above 5-dimensional data points into 3 clusters:

SELECT *
FROM kmeans (
    ON (SELECT 1)
    PARTITION BY 1
    database('beehive')
    userid('beehive')
    password('beehive')
    inputTable('kmeanssample')
    outputTable('kmeanssample_centroid')
    numberK('3')
    threshold('0.01')
    maxIterNum('10')
);

Example Output

from kMeans

Table 7-2  Example Output to Screen from kMeans

You may then do a SELECT from the kmeanssample_centroid table to view the centroids:

select * from kmeanssample_centroid;

shows the results:

3 15.56 16.61 12.30 17.11 20.54

4 13.85 6.94 17.68 14.20 20.96

5 20.19 13.77 -0.85 16.94 2.16

6 -7.86 -8.08 -4.47 -15.09 -7.11

7 -7.17 -7.89 -9.07 -8.26 -11.86

8 -7.87 -6.286 -4.21 -10.03 -14.25

9 -4.71 -10.00 -5.21 -6.31 -2.45

10 2.13 2.99 -13.33 -11.49 -9.35

11 0.96 1.18 -0.35 1.25 -0.31

12 2.72 2.08 0.12 -1.48 1.58

13 -3.70 -0.10 -1.91 0.21 1.12

14 -1.09 -3.09 1.58 -0.77 1.47

15 2.74 -0.05 -1.87 2.58 -1.96

message

Successful!

Algorithm converged.

Iterations: 0.

The final means are stored in the table kmeanssample_centroid, and you can use kmeansplot to 
assign the point to its nearest centroid.
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Table 7-3  Example Centroid Table from kMeans

Then you may use the kmeansplot function to assign old and/or new data points to the centroids 
that were output by the kmeans function. Note that the centroids output may be different for 
several runs through the function, because the initial centroids used are picked randomly.

Error Messages
If the dimensionality of the MEANS argument is different from the dimensionality of the input 
data, the following error message will appear:

• ERROR: SQL-MapReduce function KMEANS failed: Each mean should be of 
dimension [num_dimensions]

kmeansplot

Summary
After using the k-Means function to obtain the centroids (train the model), you may want to use 
the model to cluster new data points to these cluster centroids. The kmeansplot function enables 
you to do that.

Usage

Permissions

You must grant EXECUTE on the function “kmeansplot” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM kmeansplot (
    ON {input_table | query | view}
    [ DOMAIN('host_ip') ]
    [ DATABASE('db_name') ]
    [ USERID('user_id') ]
    PASSWORD('password')
    CENTROIDSTABLE('centroids_table')
);

clusterid means

0 18.1633 12.2967 5.4 14.81 7.41667

2 -2.385 -2.9246 -3.872 -4.939 -4.312

1 14.705 11.775 14.99 15.655 20.75
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Arguments

DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address 
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for 
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the 
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default 
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default 
USERID is “beehive”.

PASSWORD: Required. The Aster database password of the user.

INPUTTABLE: Required. The table containing the new/old data points to be clustered.

CENTROIDSTABLE: Required. The table which contains the centroids trained, from the kmeans 
function.

Example

Example Input

Table 7-4  Example Input, table kmeanssample

Table 7-5  Example Centroid Table from kMeans

id point1 point2 point3 point4 point5

1 16.21 9.07 6.19 20.93 8.74

2 18.09 14.05 10.86 6.56 11.35

3 15.56  16.61 12.30 17.11 20.54

4 13.85 6.94 17.68 14.20 20.96

5 20.19 13.77 -0.85 16.94 2.16

6 -7.86 -8.08 -4.47 -15.09 -7.11

7 -7.17 -7.89 -9.07 -8.26 -11.86

8 -7.87 -6.286 -4.21 -10.03 -14.25

9 -4.71 -10.00 -5.21 -6.31 -2.45

10 2.13 2.99 -13.33 -11.49 -9.35

11 0.96 1.18 -0.35 1.25  -0.31

12 2.72 2.08 0.12 -1.48 1.58

13 -3.70 -0.10 -1.91 0.21 1.12

14 -1.09 -3.09 1.58 -0.77 1.47

15 2.74 -0.05 -1.87 2.58 -1.96

clusterid means

0 0.326 0.00399999 -0.486 0.358 0.38

2 16.78 12.088 9.236 15.148 12.75



Aster Data proprietary and confidential Minhash

March 21, 2012 Cluster Analysis 117

Example SQL-MapReduce Call
SELECT *
FROM kmeansplot (
    ON kmeanssample
    database('beehive')
    userid('beehive')
    password('beehive')
    centroidsTable('kmeanssample_centroid')
)
ORDER BY clusterid, id;

Example Output from kmeansplot

Table 7-6  Example Output from kmeansplot

Minhash

Summary
Association analysis, clustering, and the detection of similarity between items using various 
metrics are frequently required in data analysis, particularly over large transactional data sets. 
Clustering algorithms such as the k-means algorithm and canopy partitioning perform well with 
physical data, but grouping items based on transaction history often requires less restrictive 

1 -5.096 -5.8532 -7.258 -10.236 -9.004

id clusterid point1 point2 point3 point4 point5

1 0 16.21 9.07 6.19 20.93 8.74

2 0 18.09 14.05 10.86 6.56 11.35

5 0 20.19 13.77 -0.85 16.94 2.16

3 1 15.56  16.61 12.30 17.11 20.54

4 1 13.85 6.94 17.68 14.20 20.96

6 2 -7.86 -8.08 -4.47 -15.09 -7.11

7 2 -7.17 -7.89 -9.07 -8.26 -11.86

8 2 -7.87 -6.286 -4.21 -10.03 -14.25

9 2 -4.71 -10.00 -5.21 -6.31 -2.45

10 2 2.13 2.99 -13.33 -11.49 -9.35

11 2 0.96 1.18 -0.35 1.25  -0.31

12 2 2.72 2.08 0.12 -1.48 1.58

13 2 -3.70 -0.10 -1.91 0.21 1.12

14 2 -1.09 -3.09 1.58 -0.77 1.47

15 2 2.74 -0.05 -1.87 2.58 -1.96

clusterid means
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forms of analysis. Locality-sensitive hashing, commonly known as "minhash", is a particularly 
effective way of grouping items together based on a Jaccard metric of similarity. 

For example, we can declare two items to be similar because they are frequently placed in the 
same shopping basket by customers. Following this approach, we can use minhash to analyze 
transaction data and identify clusters of "similar" items frequently bought together in a 
transaction. Alternatively, we might analyze the same transaction data and generate clusters of 
"similar" users based on the items they bought. 

Background
Minhash is a probabilistic clustering method that assigns a pair of users to the same cluster with 
probability proportional to the overlap between the set of items that these users have bought (this 
relationship between users and items mimics various other transactional models). Each user u 
(who is a member of set U) is represented by a set of items that he has bought. The similarity 
between two users ui and uj is defined as the overlap between their item sets, given by the 
intersection of the item sets divided by the union of the item sets – commonly known as the 
"Jaccard coefficient" or "Jaccard metric."

This similarity measure admits a locality-sensitive hashing scheme called minhash, which 
calculates one or more IDs for each user as the hash value (s) of a randomly chosen item from a 
permutation of the set of items that the user has bought. The probability that two users will be 
hashed to the same ID is exactly equal to their Jaccard coefficient S, as long as a class of 
universal hashing functions is used. To take this hashing scheme one step further, concatenating 
p hash-values (multiple hash values would be generated by hashing a random item from the item 
set with multiple hash functions) together as a distinct ID for each user makes the probability that 
any two users will agree on this concatenated hash key equivalent to Sp. 

If each user is assigned to several ids, the odds of a collision with another id of a similar user 
increase. Thus, the minhash algorithm uses several hash functions, hashes a "randomly selected 
item" from the item set of each user (in this case the item that produces the minimum hash value 
for a particular hash function, hence the name of the algorithm) with each one of them, and 
concatenates groups of p hash values together to produce an ID, providing several ids for each 
user. Hence the number of key groups (p) must be a divisor of the total number of hash functions. 
Collisions between cluster ids lead to effective clustering. 

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• minhash

• minhashclean

• minhashmap

• minhashreduce

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax
SELECT *
FROM minhash (
  ON (SELECT 1)
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  PARTITION BY 1
  [DOMAIN('host_ip')]
  [DATABASE('db_name')]
  [USERID('user_id')]
  PASSWORD('password')
  INPUTTABLE('input_table_name')
  OUTPUTTABLE('output_table_name')
  COLUMNNAME('column_to_be_clustered')
  [SEEDTABLE('seed_table_to_use')]
  [SAVESEEDTO('seed_table_to_save')]
  NUMHASHFUNCTIONS('hash_function_number')
  KEYGROUPS('key_group_number')
  [HASH_INPUT_TYPE('bigint'|'integer'|'string'|'hex')]
  [MINCLUSTERSIZE('minimum_cluster_size')]
  [MAXCLUSTERSIZE('maximum_cluster_size')]
);

Arguments

DOMAIN: Optional. IP address of the queen node. Default domain is queen of the current cluster.

DATABASE: Optional. This is the name of the database where the input table is present. Default 
database is beehive.

USERID: Optional. The Aster Database user name of the user. Default userid is beehive.

PASSWORD: Required. The Aster Database password of the user.

INPUTTABLE: Required. The name of the input table. Typically it has a 'user' column and an 
'items' column.

OUTPUTTABLE: Required. The name of the output table. This table is used to store the results.

COLUMNNAME: Required. The name of the input column whose values you want to hash into 
the same cluster.

SEEDTABLE: Optional. The name of the seed table whose seeds will be used for hashing. To 
specify this argument, the table must already exist in the database. This table is usually created 
from a previous run of the minhash function as specified in the 'SAVESEEDTO' argument.

SAVESEEDTO: Optional. The name of the table where the seeds are to be saved. You can specify 
this table name to save the randomly generated seeds from the current minhash run.

NUMHASHFUNCTIONS: Required. The calculation of the Jaccard metric (a measure of 
similarity between various items or user ids based upon the list of users or items, respectively, 
associated with them in the transaction data) involves hashing the entire list with several hash 
functions to calculate the minimum hash value over the list for each function. The number of 
hash functions to generate often determines the number of clusters generated as well as the size 
of the clusters generated. To find very weak similarities or relationships between various users or 
items, a large number of hash functions must be used.

KEYGROUPS: Required. The number of hash functions divided by the number of key groups 
must be an integer. A unique cluster id is generated by concatenating KEYGROUPS hashcodes 
together. A larger number of keygroups lessens the probability of collisions (hashing into the 
same bucket) and stunts the growth of clusters.

HASH_INPUT_TYPE: Optional. The input format for the list of associated items or users to be 
hashed. Accepts "bigint", "integer", "hex", and "string" formats.

MINCLUSTERSIZE: Optional. Specifies the minimum number of items or users that may be 
considered to constitute a cluster. Default value is 3.
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MAXCLUSTERSIZE: Optional. Specifies the maximum size of the clusters that are under 
consideration. Default value is 5.

Example

Example Input Data

Input table minhash_test contains the columns, user [int], items [varchar]

Table 7-7  Example Input Data, table minhash_test

Example SQL-MapReduce call

SELECT *
FROM minhash (
  ON (SELECT 1)
  PARTITION BY 1
  DATABASE('beehive')
  USERID('beehive')
  PASSWORD('beehive')
  INPUTTABLE('minhash_test')
  OUTPUTTABLE('minhashoutput')
  COLUMNNAME('user_id')
  NUMHASHFUNCTIONS('1002')
  KEYGROUPS('3')
  HASH_INPUT_TYPE('integer')
  MINCLUSTERSIZE('3')
  MAXCLUSTERSIZE('5')
);

Example Output from Minhash

The following output is displayed on screen:

user_id items 

8 2 3 4 

7 1 2 3 6 78 

4 1 2 9 10 11 

2 1 2 3 8 4 9 

11 1 2 3 4 5 6 

5 4 7 8 9 15 

9 1 5 9 13 15 

1 1 2 3 4 5 6 

10 1 2 4 5 6 

10 1 2 3 4 5 6 

6 23 1 2 3 4 

3 1 3 4 5 7 6 

12 9 10 11 12 13 
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Table 7-8  Example Output from Minhash: screen output

The following output is saved in the ‘minhashoutput’ table. Each output row from the example 
consists of the clusterid with its space-delimited list of userids (from the left column of the input 
table) in the cluster.

Table 7-9  Example Output from Minhash: minhashoutput table

Error Messages
You may encounter these error messages:

• ERROR: “numHashfunctions must be divisible by keyGroups.”

• ERROR: “Please input integer cluster sizes.”

• ERROR: "SQL-MR function MINHASHMAP requires argument clause: SEEDS"

message

Successful.

Table ‘minhashoutput’ created.

clusterid userids 

974218441016936782367763 1 10 11 2 6 

143384791367401250180074909 1 10 11 8 

681021588192622463162908833 1 10 11 3 

1001552646572334224993302 12 2 4 5 9 

589030277972984340180252 2 6 7 8 

13684170216523129206410603 1 10 11 6 

10515245366345387738456351 1 10 11 

130173924309075045247022973 1 10 11 6 8 

26470825310212111260206159 12 4 5 9 

25782908913730293866696968 6 7 8 

24150985351188592224284381 1 10 11 7 

282019198130576283159364554 1 10 11 3 9 

33330999977481255356038688 2 6 8 

17182392221929742635587268 1 10 11 2 3 

3288334061546975642877631 1 10 11 2 8 

1626883175838474250742347 1 10 11 3 7 

106239203395173444205321496 1 10 11 2 7 

1270581351223266662755940 1 10 11 3 6 

495150481277196637263480662 1 10 11 6 7 

62454809812098654140821087 1 10 11 2 

158370363373915364183435051 2 6 7 



Canopy  Aster Data proprietary and confidential

122 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Canopy

Introduction
Canopy clustering is a very simple, fast, and surprisingly accurate method for grouping objects 
into preliminary clusters. Each object is represented as a point in a multidimensional feature 
space.

The algorithm uses a fast approximate distance metric and two distance thresholds, T1 > T2, for 
processing. The basic algorithm begins with a set of points and identifies each point with one or 
more canopies – groups of interrelated, "close", or "similar" points. Any point can belong to 
more than one canopy (so long as the distance from the canopy center to the point is < T1), and 
thus judicious selection of canopy centers (with none being less than T2 apart from the next) and 
the points in a canopy allow for more efficient execution of clustering algorithms, which are 
often called within canopies.

Canopy clustering is often used as an initial step in more rigorous clustering techniques, such as 
k-means clustering. By starting with an initial partitioning into canopies, the number of more 
expensive distance measurements can be significantly reduced by ignoring points outside of the 
initial canopies. Also, after the initial step divides points into their respective canopies, the 
second step need only perform intra-canopy clustering, which can be parallelized. In other 
words, points that do not belong to the same canopy do not have to be considered at the same 
time in the clustering process.

Background
The processing is done in three map-reduce steps:

1. Each mapper performs canopy clustering on the points in its input set and outputs its 
canopies' centers (these canopies are obviously local to the mapper)

2. The reducer takes all the points in each (local) canopy and calculates centroids to produce 
the final canopy centers.

3. The final canopy centers are processed to eliminate centers that are too close to each other 
(to eliminate the effects of earlier localization).

A driver is provided that extracts information from the initial canopy generation step and uses it 
to make another SQL-MapReduce call that finishes the clustering process.

Installation
See “Installing Aster Database’s Driver-Based Analytical Functions” on page 9.

Driver Usage
java -classpath canopydriver.jar:<classpath to file>
  -database=<database>
  -inputtable=<inputtable>
  -outputtable=<outputtable>
  -t1=<t1>
  -t2=<t2>
  -userid=<userid>
  -password=<password>
  -domain=<domain>
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Arguments
T1: Required. This specifies the maximum distance that any point could be from a canopy center 
to be considered part of that canopy.

T2: Required. The minimum distance that two canopy centers must be apart from each other.

Example

Example Input Data

Table 7-10  Example Input Data for Canopy

Example Query

For clarity, we have placed line breaks before each argument below. In actual usage, you would 
type all the arguments on a single line.

java 
  -classpath canopyDriver.jar:<classpath to file> 
  -database=beehive 
  -inputtable=canopyinput 
  -outputtable=canopyoutput 
  -t1=2 
  -t2=1 
  -userid=beehive 
  -password=beehive 
  -domain=192.168.75.100

Example Output

These are the canopy centers.

Table 7-11  Example Output from Canopy

userid point1 point2 point3 point4

7 5 4.2 3.1 2

4 4 1.2 2.1 2.3

2 1.7 1.7 2.6 2.49

5 1.2 1.2 3.1 1

1 1.2 1.2 2.1 2

6 1.2 2.1 2.1 2

3 2 6 3.5 2

canopyid point1 point2 point3 point4

2 2 6 3.5 2

4 1.325 1.55 2.475 1.8725

1 4 1.2 2.1 2.3

3 5 4.2 3.1 2



Canopy  Aster Data proprietary and confidential

124 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Error Messages
You may encounter the following types of errors when you run the canopy function:

• ERROR: T1 < T2. This is impossible, and will result in empty 
clusters.

• ERROR: T1 or T2 cannot be parsed as numbers.

• ERROR: The input format must be userid, and then a n-tuple of 
doubles.
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8

Naive Bayes

What is Naive Bayes?
This is a set of functions to train a Naive Bayes classification model. The Naive Bayes algorithm 
is very simple, yet surprisingly effective. A training data set (for which we know discrete 
outcomes and either discrete or continuous input variables) is used to generate the model. The 
model is then used to predict the outcome of future observations, based on their input variables.

There are two main components to the Naive Bayes model: 

• Bayes' Theorem

Bayes' theorem is a classical law, stating that the probability of observing an outcome given 
the data is proportional to the probability of observing the data given the outcome, times the 
prior probability of the outcome. 

• the “naive” probability model

The naive probability model is the assumption that the input data are independent of one 
another, and conditional on the outcome. This is a very strong assumption, and never true in 
real life, but it makes computation of all model parameters extremely simple, and violating 
the assumption does not hurt the model much.

Naive Bayes Syntax and Semantics
The classifier consists of 2 functions: naiveBayesMap and naiveBayesReduce. They are used to 
generate a model from training data.

Permissions
You must grant EXECUTE on the following functions to the database user who will run them:

• naiveBayesReduce

• naiveBayesMap

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the 
Aster Database User’s Guide.

Syntax
CREATE TABLE model_table_name (PARTITION KEY(column_name)) AS
SELECT * FROM naiveBayesReduce(
  ON(
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    SELECT * FROM naiveBayesMap(
      ON input_table
      RESPONSE( 'response_column' )
      NUMERICINPUTS( 'numeric_input_columns' )
      CATEGORICALINPUTS( 'categorical_input_columns' )
    )
  )
  PARTITION BY column_name
);

Arguments
RESPONSE: Required. The name of the column which contains the response variable. It should 
be of type varchar, boolean, or integer.

NUMERICINPUTS: At least one of the 'NUMERICINPUTS' and the 'CATEGORICALINPUTS' 
arguments should be specified. Any column(s) specified for 'NUMERICINPUTS' must contain 
numeric values. The user can either explicitly list the names of the numeric columns which will 
be included in the model, e.g., numericinputs('input1','input2', ...), or specify a range of numeric 
columns, e.g., numericinputs('[4:33]'), or some combination of the above, e.g., 
numericinputs('input1','[4:21]','[25:53]','input73'). Ranges are specified with the following 
syntax: "[<start_column>:<end_column>]", with the column index starting from 0. 

CATEGORICALINPUTS: At least one of the 'NUMERICINPUTS' and the 
'CATEGORICALINPUTS' arguments should be specified. This argument is similar to the 
'NUMERICINPUTS' argument, but the column(s) specified for 'CATEGORICALINPUTS' must 
be varchar or integer.

Naive Bayes Examples

Example Input Data

Table 8-1  Example Input, table nb_samples_stolenCars

id year color type origin stolen

1 1 Red Sports Domestic Yes

2 8 Red Sports Domestic No

3 2 Red Sports Domestic Yes

4 9 Yellow Sports Domestic No

5 3 Yellow Sports Imported Yes

6 10 Yellow SUV Imported No

7 4 Yellow SUV Imported Yes

8 11 Yellow SUV Domestic No

9 12 Red SUV Imported No

10 5 Red Sports Imported Yes
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Example SQL-MapReduce call
CREATE TABLE nb_stolenCars_model (PARTITION KEY(class)) AS
SELECT * FROM naiveBayesReduce(
  ON(
    SELECT * FROM naiveBayesMap(
      ON nb_samples_stolenCars
      RESPONSE('stolen')
      NUMERICINPUTS('year')
      CATEGORICALINPUTS('[2:4]')
    )
  )
  PARTITION BY class
);

Example Output of Naive Bayes

Table 8-2  Example Output: nb_stolencars_model

class variable type category cnt sum sumSq totalCnt

Yes color CATEGORICAL red 3 20

Yes color CATEGORICAL yellow 2 20

Yes origin CATEGORICAL domestic 2 20

Yes origin CATEGORICAL imported 3 20

Yes year NUMERIC 5 15 55 20

Yes type CATEGORICAL suv 1 20

Yes type CATEGORICAL sports 4 20

No color CATEGORICAL red 2 20

No color CATEGORICAL yellow 3 20

No origin CATEGORICAL domestic 3 20

No origin CATEGORICAL imported 2 20

No year NUMERIC 5 50 510 20

No type CATEGORICAL suv 3 20

No type CATEGORICAL sports 2 20
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9

Decision Trees

Summary
A suite of functions to create a predictive model based on a combination of the CART algorithm 
for training decision trees, and the ensemble learning method of bagging.

Background
Decision trees are a common procedure used in data mining and supervised learning because of 
their robustness to many of the problems of real world data, such as missing values, irrelevant 
variables, outliers in input variables, and variable scalings. The algorithm is an "off-the-shelf" 
procedure, with few parameters to tune.

This function implements an algorithm for decision tree training and prediction based on 
Classification and Regression Trees by Breiman, Friedman, Olshen and Stone (1984). The 
function supports the following predictive models:

• Regression problems (continuous response variable) are when the predicted outcome from 
the data is a real number (e.g. the dollar amount of insurance claims per year, or the GPA 
expected for a college student).

• Multiclass Classification (classification tree analysis) where a number of classes is provided 
and the model predicts which class the data will belong to.

• Binary classification (binary response variable) where the outcome can be represented as a 
binary value (true/false, yes/no, 0/1).

Usage
These functions can be used to create a regression model with which we can predict an outcome 
based on a set of input variables. When constructing the tree, splitting of branches stops when 
any of the stopping criteria described below is met.

The Decision Tree functions are:

• forest_drive is used to build the predictive model.

• forest_predict is used to generate predictions on a new set of data, using the model generated 
by forest_drive. Alternatively, you can install a model that has been developed previously, 
and allow forest_predict to generate predictions based upon it. 

• forest_analyze is used to perform analysis of the structure of the model.
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This section describes the syntax, as well as the parameter options, data types, and expected 
input/output for these functions.

forest_drive
The forest_drive function takes a training set of data and generates a predictive model.

Syntax for forest_drive
SELECT * FROM forest_drive(
   ON (SELECT 1)
   PARTITION BY 1

   [ DOMAIN( host:port ) ]
   DATABASE( database )
   USERID( user_id )
   PASSWORD( password )

   INPUTTABLE( input_table_name )
   OUTPUTTABLE( output_table_name )

   RESPONSE( response_column )
   NUMERICINPUTS( numeric_input_columns )
   CATEGORICALINPUTS( categorical_input_columns )

   [ NUMTREES( number_of_trees ) ]
   [ TREESIZE( tree_size ) ]
   [ MINNODESIZE( min_node_size ) ]
   [ VARIANCE( variance ) ]
   [ MAXDEPTH( max_depth ) ]
   [ NUMSURROGATES( num_surrogates ) ]
)

Arguments for forest_drive
DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address 
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for 
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the 
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default 
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default 
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user.

INPUTTABLE: Required. The name of the table containing the input data set.

OUTPUTTABLE: Required. The name of the table to store the predictive model generated from 
the function.

RESPONSE: Required. The name of the column containing the response variable (i.e., the 
quantity we are trying to predict). This must be a numeric value.

NUMERICINPUTS: Either NUMERICINPUTS or CATEGORICALINPUTS is required. The 
columns containing the numeric predictor variables. The user can either explicitly list all the 
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names, e.g., NUMERICINPUTS('input-col-1','input-col-2', ... ), or specify a range 
of columns, e.g., NUMERICINPUTS('[4:33]'), or some combination of the above, e.g., 
NUMERICINPUTS('input-col-1','[4:21]','[25:53]','input-col-73'). Ranges are 
specified with the following syntax: [start_column:end_column] where start_column and 
end_column are the starting and ending column count numbers of the range (inclusive). Each 
count number is the column’s rank in a left-to-right ranking with “1” as the leftmost column. 
Each column referred to in NUMERICINPUTS must contain only numeric values.

CATEGORICALINPUTS: Either NUMERICINPUTS or CATEGORICALINPUTS is required. 
The columns containing the categorical predictor variables. Data is input in the same way as in 
the NUMERICINPUTS clause. These columns can contain either numeric or varchar values.

NUMTREES: Optional. The number of trees to grow in the forest model. If not specified, the 
function will make an estimate and build the minimum number of trees such that the input 
dataset receives full coverage.

TREESIZE: Optional. The number of rows each tree uses as its input data set. If not specified, the 
function will make an estimate and build a tree using the minimum of (a) the number of rows on 
a v-worker, or (b) the number of rows that fit into the v-worker’s memory.

MINNODESIZE: Optional. Decision tree stopping criterion. The minimum size of any particular 
node within each decision tree. Default is 1.

VARIANCE: Optional. Decision tree stopping criterion. If the variance within any particular node 
dips below this value, the algorithm stops looking for splits in the branch. Default is 0.

MAXDEPTH: Optional. Decision tree stopping criterion. If the tree reaches a depth past this 
value, the algorithm stops looking for splits. Decision trees can grow up to (2^(MAXDEPTH+1) 
- 1) nodes. Of all the stopping criteria, this has the greatest effect on the performance of the 
function. Default is 12.

NUMSURROGATES: Optional. Number of surrogate splits to keep for each node. Surrogate 
splits direct an observation to the branch of the tree it should follow if the observation has 
missing values for variables that are used in splits. Default is 0.

Input to forest_drive
Input table containing the response variable and predictor variables.

Output from forest_drive
The table specified in the OUTPUTTABLE clause will be written with the decision forest grown 
by the function. IMPORTANT! Please note that if a table with this name exists already, that table 
will be dropped.

forest_predict
The forest_predict function uses the model built by the forest_drive function to generate 
predictions on a response variable for a test set of data.

Syntax of forest_predict
SELECT * 
  FROM forest_predict
   (
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    ON {table_name|view_name|(query)}
   [DOMAIN( host:port )]
    DATABASE( database_name )
    USERID( user_id )
    PASSWORD( password )
    MODELFILE( model_file )
    FOREST( model_table )
    NUMERICINPUTS( numeric_inputs )
    CATEGORICALINPUTS( categorical_inputs )
    IDCOL( id_column )
   )

Arguments for forest_predict
DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address 
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for 
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the 
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default 
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default 
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user.

MODELFILE: Either MODELFILE or FOREST must be specified. The name of the file 
containing the previously trained model to apply. Note that this model must have been installed 
previously using the ACT \install command (See “Installed-function and installed-file 
management commands in ACT” on page 89).

FOREST: Either MODELFILE or FOREST must be specified. The name of the table containing 
the decision forest generated by the forest_drive function.

NUMERICINPUTS: Either NUMERICINPUTS or CATEGORICALINPUTS must be specified. 
The columns containing the numeric predictor variables. The user can either explicitly list all the 
names, e.g., NUMERICINPUTS('input-col-1','input-col-2', ... ), or specify a range 
of columns, e.g., NUMERICINPUTS('[4:33]'), or some combination of the above, e.g., 
NUMERICINPUTS('input-col-1',[4:21],[25:53],'input-col-73'). Ranges are 
specified with the following syntax: [start_column:end_column] where start_column and 
end_column are the starting and ending column count numbers of the range (inclusive). Each 
count number is the column’s rank in a left-to-right ranking with “1” as the leftmost column. 
Each column referred to in NUMERICINPUTS must contain only numeric values.

CATEGORICALINPUTS: Either NUMERICINPUTS or CATEGORICALINPUTS must be 
specified. The columns containing the categorical predictor variables. Data is input in the same 
way as in the NUMERICINPUTS clause. These columns can contain either numeric or varchar 
values.

IDCOL: Required. A column containing a unique identifier for each test point in the test set.

Input to forest_predict
The input table should contain an id column (e.g., user_id, transaction_id), so each test point can 
be associated with a prediction. It should also contain all columns listed in the 
NUMERICINPUTS clause (must be numeric), and all columns listed in the 
CATEGORICALINPUTS clause (can either be numeric or varchar).



Aster Data proprietary and confidential forest_predict

March 21, 2012 Decision Trees 133

To upload a model generated outside of your Aster database, use the /install command in 
ACT “Installed-function and installed-file management commands in ACT” on page 89. The 
model can be a plain text file or a ZIP file. Specify the model file using the MODELFILE 
argument when calling the function.

Output from forest_predict
The output table is a set of predictions for each test point.

TEST_ID: The unique identifier of a test point.

PREDICTION: The predicted value of the test point, as generated by the model.

Example
In the following example, we will showcase the use of decision trees to predict the number of 
pageviews for Wikipedia articles.

Example Input Data

Table 9-1  Example Input Data, table wikilogs

We will use hour, projectcode, bytes (bytes transmitted) and len_name (length of pagename 
field) to try and predict the number of pageviews. We will consider projectcode and hour as 
categorical variables, and len_name and bytes as numeric variables.

Example SQL-MapReduce call
SELECT * 
  FROM forest_drive
   (
    ON (SELECT 1)
    PARTITION BY 1

    DATABASE('wikilogs')
    USERID('beehive')
    PASSWORD('beehive')

    INPUTTABLE('wikilogs')
    OUTPUTTABLE('wikilogs_forest')

    RESPONSE('pageviews')
    NUMERICINPUTS('bytes','len_name')
    CATEGORICALINPUTS('hour','projectcode')
   );

date hour projectcode pagename len_
name 

bytes pageviews

2008-11-19 0 af.d Endonezyal%C4%B1 16 7931 1

... ... ... ... ... ... ...
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This function call trains a decision tree model as described above, and stores the model in 
'wikilogs_forest' table. The wikilogs_forest table has the format:

The tree field contains a JSON serialized representation of the decision tree. This field can be 
quite large depending on the tree parameters. Luckily, we don’t have to deal with it directly. The 
forest_predict function uses this table to generate predictions for pageviews on new data, given 
values for bytes, len_name, hour and projectcode.

CREATE TABLE predictions (PARTITION KEY(test_id)) AS
SELECT *
FROM forest_predict
( ON one_day
  DATABASE('wikilogs')
  USERID('beehive')
  PASSWORD('beehive')
  FOREST('wikilogs_forest')
  NUMERICINPUTS('bytes','len_name')
  CATEGORICALINPUTS('hour','projectcode')
  IDCOL('pagename')
);

Example output from Forest Predict

Table 9-2  Example Output from Forest Predict

The test_id column is the unique identifier for each test point, and the prediction column is the 
prediction generated by the decision forest model.

forest_analyze
The forest_analyze function performs analysis of the structure of a forest model.

Usage

Syntax
SELECT * FROM forest_analyze(
   ON {table_name|view_name|(query)}
   [NUM_LEVELS(number_of_levels)]
)

Arguments

NUM_LEVELS: Optional. Number of levels to analyze. Default is 5.

worker_ip task_index tree_num tree

test_id prediction

The_Beatles 26651.7

Giorno_della_Memoria 639.9

... ...
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Algorithm
Refer to Classification and Regression Trees by Breiman, Friedman, Olshen and Stone (1984), or 
Elements of Statistical Learning by Hastie, Tibshirani and Friedman.

Error Messages
When using this function, you may encounter the following error messages:

• ERROR: Response column is not numeric

• ERROR: Categorical are not of type String or Integer

• ERROR: NumericInputs columns are not numeric

• ERROR: Invalid database parameters (domain, database, userid, 
password)

• ERROR: Invalid tree parameters (minNodeSize, variance, maxDepth, 
numSurrogates)

Best Practices
Training a decision tree model is a relatively hands-off procedure, but there are several practices 
that a user should be aware of for best performance.

• Make sure you use the same set of columns for CATEGORICALINPUTS and 
NUMERICINPUTS while both building the model and using the model (for prediction), 
otherwise the forest_predict function will fail.

• The forest_drive function computes several parameters that are important for the 
performance of the model, but sometimes it makes bad decisions. You can set these 
parameters manually to better suit your task:

• NUMTREES - By default, the function builds the number of trees such that the total 
number of sampled points is equal to the size of the original input dataset. For example, 
if your input dataset contains 1 billion rows, and the function determines that each tree 
will be trained on a sample of 1 million rows, the function will decide to train 1,000 
trees. Depending on your dataset, you may want more or fewer trees. As a rule of 
thumb, a model of 300 decision trees works well for most prediction tasks. If your 
dataset is small, you will most likely have to specify a value for NUMTREES. It is best 
to specify a number that is a multiple of the number of vworkers in your cluster.

• TREESIZE - Each decision tree is built on a sample of the original dataset. The function 
will compute the value of this parameter such that the decision tree algorithm will not 
run out of memory. With the TREESIZE parameter, you can specify manually how 
many rows each decision tree should contain. Setting this parameter too high can result 
in Out of Memory errors.

• You can check progress of the function in the AMC. Log into the AMC and click on the 
"Processes" tab. If the function is still running, you should see a function running called 
"forest_builder". Click on the process and click on the "View Logs" link. The logs will show 
stdout from the function, and will give you an idea of how far along the function is. The 
same is true for the forest_predict function. Viewing the logs will help you check progress 
and diagnose any potential problems.

• The function does not perform well when given categorical variables with many possible 
values (on the order of hundreds). If you have a specific variable that can take on more than 
100 values, consider consolidating some of the categories in order to improve the runtime of 
the function.
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• As mentioned in the documentation, the tree field in the output model table can grow to be 
very large. If the trees are too large, or there are too many trees in the model, the forest_
predict function can fail, and start outputting NaNs (not a number) as predictions. Check the 
forest_predict logs in the AMC to see if this is happening. If this is a problem, try (1) 
training fewer decision trees, (2) decreasing the MAXDEPTH parameter in the forest_drive 
function, or (3) reducing the cardinality of your categorical input variables.

• Each vworker trains decision trees using a subsample of the data on its partition. If there is 
significant data skew, this can produce strange results.
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10

Association Analysis

In this section we describe:

• “Basket Generator” on page 137

• “Collaborative Filtering” on page 140

Basket Generator

Summary
This function generates sets (“baskets”) of items. The input is typically a set of purchase 
transaction records or web pageview logs. Each basket is a unique combination or permutation of 
items. You specify the desired basket size. Combinations and Permutations are returned in 
lexicographical order.

The resulting baskets can be used as part of a collaborative filtering algorithm. This is useful for 
analyzing purchase behavior of users in-store or on a website. This function can also operate on 
activity data (e.g. "users who viewed this page also viewed this page").

Background
Retailers mine transaction data to track purchasing behavior or viewing behavior. A retailer's 
goal is to find interesting combinations (called baskets) of items purchased together or shopped 
for at the same time. A frequent need is to automatically identify interesting baskets and also 
look for trends over time and compare other attributes (e.g. compare stores). Having a general 
function that can operate on data structured in the form often present for retails will make 
interesting market basket analysis possible.

This general function is intended to help facilitate market-basket analysis by operating on data 
that is structured in a form typical of retail transaction history databases.

Usage

Syntax
SELECT * 
  FROM basket_generator
   (
    ON { table_name | view_name | ( query ) }
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    PARTITION BY expression [, ...]
   [BASKET_SIZE('basket_size_value')]
    BASKET_ITEM('basket_item_column')
    ACCUMULATE('column1 [, column2, ...]')
   [ITEM_SET_MAX('item_set_max_value')]
   );

Arguments

PARTITION BY: Required. Must specify the column(s) to partition by. This specifies the sets for 
which combinations will generated and summed. 

BASKET_ITEM: Required. Name(s) of the input column(s) that contains the items to be collected 
into baskets. If more than one input column is specified, every unique combination of input 
column values is treated as one item. For example, if a single column is used, this is often the 
column containing the SKU that identifies an item that was sold. If you wanted to further break 
down the results, you could specify both the SKU column and the month manufactured, color 
and/or size columns. 

BASKET_SIZE: Required. Integer number of items to be included in a basket. The default is two 
items.

ACCUMULATE: Optional. Names of input columns that will be returned as-is in the output. All 
input columns not named here are left out of the output. This must be a column that is part of the 
ON relation.

COMBINATIONS: Optional; defaults to 'true'. If 'true' the function returns a basket for each 
unique combination of items. If 'false' the function returns a basket for each unique permutation 
of items. Combinations are returned in lexicographical order. For a combination, the order of the 
items doesn't matter (the basket "tomatoes and basil" is considered to be the same basket as 
"basil and tomatoes"). For a permutation, every a unique ordering of the items constitutes a 
unique basket.

ITEM_SET_MAX: (Type=int) [default=100]. This is the maximum number of items to be 
considered in a partition. If the number of items in any partition exceeds ITEM_SET_MAX, no 
combinations (or permutations) will be emitted for that partition.

Notes

If the number of combinations (or permutations) exceeds one million, no rows are emitted. 

The maximum possible number of combinations or permutations you might generate will depend 
on:

• n, the number of distinct items that may appear in a basket (in other words, the cardinality of 
the BASKET_ITEM column(s)), and

• r, the BASKET_SIZE.

Number of combinations generated = n_C_r

which we can also express as

Number of permutations generated = n_P_r

which we can also express as

n!
n r–( )!

------------------
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Output

Returns whatever is specified in ACCUMULATE along with 1 column for each of the "basket_
items" specified. 

Examples
Below are two examples of the use of the function to generate market baskets along with other 
columns of interest. 

Example Input Data

The input data, stored in table transactions, has the following columns:

Example SQL-MapReduce call (1 of 2)
SELECT store_id, sku1, sku2, sku3, count(1)
 FROM basket_generator
  (
   ON transactions
   PARTITION BY store_id, dt, reg_id, tran_no
   BASKET_SIZE(3)
   BASKET_ITEM('sku')
   ACCUMULATE('store_id')
   ITEM_SET_MAX(200)
  )
 GROUP BY 1,2,3,4;

Example Output from Basket Generator (1 of 2)

Table 10-1  Example Output from Basket Generator (1 of 2)

Example SQL-MapReduce call (2 of 2)
SELECT store_id, EXTRACT(month FROM dt) AS mnth, sku1, sku2, count(1)
 FROM basket_generator
  (
   ON transactions
   PARTITION BY store_id, dt, reg_id, tran_no
   BASKET_SIZE(2)
   BASKET_ITEM('sku')
   ACCUMULATE('store_id', 'dt')
   ITEM_SET_MAX(200)
  )

store_id dt reg_id tran_no sku 

store_id sku1 sku2 sku3 cnt 

1 83 97 1213 123 

2 78 122 7812 88 

n!
r! n r–( )!
----------------------
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 GROUP BY 1,2,3,4;

Example output from Basket Generator (2 of 2)

Table 10-2  Example output from Basket Generator (2 of 2)

Collaborative Filtering

Summary
This function performs collaborative filtering via a series of SQL commands and 
SQL-MapReduce functions. You run this function via an internal JDBC wrapper function.

Background
Collaborative filtering is used by analysts to find items or events that are frequently paired with 
other items or events. For example, the Amazon.com feature, “People who shopped for this item 
also shopped for...” uses a collaborative filtering algorithm. Another use would be “People who 
viewed this profile also viewed this profile” on LinkedIn. Aster Database’s collaborative 
filtering (cfilter) is a general-purpose tool that can provide answers in many similar use cases.

Usage

Syntax
SELECT *
FROM cfilter 
(
    ON (SELECT 1)
    PARTITION BY 1
    [ domain('ip_address') ]
    [ database('db_name') ]
    [ userid('user_id') ]
    [ password('password') ]
    inputTable('input_table_name')
    outputTable('output_table_name')
    inputColumns('source_column1', 'source_column2',...)
    joinColumns('join_column1', 'join_column2',...)
    [ otherColumns('other_column1', 'other_column2',...) ]
    [ partitionKeyColumn ('partitionKeyColumn1') ]
    [ maxSet('max_item_set') ]
    [ dropTable('yes'|'no') ]
);

store_id mnth sku1 sku2 cnt 

1 2 83 1213 7824 

3 4 122 7812 3112 
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Arguments

DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address 
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for 
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the 
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default 
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default 
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user. 

INPUTTABLE: Required. Name of the input table whose data we will filter.

OUTPUTTABLE: Required. Name of the output table into which we will write the final results. If 
the output table already exists, then you should also pass the DROPTABLE (‘yes’) argument, to 
drop it before writing the new results. Otherwise, an exception will be thrown. The output table 
contains the columns listed in the section "Example Output from Collaborative Filter" below.

INPUTCOLUMNS: Required. A list of input columns to collect. The column names are single 
quoted and written in the comma-delimited format <'col1', 'col2', ...>.

JOINCOLUMNS: Required. A list of columns to join on. The column names are single quoted 
and written in the comma-delimited format <'col1', 'col2', ...>.

OTHERCOLUMNS: Optional. A list of other columns to output. These will pass through the 
function unchanged. The column names are single quoted and written in the comma-delimited 
format <'col1', 'col2', ...>.

PARTITIONKEY: Optional. Single column used as partition key for the newly created output 
table. Default partitionKey is col1_item1.

MAXSET: Optional. Size of the maximum item set to be considered. Default maxItemSet is 100.

DROPTABLE: Optional. When this option is set to true, if the output tablename already exists, it 
will be dropped. Default value is false.

Example

Example Input Data

Table 10-3  Example Input Data, table cfilter_test

tranid dt storeid region item sku category

1 '20100715' 1 'west' 'milk' 1 'dairy'

1 '20100715' 1 'west' 'butter' 2 'dairy'

1 '20100715' 1 'west' 'eggs' 3 'dairy'

1 '19990715' 1 'west' 'flour' 4 'baking'

1 '19990715' 1 'west' 'sugar' 5 'baking'

1 19990715 1 west diapers 6 baby

2 20100715 2 east milk 1 dairy

2 20100715 2 east egg whites 7 dairy
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Example SQL-MapReduce Call
SELECT *
FROM cfilter (
    ON (SELECT 1)
    PARTITION BY 1
    database('beehive')
    userid('beehive')
    password('beehive')

    inputTable('cfilter_test')
    outputTable('cfilter_test2')
    inputColumns('item')
    joinColumns('tranid')
);

2 19990715 2 east flour 4 baking

2 19990715 2 east sugar 5 baking

3 20100715 3 east milk 1 dairy

3 20100715 3 east eggs 3 dairy

3 20100715 3 east flour 4 baking

3 20100715 3 east sugar 5 baking

4 20100715 1 south milk 1 dairy

4 20100715 1 south cereal 8 breakfast

3 20100715 2 east beer 9 alcohol

5 20100715 2 east diapers 6 baby

5 20100715 2 east milk 1 dairy

6 20100715 1 east beer 9 alcohol

6 20100715 1 east cereal 8 breakfast

7 20100715 1 south beer 9 alcohol

7 20100715 1 south diapers 6 baby

8 20100715 2 east beer 9 alcohol

9 20100715 2 east diapers 6 baby

10 20100715 3 south milk 1 dairy

11 20100715 3 east milk 1 dairy

11 20100715 3 east orange juice 10 beverages

12 20100715 3 east beer 9 alcohol

12 20100715 3 east red bull 11 beverages

13 20100715 1 south beer 9 alcohol

13 20100715 1 south chips 13 snacks

14 20100715 2 north salsa 12 snacks

14 20100715 2 north chips 13 snacks

14 20100715 2 north beer 9 alcohol

tranid dt storeid region item sku category
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SELECT * FROM cfilter_test2 ORDER BY score DESC;

Example Output from Collaborative Filter

Table 10-4  Example Output from Collaborative Filter

col1_item1 col1_item2 cntb cnt1 cnt2 score

chips salsa 1 2 2 0.25

salsa chips 1 2 2 0.25

beer chips 2 9 2 0.222222222222222

chips beer 2 2 9 0.222222222222222

flour sugar 3 7 7 0.183673469387755

sugar flour 3 7 7 0.183673469387755

sugar milk 3 7 9 0.142857142857143

flour milk 3 7 9 0.142857142857143

milk flour 3 9 7 0.142857142857143

milk sugar 3 9 7 0.142857142857143

beer red bull 1 9 1 0.111111111111111

red bull beer 1 1 9 0.111111111111111

orange juice milk 1 1 9 0.111111111111111

milk orange juice 1 9 1 0.111111111111111

sugar eggs 2 7 6 0.0952380952380952

eggs sugar 2 6 7 0.0952380952380952

flour eggs 2 7 6 0.0952380952380952

eggs flour 2 6 7 0.0952380952380952

diapers milk 2 6 9 0.0740740740740741

eggs milk 2 6 9 0.0740740740740741

milk diapers 2 9 6 0.0740740740740741

milk eggs 2 9 6 0.0740740740740741

cereal milk 1 2 9 0.0555555555555556

beer cereal 1 9 2 0.0555555555555556

salsa beer 1 2 9 0.0555555555555556

beer salsa 1 9 2 0.0555555555555556

cereal beer 1 2 9 0.0555555555555556

milk cereal 1 9 2 0.0555555555555556

egg whites sugar 1 3 7 0.0476190476190476

sugar egg whites 1 7 3 0.0476190476190476

flour egg whites 1 7 3 0.0476190476190476

egg whites flour 1 3 7 0.0476190476190476

milk egg whites 1 9 3 0.037037037037037
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Error Messages
• ERROR: Function "cfilter" does not exist. 

REASON: The cfilter.zip SQLMR function is not installed.

• ERROR: Relation "<name of your output table>" already exists.

REASON: The output table already exists and the dropTable('yes') argument was not 
used.

egg whites milk 1 3 9 0.037037037037037

butter eggs 1 5 6 0.0333333333333333

eggs butter 1 6 5 0.0333333333333333

diapers butter 1 6 5 0.0333333333333333

butter diapers 1 5 6 0.0333333333333333

flour butter 1 7 5 0.0285714285714286

butter flour 1 5 7 0.0285714285714286

butter sugar 1 5 7 0.0285714285714286

sugar butter 1 7 5 0.0285714285714286

eggs diapers 1 6 6 0.0277777777777778

diapers eggs 1 6 6 0.0277777777777778

sugar diapers 1 7 6 0.0238095238095238

flour diapers 1 7 6 0.0238095238095238

diapers flour 1 6 7 0.0238095238095238

diapers sugar 1 6 7 0.0238095238095238

butter milk 1 5 9 0.0222222222222222

milk butter 1 9 5 0.0222222222222222

beer diapers 1 9 6 0.0185185185185185

eggs beer 1 6 9 0.0185185185185185

diapers beer 1 6 9 0.0185185185185185

beer eggs 1 9 6 0.0185185185185185

flour beer 1 7 9 0.0158730158730159

beer flour 1 9 7 0.0158730158730159

beer sugar 1 9 7 0.0158730158730159

sugar beer 1 7 9 0.0158730158730159

milk beer 1 9 9 0.0123456790123457

beer milk 1 9 9 0.0123456790123457

col1_item1 col1_item2 cntb cnt1 cnt2 score
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10

Graph Analysis

In this section we describe:

• “nTree” on page 137

• “Single Source Shortest Path (SSSP)” on page 142

nTree

Summary
nTree is a hierarchical analysis SQL-MR function which can build and traverse through tree 
structures on all worker machines. nTree reads the data only once from the disk and creates the 
trees in-memory. Note that this function requires the data to be partition-able and that each 
partition can fit in memory. Most of the use-cases we have seen so far can be fit in memory. Each 
partition can consist of multiple trees. There is no restriction on the size of the tree. Since the 
data is not always clean and may contain cycles, we have different ways of handling the cycles.

There have been numerous examples of cases where graph data needs to be analyzed. That is, 
some graph data is stored in tabular form and the data represents a graph of nodes and edges that 
need to be processed in a way that standard SQL cannot easily offer. We can think of building a 
new general purpose graph process (aka nTree) as analogous to nPath and time-series data. nPath 
is a tool used to operate on data where the rows are related to each other but limited in that the 
data is only fed in a particular order into a NFA (non-deterministic finite automata). 

Background
The following sections walk through various examples of use cases for nTree:

Equity Trading

A large stock buy or sell order is typically broken into a number of child orders in order to fulfill 
the trade with a number of counterparties. Each child order can be further broken into child 
orders. All transactions are stored in a single stock transaction table, with the parent order linked 
to its child orders by means of a parent_id. A "root" order to sell, say, AAPL could result in a 
cascade of other AAPL transactions, all of which can trace their ancestry back to the original 
order. For example, you could have order_id 1 to sell 100 of AAPL lead to order 2 and 3 for 70 
and 30 shares each. Those, in turn, could be further split up. Each row of this transaction table 
would include that row's order_id as well as its parent_id. The broker needs to be able to identify 
the root order for each transaction. With SQL this would require an unknown number of 
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self-joins. With Aster Database SQL-MapReduce we can partition the data by ticker symbol and 
then by date, and use the nTree function to create a tree from each root order.

Social Networking

Social networks use multiple data sources to identify people and their relationships. For example, 
a user-user connection graph defines explicit connections the users have created on the network, 
a user-person invitation graph shows a mixture of user-user connections and user-email 
connections, and finally, address book data provides a user-email graph. It’s often important for a 
social network to clean up its data by detecting when a person has multiple accounts on the 
network. In a case like this, you can use nTree to generate a tree for every account. You can then 
compare these trees to find trees that are very likely to have the same person as the root-node.

Usage

Syntax
SELECT * FROM NTREE
(
    ON { input_table | view | query }
    PARTITION BY partition_columns
    [ORDER BY ordering_columns]
    ROOT_NODE('expression')
    NODE_ID('expression')
    PARENT_ID('expression')
    MODE('up'|'down')
    ALLOW_CYCLES('true'|'false')
    STARTS_WITH('expression')
    OUTPUT('end'|'all')
    result(aggregate(expression) as alias)
    [LOGGING ('true'|'false')]
);

Arguments

Arguments used for creating the tree:

ROOT_NODE: This is an SQL-boolean Expression which is used to define the root nodes of 
the trees. All the tuples which evaluate to true for this SQL-expression are considered root 
nodes

NODE_ID: Each row represents a node. The NODE_ID is the unique identifier for the node. 
This argument is an SQL expression which uniquely identifies this node in the dataset. Note 
that a same node can appear multiple times with different parents.

PARENT_ID: This is an SQL expression which evaluates the value the ID for the parent 
node.

ALLOW_CYCLES: If the argument is set to true, we allow cycles in the tree, else we would 
throw an exception when there is a cycle in the dataset.

Arguments used for selecting the type of operation to be performed:

MODE: This is the argument used to select the type of traversal from the STARTS_WITH 
nodes. It can be either "UP" or "DOWN". If the value is "UP", we start from the STARTS_
WITH node and traverse UP, towards the root node. If the value is "down", we start at the 
STARTS_WITH node and traverse DOWN, towards the leaf nodes.

Argument to identify the start node for the push-down operation:
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STARTS_WITH: This is an SQL-boolean Expression which is used to define the node from 
where we start the tree traversal.

Arguments used for managing the function’s output:

OUTPUT: This can take two values: ALL or END. ALL would output one result tuple at 
every node along the path traversal. END would output one result tuple when the traversal 
reaches the end of path.

LOGGING('true'|'false'): If true, then log messages will be printed.

RESULT: This argument specifies which aggregate operations we can perform while 
traversing the tree. The supported aggregate types are: PATH, SUM, LEVEL, MAX, MIN, 
IS_CYCLE, AVG, PROPAGATE, as described here:

PATH(expr) would output the path from the STARTS_WITH node to this node.

SUM(expr) would output the sum of "expr" (expression) on all nodes from the 
STARTS_WITH node to this node.

LEVEL\(*) would output the number of hops from the STARTS_WITH node to this 
node. Note that this is then number of hops form the STARTS_WITH node and NOT 
the Root node.

MAX(expr) would output the maximum value encountered so far from the STARTS_
WITH node to this node.

MIN(expr) would output the minimum value encountered so far from the STARTS_
WITH node to this node.

IS_CYCLE\(*) would output the cycle (if any).

AVG(expr) would output the average value so far from the STARTS_WITH node to this 
node.

PROPAGATE(expr) would evaluate the expression "expr" on the STARTS_WITH node 
and propagate it to all the nodes along the path.

Example 1: Find an employee’s chain of managers

Example Input Data: employee_table

Example 1 SQL-MR Call

Here, we start with employee 400 and follow the graph UP, as specified by the MODE argument:

SELECT *
FROM ntree
( ON employee_table
  PARTITION BY 1
  ROOT_NODE('mgr_id=null')
  NODE_ID('emp_id')
  PARENT_ID('mgr_id')

emp_id  emp_name  mgr_id  salary

100  Don  null  10k

200  Pat  100  8k

300  Donna  100  8k

400  Kim  200  6k

500  Fred  400  4k
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  MODE('UP')
  ALLOW_CYCLES('true')
  STARTS_WITH('emp_id=400')
  OUTPUT('END')
  result(path(emp_name) as path)
);

Example 1 Output:

Table 10-1  Example Output from nTree

Example 2

Table 10-2  Example 2 Input Data: emp_table_aster, partitioned on department

emp_id  path

500  Kim->Pat->Don

department order_column id name salary mgr_id

aster 1 7 Don 20 2

aster 2 2 Pat 30 3

aster 3 3 Donna 60 6

aster 4 9 Kim 50 5

aster 5 4 Fred 40 4

aster 6 5 Mark 70 7

aster 7 6 Rob 10 1

aster 8 5 Mark 10 1

aster 9 1 Dave 10 none

aster 10 1 Dave 10 9

teradata 1 10 Test1 10 12

teradata 2 11 Test2 20 10

teradata 3 12 Test3 30 10

teradata 4 15 Test4 40 12

teradata 5 16 Test5 50 12

teradata 6 18 Test6 60 17

teradata 7 11 Test2 20 15

teradata 8 13 Test7 70 11

teradata 9 14 Test8 80 11

teradata 10 14 Test8 80 12

teradata 11 15 Test4 40 14

teradata 12 16 Test5 50 15

teradata 13 17 Test9 90 16

teradata 14 16 Test5 50 18
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Example 2 SQL-MR Call
SELECT *
FROM ntree
(  ON emp_table_aster
   PARTITION BY department
   ORDER BY order_column
   ROOT_NODE(mgr_id = 'none')
   PARENT_ID(mgr_id)
   NODE_ID(id)
   STARTS_WITH('ROOT')
   MODE('DOWN')
   OUTPUT('ALL')
   RESULT(PATH(name) as path,
          path(id) as path2)
   ALLOW_CYCLES('true')
) order by path, path2;

Example 2 Output

Table 10-3  Example 2 output from nTree

teradata 1 10 Test1 10 none

id path path2

1 Dave 1

5 Dave->Mark 1->5

9 Dave->Mark->Kim 1->5->9

6 Dave->Rob 1->6

3 Dave->Rob->Donna 1->6->3

2 Dave->Rob->Donna->Pat 1->6->3->2

7 Dave->Rob->Donna->Pat->Don 1->6->3->2->7

5 Dave->Rob->Donna->Pat->Don->Mark 1->6->3->2->7->5

9 Dave->Rob->Donna->Pat->Don->Mark->Kim 1->6->3->2->7->5->9

10 Test1 10

11 Test1->Test2 10->11

13 Test1->Test2->Test7 10->11->13

14 Test1->Test2->Test8 10->11->14

15 Test1->Test2->Test8->Test4 10->11->14->15

16 Test1->Test2->Test8->Test4->Test5 10->11->14->15->16

17 Test1->Test2->Test8->Test4->Test5->Test9 10->11->14->15->16->17

18 Test1->Test2->Test8->Test4->Test5->Test9->Test6 10->11->14->15->16->17->18

12 Test1->Test3 10->12

15 Test1->Test3->Test4 10->12->15

11 Test1->Test3->Test4->Test2 10->12->15->11

department order_column id name salary mgr_id
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Single Source Shortest Path (SSSP)

Summary
Given a graph with vertices and edges between these vertices, the Single Source Shortest Path 
(SSSP) function finds the shortest paths from a given vertex to all the other vertices in the graph.

Installation
See “Installing Aster Database’s Driver-Based Analytical Functions” on page 9.

Usage on the queen
For clarity, we break the command line below at each argument flag. Each value shown in italics 
is one that you should replace with the right value your installation:

user@machine:~$ java
  -classpath path_to_SQL-MR_api_jars:path_to_jdbc_driver_jar:path_to_
ssspDriver_jar
  com.asterdata.sqlmr.analytics.path_analysis.sssp.ssspDriver
  -domain=host:port
  -database=database_name
  -userid=user_id
  -password=password
  -inputtable=input_table_name
  -outputtable=output_table_name

13 Test1->Test3->Test4->Test2->Test7 10->12->15->11->13

14 Test1->Test3->Test4->Test2->Test8 10->12->15->11->14

16 Test1->Test3->Test4->Test5 10->12->15->16

17 Test1->Test3->Test4->Test5->Test9 10->12->15->16->17

18 Test1->Test3->Test4->Test5->Test9->Test6 10->12->15->16->17->18

16 Test1->Test3->Test5 10->12->16

17 Test1->Test3->Test5->Test9 10->12->16->17

18 Test1->Test3->Test5->Test9->Test6 10->12->16->17->18

14 Test1->Test3->Test8 10->12->14

15 Test1->Test3->Test8->Test4 10->12->14->15

11 Test1->Test3->Test8->Test4->Test2 10->12->14->15->11

13 Test1->Test3->Test8->Test4->Test2->Test7 10->12->14->15->11->13

16 Test1->Test3->Test8->Test4->Test5 10->12->14->15->16

17 Test1->Test3->Test8->Test4->Test5->Test9 10->12->14->15->16->17

18 Test1->Test3->Test8->Test4->Test5->Test9->Test6 10->12->14->15->16->17->18

id path path2
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  -source=source_column
  -destination=destination_column
  -startnode=start_node

Usage on a remote (non-queen) machine
For clarity, we break the command line below at each argument flag. Each value shown in italics 
is one that you should replace with the right value your installation:

user@machine:~$ java
   -classpath ssspDriver.jar:path_for_JDBC and nculster-sqlmr jar files
   com.asterdata.sqlmr.analytics.path_analysis.sssp.ssspDriver
   -domain=host:port
   -database=database_name
   -userid=user_id
   -password=password
   -inputtable=input_table_name
   -outputtable=output_table_name
   -source=source_column
   -destination=destination_column
   -startnode=start_node

Arguments
The format of the command-line arguments follows the usual Java style. That is, you pass each 
setting as a pair in the form -argument_name=argument_value, and a space separates each 
setting from the next. The command-line arguments used to invoke this function are:

DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address 
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for 
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the 
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Required. This is the name of the database where the input table is present. For 
example: -database=beehive

USERID: Required. The Aster Database user name of the user. For example: -userid=beehive

PASSWORD: Required. The Aster Database password of the user. For example: 
-password=beehive

INPUTTABLE: Required. The name of the input table. This is the table containing the list of 
edges. The input table should have at least two columns: the source column and the destination 
column.

OUTPUTTABLE: Required. This is the name of the output table where you wish to save the 
results. IMPORTANT! Please note that if a table with this name exists already, that table 
will be dropped. The output table will contain the columns listed in the section “Output,” below.

SOURCE: Required. The name of the input table column that contains the source vertex. 

DESTINATION: Required. The name of the input table column that contains the destination 
vertex. 

STARTNODE: Required. The node from which the shortest path to all the other vertices should 
be computed.
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Input
Input table containing the list of edges. Input table should contain at-least two columns, source 
column and the destination column

Output
You use the -outputtable argument to specify the destination table for the function’s results. 
IMPORTANT! Please note that if a table with this name exists already, that table will be 
dropped.

The output table will contain the following columns:

node: Represents a vertex in the graph.

seen: True/false value indicating whether this vertex is reachable from the start vertex.

points_to: List of all the reachable vertices from this vertex.

distance_from_start: Distance from the start node to this vertex. If this vertex is not reachable 
from the start node, then this value will be -1.

path_from_start: The shortest path from the start node to this node. If this vertex is not reachable 
from the start node, this value will be empty.

Example

Table 10-4  Example Input Data, table graph

source name destination

1 "san carlos" 2

3 "san jose" 6

5 "san francisco" 3

6 "new york" 1

7 "dallas" 5

7 "LA" 2

2 "seattle" 6

6 "las vegas" 8

2 "Mexico" 9

7 "washington" 5

2 "san carlos" 2

8 "san jose" 5

3 "san francisco" 7

3 "new york" 1

8 "dallas" 9

8 "LA" 8

2 "seattle" 3

2 "las vegas" 2
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Example Usage
user@machine:~$ java 
   -jar ssspDriver.jar 
   -startNode=2 
   -domain=10.51.23.100 
   -database=beehive 
   -inputTable=graph 
   -outputTable=shortestDistance 
   -sourceColumnName=source 
   -destinationColumnName=destination  
   -userID=beehive 
   -password=beehive

The first line invokes Java. Lines two through five include the appropriate Java libraries to run 
the driver. Line six is the name of the Java class we want to run. All lines afterward are program 
arguments.

Example Output Data from SSSP

Table 10-5  Example Output Data from SSSP

Error Messages
In response to user error, the SSSP operator may print the following error messages:

• ERROR: Please provide all of the following arguments: -domain 
-database -inputTable -outputTable -userid -password 
-sourceColumnName -destinationColumnName -startNode

REASON: One or more of the following arguments are missing. Arguments can be any of 
the following: -domain -database -table -userid -password -sourceColumnName 
-destinationColumnName -startNode

REASON: One or more of the arguments provided is not valid.

1 "Mexico" 7

5 "washington" 7

3 "san carlos" 2

9 "san jose" 3

5 "san francisco" 5

Node Seen Points_To Distance_from_start Path_from_start

2 t 2,3,6,9 0 empty

6 t 1,8 1 6

8 t 5,8,9 2 6,8

1 t 2,7 2 6,1

3 t 1,2,6,7 1 3

5 t 3,5,7 3 3,7,5

7 t 2,5 2 3,7

9 t 3 1 9
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12

Data Transformation

In this section we describe:

• “Antiselect” on page 159

• “Pack” on page 163

• “Unpack” on page 165

• “Multicase” on page 160

• “Pivot” on page 167

• “XML Parser” on page 170

• “Apache Log Parser” on page 176

Antiselect

Summary
Antiselect returns all columns except those specified in the exclude clause.

Background
There are cases in which a user wants to retrieve all but a few columns from a table or query. The 
syntax rules of SELECT allow you to either specify "*" or list the specific columns you want, 
but you cannot list columns to be excluded. With the antiselect function, you can select all 
columns except the one(s) in the EXCLUDE argument clause list. This is useful when simply 
selecting rows or when doing a join to create a new table.

Usage
This section describes the syntax for using the function, parameter options and data types, and a 
description of the expected output.

Syntax
SELECT * 
  FROM antiselect
   (
     ON { table_name | view_name | ( query ) }
     EXCLUDE('column_name' [, ...])
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   ); 

Arguments

EXCLUDE Optional. Specifies list of the columns that will not be returned. The list is specified 
as a comma-delimited list of column names, each in single-quotes.

Output

The function emits all columns except those named in the EXCLUDE list.

Example

Example Input Data

Table 12-1  Example Input Data, table sampleTable

Example SQL-MapReduce Call

This example runs on the table sampleTable and excludes the "race" column from its output:

SELECT * 
  FROM antiselect
   (
     ON sampleTable 
     EXCLUDE('race')
   ); 

Example Output of Antiselect

Table 12-2  Example Output of Antiselect

Multicase

Summary
Multi-case extends the capability of the SQL CASE statement by supporting matches to multiple 
criteria in a single row. The function iterates through the input data set only once and emits 
matches whenever a match occurs. If multiple matches occur for a given input row, one output 
row will be emitted for each match. This differs from the behavior of the SQL CASE statement. 

id src age gender race numBuys numSells 

1 ebay 62 male white 30 44 

2 paypal 29 female asian 33 23 

id src age gender numBuys numSells 

1 ebay 62 male 30 44 

2 paypal 29 female 33 23 
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When SQL CASE finds a match, it emits the result and immediately proceeds to the next row 
without searching for more matches in the current row.

Background 
The multicase function is useful when you want to have a single row match multiple conditions. 
In other words, you should use this function when the conditions in your CASE statement do not 
form a mutually exclusive set.

Usage

Syntax

Below is how the multi-case is invoked using a SELECT statement to invoke the 
SQL-MapReduce function.

SELECT * 
  FROM multi_case 
   (
    ON 
     (
      SELECT 
        *, 
        Condition1 AS case1, 
        Condition2 AS case2, 
        ...,
        ConditionN AS caseN 
      FROM {table_name|view_name|(query)}
     )
    LABELS
     (
      'case1 AS "label1"',
      'case2 AS "label2"',
      ...,
      'caseN AS "labelN"'
     )
   )

Arguments

CONDITIONS: Each condition is an SQL predicate that evaluates to true or false.

LABELS: For each case, you must specify a label the function will apply to matches of that case. 
Specify this in the LABELS clause in the form, 'case1 AS "label1"'.

Input

Input rows should contain at least one column.

Output

A row is output for each match. All input columns are conveyed as-is to the output, and a 
category name column is added.
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Example

Example Input Data

Table 12-3  Example Input Data, table mydata

Example SQL-MapReduce call
SELECT * 
  FROM multi_case
   (
    ON 
     (
      SELECT 
        *, 
        (age < 1) AS case1, 
        (age >= 1 AND age <= 2) AS case2, 
        (age >= 2 AND age <=12) AS case3, 
        (age >=13 AND age <=19) AS case4, 
        (age >=16 AND age <=25) AS case5, 
        (age >=21 AND age <=40) AS case6, 
        (age >=35 AND age <=60) AS case7, 
        (age >=60) AS case8 
      FROM mydata
     )
    LABELS
     (
      'case1 AS "infant"',
      'case2 AS "toddler"',
      'case3 AS "kid"',
      'case4 AS "teenager"',
      'case5 AS "young adult"',
      'case6 AS "adult"',
      'case7 AS "middle aged person"',
      'case8 AS "senior citizen"'
     )
   )
    ORDER BY userid;

userid name age 

100 Henry Cavendish 12 

200 Sir William 15 

300 Johann August 19 

400 Martin Heinrich 20 

500 Ralph Arthur 25 

600 Marguerite Catherine 35 

700 Philip Hauge 40 

800 Joseph Louis 28 

900 Marie Curie 12 
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Example Output from Multicase

Table 12-4  Example Output from Multicase

Pack

Summary
The Pack function takes a number of input columns and transforms them into a single packed 
column. The packed column is composed of a number of virtual columns, with each virtual 
column representing an input column. In the packed column, a COLUMN_DELIMITER string 
separates each virtual column value from the next. By default, each virtual column value is 
labeled with its column name, but you can turn off this labeling. 

Aster Database also provides an Unpack function to explode a single packed column into a 
number of columns. See “Unpack” on page 165.

Usage

Syntax
SELECT *
  FROM pack
   (
     ON {table_name|view_name|(query)}
    [COLUMN_NAMES('column1' [, ...])]
    [COLUMN_DELIMITER('delimiter_value')]
    [INCLUDE_COLUMN_NAME('true'|'false')]
     PACKED_COLUMN_NAME('packed_column_name')
   );

UserID Name Age Category 

100 Henry Cavendish 12 kid 

200 Sir William 15 teenager 

300 Johann August 19 teenager 

300 Johann August 19 young adult 

400 Martin Heinrich 20 young adult 

500 Ralph Arthur 25 young adult 

500 Ralph Arthur 25 adult 

600 Marguerite Catherine 35 adult 

600 Marguerite Catherine 35 middle aged person

700 Philip Hauge 40 adult 

700 Philip Hauge 40 middle aged person

800 Joseph Louis 28 adult

900 Marie Curie 12 kid 
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Arguments

ON: Required. Table, view, or query that provides the data to be packed.

COLUMN_NAMES: Optional. Names of the input columns to be packed. Format these as a 
comma-delimited list with each name in single-quotes. The name of each input column that you 
pack becomes its virtual column name. Columns that are present in the input but not listed in 
COLUMN_NAMES are passed through to the output as regular columns. If you do not include a 
COLUMN_NAMES clause, all input columns are packed, and no columns are passed through 
as-is.

COLUMN_DELIMITER: Optional. Character string that will be used to delimit each packed data 
value (and virtual column name if present) from the next. If the column delimiter is a pipe 
character ( i.e. '|' ), you need to double escape it (i.e. '\\|'). The default is a comma (","). 
Note that this can be more than a single character but cannot be a regular expression (as is 
allowed in the Aster Database unpack function).

INCLUDE_COLUMN_NAME: Optional. A true or false value that specifies whether or not to 
pre-pend each packed value with its virtual column name. The default is true.

PACKED_COLUMN_NAME: Required. Name of the output column that will hold the packed 
data.

Output

The packed data column (this holds the virtual columns), as well as any input columns (in as-is, 
unpacked condition) that you did not name in COLUMN_NAMES. The packed data column is of 
type varchar.

Example:

Example Input Data

Table 12-5  Example Input Data, table to_be_packed

Example SQL-MapReduce call
SELECT  *                                                                                                                                                                                                                          
  FROM  pack
   (
    ON  to_be_packed
    COLUMN_DELIMITER(',')
    PACKED_COLUMN_NAME('packed_data')
    INCLUDE_COLUMN_NAME('true')
    COLUMN_NAMES('src', 'age', 'gender', 'race', 'numBuys', 'numSells')
   );

Important! Each time you pack a table, make a note of the datatypes of all its packed columns. 
You will need to know these types later, if you wish to unpack them.

id src age gender race numBuys numSells 

1 ebay 62 male white 30 44 

2 paypal 29 female asian 33 23 
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In the example query above, note that we did not include the “id” column in the COLUMN_
NAMES list, even though it was one of the input columns. This has the effect of passing the id 
column to the output in its original, unpacked condition.

Example Output from Pack

Table 12-6  Example Output from Pack

Unpack

Summary
The Unpack function takes data from a single packed column and expands it to multiple 
columns. Each packed column is composed of a number of virtual columns. In the packed 
column, a COLUMN_DELIMITER string separates each virtual column from the next. 

This function is complementary to Aster Database’s Pack function, but can be used on any 
packed column that represents its packed columns in a reasonably regular way. See “Pack” on 
page 163.

Usage

Syntax
SELECT * 
  FROM unpack
   (
     ON { table_name | view_name | ( query ) }
     DATA_COLUMN('data_column')
     COLUMN_NAMES('column1' [, 'column2', ...])
     COLUMN_TYPES('datatype' [, 'datatype', ...] )
    [COLUMN_DELIMITER('delimiter_value')]
    [DATA_PATTERN('data_pattern_regular_expression')]
    [DATA_GROUP('group_number')]
    [IGNORE_BAD_ROWS({'true'|'false'})]
   );

Arguments

DATA_COLUMN: Required. Name of the input column that contains the packed data to be 
unpacked.

COLUMN_NAMES: Required. Names to be given to the output columns, specified as a 
comma-delimited list. These are the columns that will be unpacked. You must list them in the 
order in which the virtual columns appear in your DATA_COLUMN.

COLUMN_TYPES: Required. The datatypes of the unpacked output columns, in the same order 
as the COLUMN_NAMES.

packed_data id 

src:ebay,age:62,gender:male,race:white,numBuys:30,numSells:44 1 

src:paypal,age:29,gender:female,race:asian,numBuys:33,numSells:23 2 
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COLUMN_DELIMITER: Optional. The string that separates each virtual column from the next in 
the packed data. Note that if you choose a pipe delimiter ( i.e. '|' ), you need to double escape it 
(i.e. '\\|'). The default column delimiter is a comma (",").

DATA_PATTERN: Optional. This is a regular expression that tells the Unpack function which 
part the packed data is the actual data value. When unpacking a virtual row of data, the virtual 
row consists of one unit of data for each virtual column, with each unit delimited from the next 
by a COLUMN_DELIMITER. Within each unit, in addition to the actual data value, there is often 
other information such as the virtual column name. The DATA_PATTERN allows Unpack to find 
the data value.

In the DATA_PATTERN, you write regular expressions to identify the various regular parts of a 
virtual unit of data, and you use parentheses to surround the regular expression that matches the 
actual data value. The rest of each unit of data will be ignored.

For example, let’s assume we have packed data with two virtual columns, one for the age and 
one for the gender of a person. One example row of our packed data might look like this:

      age:34,sex:male

To unpack this example, we would need to specify a COLUMN_DELIMITER of ‘,’ and a DATA_
PATTERN of ".*:(.*)". In the DATA_PATTERN, the first three characters, ".*:", are a 
standard regular expression (the "." is the wildcard that matches any character, and the "*" 
indicates the wildcard can be matched zero or more times) that matches both "age:" and 
"sex:", while the rest of the expression, "(.*)" is another regular expression that matches "34" 
and "male", with the parentheses instructing the unpack function to interpret these as the actual 
data values in the virtual column.

The Unpack function’s default DATA_PATTERN is "(.*)", which causes Unpack to recognize as 
data the entirety of each unit of data in the virtual row (for example the whole string between 
one COLUMN_DELIMITER and the next). Sticking with our first example, if we were to unpack 
using for the default data pattern of "(.*)", we’d get poor results because the Unpack function 
would return "age:34" as a data value and "sex:male" as the next data value. 

Optionally, you can use multiple pairs of parentheses in your DATA_PATTERN to mark multiple 
data groups within the DATA_PATTERN, and then specify a DATA_GROUP number to indicate 
which data group is the actual data value.

DATA_GROUP: Optional. An integer counter value that specifies which data group in your 
DATA_PATTERN represents the actual data value in the virtual column. Recall from the 
preceding section that you use parentheses in your DATA_PATTERN to mark data groups in the 
pattern, and, by default, the Unpack function takes the last data group in each pattern to be the 
actual data value (other data groups are assumed to be virtual column names or unwanted data). 
If you want to use a data group other than the last one as your actual data value, then you must 
specify a DATA_GROUP value.

For example, let’s assume our DATA_PATTERN is:

    ([a-zA-Z]*):(.*) 

In this case, if we set DATA_GROUP to “1”, then the string that matches ([a-zA-Z]*) will be 
unpacked as the actual data value. If we set DATA_GROUP to “2”, then the string that matches 
(.*) will be unpacked as the actual data value.

IGNORE_BAD_ROWS: Optional. A true or false value that specifies whether the function will 
fail upon encountering a row with bad data (if 'false'), or ignore the bad row and proceed to the 
next row (if 'true'). Default is 'false'.
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Output

Output columns include the virtual columns you listed in COLUMN_NAMES, plus the other 
columns of the input table.

Example

Example Input Data

Table 12-7  Example Input Data, table unpack_data

Example SQL-MapReduce call
SELECT * 
  FROM unpack
   (
     ON unpack_data
     DATA_COLUMN('packed_data')
     COLUMN_NAMES('age','gender','race','numBuys','numSells')
     COLUMN_TYPES('integer','varchar','varchar','integer','integer')
     COLUMN_DELIMITER(',')
     DATA_PATTERN('(.*)')
     DATA_GROUP(1)
     IGNORE_BAD_ROWS('true')
   )
ORDER BY id;

Example Output from Unpack

Table 12-8  Example Output from Unpack

Pivot

Summary
The pivot function is used to pivot data stored in rows into columns. 

The function takes as input a table of data to be pivoted, and it automatically constructs the 
output schema based on the arguments passed to the function. NULL values are handled 
automatically by the function, as shown in the examples below.

id src packed_data 

1 ebay 62,male,white,30,44 

2 paypal 29,female,asian,33,23 

3 Bad_data THISISINVALIDDATA 

age gender race numBuys numSells id src 

62 male white 30 44 1 ebay 

29 female asian 33 23 2 paypal 
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Usage

Permissions

You must grant EXECUTE on the function “pivot” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * FROM pivot(
  ON { table_name | view_name | ( query ) }
  PARTITION BY 'col1'[, 'col2', ...]
  [ ORDER BY order_by_columns ]
  PARTITIONS('col1'[, 'col2', ...])
  ROWS('number_of_rows')
  PIVOT_KEYS('key1', 'key2'[, ...])
  PIVOT_COLUMN( 'pivot_column_name' )
  METRICS('metric_col1', 'metric_col2'[, ...])
);

Arguments

PARTITIONS: Required. This should be the same as the columns after the 'PARTITION BY' 
clause, but can be in different order.

ROWS: Either the 'ROWS' argument or the 'PIVOT_KEY' and the 'PIVOT_COLUMN' 
arguments need to be specified. The 'ROWS' argument specifies the maximum number of rows 
in all of the partitions. If the number of rows in a partition is smaller than this argument, then 
NULLs will be added; while if it is larger, the rest of the rows are omitted. See example 1 below 
for detail.

PIVOT_KEYS & PIVOT_COLUMN: If the 'rows' argument is not specified, these two arguments 
must be specified together. All rows containing a value in the 'pivot_column' that is not specified 
as a pivot key will be ignored. If the partition does not contain a value for a particular pivot key, 
the function will emit NULL. Note that if you specify these two arguments, you must order the 
input rows lexicographically along the 'pivot_column'. If the pivot column contains numeric 
types, then a cast to varchar is required for the function to work properly. See example 2 below 
for detail.

METRICS: Required. The columns that contain the values you want to pivot.

Example 1
Suppose a table is made up of the columns member_id, wk, metricA and metricB. A user wants 
to generate a new table that has columns member_id, metricA0, metricB0, metricA1, metricB1, 
metricA2, metricB2, based on scanning a specific set of 3 weeks from the original table. Getting 
the data transformed in this way might be convenient for various analyses. The user can either 
specify the maximum number of rows to be pivoted in a certain partition, or specify particular 
rows to be pivoted by providing some 'pivot keys'. Constructing this table using standard SQL 
would require multiple self-joins using outer joins, and would be inefficient.

Example 1 shows usage of the function when the 'rows' argument clause is specified.
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Example 1 Input Data

Table 12-9  Example 1 Input Data, table sample_table

Example 1 SQL-MapReduce Call
SELECT * FROM pivot(
  ON pivot_sample_table
  PARTITION BY member_id
  ORDER BY week

  PARTITIONS('member_id')
  ROWS(3)
  METRICS('value1', 'value2')
)
ORDER BY member_id;

Example 1 Output from Pivot

Table 12-10  Example 1 Output from Pivot

Notice that the number of rows in partition 'member_id = 2' is 2, so the third set of values for this 
partition are NULLs, as is shown in the output table. Also, for the notation value1_i, the 'value1' 
part corresponds to the column name in the input table, while the 'i' part corresponds to the order 
of rows in a partition. The 'ORDER BY' clause is not required, and if not supplied, the order of 
values is not assured. NULLs are added at the end.

Example 2
In this example, we specify the 'pivot_keys' to include as columns. We also need to specify the 
'pivot_column' where the pivot keys exist, and must order the input rows lexicographically along 
the 'pivot_column'. The input data will be the “sample_table”, just as in Example 1.

Example 2 Input Data

Table 12-11  Example 2 Input data, table sample_table

member_id week value1 value2

1 1 100 1000

1 2 103 1030

1 3 107 1070

2 1 202 2020

2 3 205 2050

member_id value1_0 value2_0 value1_1 value2_1 value1_2 value2_2

1 100 1000 103 1030 107 1070

2 202 2020 205 2050

member_id week value

1 1 100
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Example 2 SQL-MapReduce call
SELECT * FROM pivot(
  ON pivot_sample_table
  PARTITION BY member_id
  ORDER BY week::varchar
  PARTITIONS('member_id')
  PIVOT_KEYS('2','3')
  PIVOT_COLUMN('week')
  METRICS('value1', 'value2')
)
ORDER BY member_id;

Example 2 Output from pivot

Table 12-12  Example 2 Output from pivot

In this case, the PIVOT_KEYS are '2' and '3', so the rows where 'week = 1' are not included. And 
for pivot key '2', member 2 does not have any data for the row where 'week = 2', so NULLs are 
added in the output table. Note how the notation is constructed: for example, for the notation 
value1_i, the 'value1' part still refers to the column name in the input table, while the 'i' part 
refers to the pivot_keys.

XML Parser

Summary
The XMLParser function is a general tool to extract the element name, attribute value, and text 
from XML documents. 

The inputs to the XMLParser function are the XML data, the parameter that constrains the 
information that can be extracted, and the parameter to define the result schema. The output of 
XMLParser function is a flattened table. 

The schema of the output table should be defined using a meaningful structure. Any parent/child 
relationships in the source XML data should be maintained. Sometimes, additional information 
outside the parent/child relationship may also be extracted. The additional information would 
appear as sibling tags of the parent tags.

1 2 103

1 3 107

2 1 202

2 3 205

member_id value1_2 value2_2 value1_3 value2_3

1 103 1030 107 1070

2 205 2050

member_id week value
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Background
XML data is semi-structured, and some parts of its content may be flattened. You can use the 
XML Parser SQL-MR function to extract the information from an XML document and import it 
into a relational table in Aster Database, so that it can be queried by SQL. Not all kinds of XML 
data are a good fit for extraction into table. Therefore, it is necessary to supply parameters to the 
SQL-MR function that can constrain the structures of the tags that will be parsed.

This function is not meant to be a general tool for XML/Relational importing and exporting. 
Instead, it is a tool that enables you to extract information formatted as XML and flatten it into a 
relation table.

A classic use case for the XML Parser function is as follows: Suppose we have a large number of 
XML files containing weather sensor information. We want to extract the timestamp, location, 
temperature, humidity, and similar data into a weather table to find any abnormal data.

Usage

Permissions

You must grant EXECUTE on the function “XMLParser” to the database user who will run the 
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * FROM XMLParser(
  ON { table_name | view_name | (query) }
  TEXT_COLUMN('text_column_name')
  NODES('node_pair_string [,...]')
  [SIBLING('sibling_node_string')]
  [DELIMITER('delimiter_string')]
  [SIBLING_DELIMITER('delimiter_string')]
  [MAX_ITEM_NUMBER('max_item_number')]
  [ANCESTOR('nodes_path')]
  [OUTPUTCOLUMN_NODEID('column_name')]
  [OUTPUTCOLUMN_PARENT_NODE_NAME('column_name')]
  [ACCUMULATE('column [, ...]')]
);

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be scanned as an XML 
document. Only one column is permitted.

NODES: A list of the parent/children node pair from which data will be extracted. Each node pair 
should includes one parent node name and at least one child node name. If there are multiple 
children node names, the string of children should follow the format '{node_name[,...]}'. 
The string containing the node name should follow the format '<node_
name[:<attributes>]>'. Each node can have zero, one or multiple attributes. The string of 
attributes should be an attribute or '{attribute[, ...]}'. The result set will include this 
value in the "parent_node”, and children columns. If an attribute name is indicated, the attribute 
will be included as a column name in the output.

SIBLING: Optional. A list of nodes which are the siblings of one of the parent nodes indicated in 
the 'NODES' argument. The string of node names should follow the format '<node_
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name[:<attributes>]>'. Each node can have zero, one or multiple attributes. The string of 
attributes should be a attribute or '{attribute[, ...]}'. The values from the sibling nodes 
will be included in every output row and each sibling node name will be included as a column 
name in the output. If an attribute name is indicated, the attribute will be included as a column 
name in the output.

DELIMITER: Optional. The delimiter used to separate multiple children values having the same 
child name of one parent node in the XML document. If not defined, the default value ',' will be 
used. 

MAX_ITEM_NUMBER: Optional. The maximum number of items with the same node name to 
be returned. These items are siblings in the document. This should be a positive integer equal to 
or less than 10. If not defined, '10' will be used as the default value.

ANCESTOR: Optional. The path of ancestor nodes of all the parent nodes indicated in the 
'NODES' argument. The ancestor path string should follow the format '<ancestor[/...]>'. 
The first ancestor is the root ancestor of other ancestors in the ancestor path and all the parent 
nodes indicated in the 'NODES' argument. The string for ancestors should follow the format 
'<node_name[:<attributes>]>'. Each node can have zero, one or multiple attributes. The 
string of attributes should be an attribute or '{attribute[, ...]}'. If not defined, the root of 
the XML document will be de default value.

OUTPUTCOLUMN_NODEID: Optional. Name of the column in the result schema that contains 
the id of the each node extracted. If not defined, 'out_nodeid' will be the default value.

OUTPUTCOLUMN_PARENT_NODE_NAME: Optional. Name of the column in the result 
schema that contains the tag name of the parent node extracted. If not defined, 'out_parent_node' 
will be the default value.

ACCUMULATE: Optional. A list of columns you want to return in the output table. Note that no 
output column name can be the same as the column name indicated in the 'OUTPUTCOLUMN_
NODEID' or 'OUTPUTCOLUMN_PARENT_NODE_NAME' argument. By default, if 
ACCUMULATE is not selected, all input columns are returned.

Output Schema

A row is output for each node in the XML document having a name indicated as a parent node in 
the 'NODES' argument, and for each of the descendants of the ancestor path indicated in the 
'ANCESTOR' argument.

The output table contains the following columns:

• node ID

• parent node name

• parent attributes if specified

• siblings if specified

• siblings attributes if specified,

• children nodes

• children attributes if specified

• ancestor attributes if specified

The output also contains all columns specified in the ACCUMULATE clause.

The column name of the children and siblings is the node name indicated in the NODES 
argument. The column name of the attributes follows the format 'node name:attribute 
name'.
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Examples

Example Input Data

Table 12-13  Example Input Data, table xml_inputs

Xid xmlDocument

1 <bookstore>

<owner> "billy" <owner/>

<book category="WEB">

<title lang="en">XQuery Kick Start</title>

<author>James McGovern</author>

<author>Per Bothner</author>

<year edtion="1">2003</year>

<year edtion="2">2005</year>

<price>

<member>49.99</member>

<public>60.00</public>

</price>

<reference>

<title>A</title>

</reference>

<position value="1" locate="east"/>

</book>

<book category="CHILDREN">

<author>Wenny Wang</author>

<price>

<member>99.99</member>

<public>108.00</public>

</price>

</book>

</bookstore> 
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Example 1 SQL-MapReduce Call
SELECT * FROM XMLParser(
 ON xml_inputs
 TEXT_COLUMN('xmlDocument')
 NODES ('price/member’)
 SIBLING ('author')
 SIBLING_DELIMITER(';')
 ACCUMULATE('Xid')
)

Example 1 Output from XML Parser

Table 12-14  Example 1 Output from XMLParser

Example 2 SQL-MapReduce Call
SELECT * FROM XMLParser(
 ON xml_inputs
 TEXT_COLUMN('xmlDocument')
 NODES ('temperature/read:type','storage/{used, total}')
 SIBLING ('settopid:{type, length}','accountid')
 ANCESTOR('setTopRpt')
 OUTPUTCOLUMN_NODEID('unique_node_id')
 MAX_ITEM_NUMBER(1)

2 <setTopRpt 
xsi:noNamespaceSchemaLocation="Set%20Top%2020Report%2
0.xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
>

<settopid type="string" length="5">ST789</settopid>

<accountid type="string">8728</accountid>

<zipcode type="string">94025</zipcode>

<reportstamp 
type="dateTime">2009-10-03T12:52:06</reportstamp>

<temperature>

<read type="bigDecimal">46</read>

</temperature>

<storage>

<used type="bigDecimal">98</used>

<used type="bigDecimal">199</used>

<used type="bigDecimal">247</used>

<total type="bigDecimal">300</total>

</storage>

<feed>

<feedstamp 
type="dateTime">2009-10-03T12:52:06</feedstamp>

</feed>

</setTopRpt> 

xid out_
node_id

out_parent_
node

author member

1 1 price James McGovern; Per Bothner 49.99

1 2 price Wenny Wang 99.99 

Xid xmlDocument
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)

Example 2 Output from XML Parser

Table 12-15  Example 1 Output from XMLParser

Errors
The function will read the full XML document into the memory buffer. One assumption is that a 
document won't exceed the memory of machine.

Error Messaging

You will receive error messages under the following conditions:

• If needed columns are missing from the relation named in the ON clause.

ERROR:  SQL-MR function XMLPARSER failed: Input column should be 
contained in Input table/query.

• If any columns in your ACCUMULATE clause have the disallowed column name.

ERROR:  SQL-MR function XMLPARSER failed: Same node name in the 
nodes, sibling, or ancestor parameters.

• If the format of the string NODES, SIBLING, or ANCESTOR is incorrect.

ERROR:  SQL-MR function XMLPARSER failed: 
com.asterdata.ncluster.sqlmr.IllegalUsageException: The format of 
'node' parameter is incorrect. The correct format should be 
'parent/children'

• If the SIBLING_DELIMITER argument was specified without a SIBLING argument.

ERROR:  SQL-MR function XMLPARSER failed: No SIBLING_DELIMITER if 
SIBLING is not specified.

• If the value of MAX_ITEM_NUMBER is not a positive integer less than 10.

ERROR:  The maxItemNumber should be a positive integer less than 10.

• If two output columns name are the same.

ERROR:  SQL-MR function XMLPARSER failed: Same node name in the 
nodes, sibling, or ancestor parameters.

• If the XML Document is empty.

[Fatal Error] :1:1: Premature end of file.The function will read the 
full document into the memory buffer and create a hash table. \

unique__
node_id

out_
parent_
node

settopid settopid:
type

settopid:
length

accountid read read:type used total

1 temperature ST789 string 5 8728 46 bigDecimal

2 storage ST789 string 5 8728 98 300
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Apache Log Parser

Summary
This function parses Apache log file content according to NCSA extended/combined log format, 
and extracts multiple columns of structural information, including search engines and search 
terms.

Background
The apache_log_parser function can parse Apache log files, assuming the log files are loaded 
into a table and the content is conforming to the NCSA extended/combined log format:

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

Please see http://httpd.apache.org/docs/current/mod/mod_log_config.html for more details. 
Please note that the function assumes one line of the Apache log file is loaded to one row in the 
table.

Usage

Permissions

You must grant EXECUTE on the function “apache_log_parser” to the database user who will 
run the function. For information on how SQL-MR security, see “SQL-MapReduce Security” on 
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM apache_log_parser
  (ON {table_name|view_name|(query)}
  LOG_COLUMN('log_column_name')
  [EXCLUDE_FILES('.file_suffix[, ...]')]
  [RETURN_SEARCH_INFO('true'|'false')]
)

Arguments

LOG_COLUMN: Required. Name of the column whose contents will be parsed. Only one 
column is permitted.

EXCLUDE_FILES: Optional. Comma separated file suffixes to exclude. The default is '.png, 
.xml, .js'.

RETURN_SEARCH_INFO: Optional. A true or false value that specifies whether to return search 
information. If 'true', the search engine and the search terms, if existing, are extracted. The 
default is 'false'.

Output Schema

The function emits a row for the log content of each row it parses. Each output row contains:

• datestamp: the timestamp when the HTTP request is made

http://httpd.apache.org/docs/current/mod/mod_log_config.html
http://httpd.apache.org/docs/current/mod/mod_log_config.html
"http://httpd.apache.org/docs/current/mod/mod_log_config.html"
http://httpd.apache.org/docs/current/mod/mod_log_config.html

http://httpd.apache.org/docs/current/mod/mod_log_config.html
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• ip_address: the remote host that made the HTTP request

• page: the landing page

• referrer: the referring URL from which the visitor has arrived

The following columns are extracted only if RETURN_SEARCH_INFO = true:

• search_engine: 1 stands for Google, 2 denotes Bing, 3 means Yahoo, and 0 if there is no 
search engine referral.

• search_terms: the search terms entered by the search engine user, which led to landing on 
the page

Example

Example Input Data

Table 12-16  Example Input Data, table web_log_data

Example SQL-MapReduce Call
SELECT * FROM apache_log_parser(
  ON web_log_data
  LOG_COLUMN('log_data')
  EXCLUDE_FILES('.png, .xml, .js, .css')
  RETURN_SEARCH_INFO('true'))
ORDER BY datestamp, page;

Example Output from Apache Log Parser

Table 12-17  Example Output from Apache Log Parser

id log_data

1 75.36.209.106 - - [20/May/2008:15:43:57 -0400] "GET / HTTP/1.1" 200 15251 
"http://www.google.com/search?hl=en&q=%22Aster+Data+Systems%22" "Mozilla/4.0 
(compatible; MSIE 6.0; Windows NT 5.1; SV1; YPC 3.2.0; .NET CLR 1.1.4322; .NET 
CLR 2.0.50727; MS-RTC LM 8)"

2 98.210.132.218 - - [27/Mar/2011:11:45:47 -0700] "GET /about/management.php 
HTTP/1.1" 200 10048 "http://www. 
bing.com/search?q=aster+data&form=QBLH&qs=n&sk=&sc=8-10" "Mozilla/4.0 
(compatible; MSIE 7.0; Windows NT 5.1; . NET CLR 1.1.4322; .NET CLR 2.0.50727; 
.NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)" 

3 llf520029.crawl.yahoo.net - - [29/May/2008:23:15:15 -0400] "GET 
/resources/images/support HTTP/1.0" 301 187 "" "Mozilla/5.0 (compatible; Yahoo! 
Slurp; http://help.yahoo.com/help/us/ysearch/slurp)" 

4 159.41.1.23 - - [06/Jul/2010:07:19:45 -0400] "GET /public/js/common.js HTTP/1.1" 200 
16711 "http://www.wooloo. org/wonjoo" "Mozilla/5.0 (Windows; U; Windows NT 5.1; 
it; rv:1.9.2.3) Gecko/20100401 Firefox/3.6.3" 

datestamp ip_address page referrer search_
engine 

search_terms 

2008-05-20 
15:43:57.0

75.36.209.106 / http://www.google.com/searc
h?hl=en&q=%22Aster+Data+
Systems%22 

1 "Aster Data 
Systems"
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Errors

Error Messaging
You may see the following error messages:

• Requires input rows to have a column of specified name: <log_column_name>

• Requires the specified log column <log_column_name> to be of NativeType String.

2011-03-27 
11:45:47.0

98.210.132.218 /about/management.php http://www.bing.com/search?
q=aster+data&form=QBLH&
qs=n&sk=&sc=8-10

2 aster data

2008-05-29 
23:15:15.0

llf520029.crawl.
yahoo.net

/resources/images/support 1 0

datestamp ip_address page referrer search_
engine 

search_terms 
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Aster Database System Utility Functions

The built-in system utility functions are intended to be invoked through AMC Executables. 
These functions are automatically installed as part of the Aster Database installation. Note that if 
you type \dF in ACT, these out-of-the-box functions will not appear, as they are internal-only 
functions. You can, however, use these in your own custom scripts.

Aster Database includes the following system utility functions. 

• nc_genericlocalquery 

• nc_tablesize

• nc_skew

• nc_recursive

For more infomation on these functions, see “Cluster Utility SQL-MapReduce Functions” on 
page 161 of the Aster Database User’s Guide.
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Index
A
aggregate

creating with nPath, 39
nPath aggregate, 39

analytics
nPath, 39

anchor
nPath, 43

antiselect function, 159
API

nPath, 39
application code

install SQL-MapReduce application code, 7
approx percentile, 54
Approximate Distinct Count, 51, 53
Approximate Percentile, 54
association analysis, 118
Aster support portal, 4
at-least operator, 44
attribution analysis, 25

B
Bayes’ Theorem, 125

C
canopy function, 122
CART algorithm, 129
CASE with multiple conditions, 161
centroid, 111
cfilter, 140
classification functions

Naive Bayes, 125
clickstream analysis

nPath, 39
clickstream example, 47
cluster analysis, 111
cluster analysis functions, 111
clustering

canopy, 122
collaborative filtering function, 140
column, 163

combine many columns into one, 163
split one column into many, 165
transpose columns into rows, 168

combine many columns into one, 163

comma operator in nPath, 44
Correlation (stats correlation), 57
count_approx_distinct, 51, 53
custom code

nPath, 39
customer support, 4

D
data transformation functions, 159
decision trees, 129
DISTINCT

in nPath, 42

E
eigenvector, 76

F
file upload in Aster, 7
finding patterns, 39
forest_analyze, 134
forest_drive, 130
forest_predict, 131
functions

nPath, 39
functions, list of, 1

G
Generalized Linear Model, 69
GLM, 69
graph analysis, 153

Single Source Shortest Path, 153
GROUP BY

in nPath, 42
grouping

canopy, 122
collaborative filtering, 140

H
hash by locality, 118
help, 4
histogram function, 59
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I
install

SQL-MapReduce function, 7

J
Jaccard metric, 118

K
k-Means, 111

kmeansplot supporting function, 115
kmeansplot, 115

L
LAG expression in nPath, 45
Levenshtein distance, 95
lexical tokenizer, 97
LIMIT

in nPath, 42
Linear Regression, 63
list all possible website paths, 13
load

install SQL-MapReduce application code, 7
loading

install SQL-MapReduce application code, 7
locality-sensitive hashing, 118

M
match mode in nPath, 41
Minhash, 118
multicase function, 161
multi-gram, 97

N
Naive Bayes classification function, 125
Named Entity Recognition, 104
nGram, 97
n-gram, 97
nonoverlapping match, 41
non-overlapping match, 41
nPath, 39

anchors, 43
describing patterns in, 42
examples, 47
introduction, 39
LAG expression, 45
MODE for overlap, 41
operators, 43
pattern matching, 44
repeated patterns, 44
SYMBOLS clause, 41
syntax, 40

O
OFFSET

in nPath, 42
operators, 43

comma in nPath, 44
nPath, 43

ORDER BY
in nPath, 42

overlapping match, 41

P
Pack function, 163
pairings, finding with collaborative filtering, 140
partitioning by canopy, 122
path analysis

list all possible website paths, 13
path analysis functions, 13
Path Generator, 13
Path Generator function, 13
Path Starter, 16
Path Summarizer, 19
pattern matching

lag comparison, 45
nPath, 39
repeated pattern, 44
time series, 45

pattern match, overlapping, 41
PCA, 76
pivot function, 168
portal, 4
predicate for an nPath symbol, 41
previous row compared with current, 45
principal component analysis, 76

R
relational analysis, 137, 147
relational analysis functions, 137, 147
repeated pattern matching, 44
row, 168

transpose rows into columns, 168

S
sample code

nPath, 47
SDK

nPath, 39
select all but listed columns, 159
select: antiselect, 159
Sessionization, 22
similarity analysis, 118
Simple Moving Average, 78
Single Source Shortest Path, 153
split into words, 100
split one column into many, 165
split text, 97
SQL aggregate

creating with nPath, 39
SQL-MapReduce

installing a function, 7
SSSP function, 153
statistical analysis functions, 51
stats glm, 69
stats linear reg, 63
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stats smavg, 78
stats vwap, 90
stats wmavg, 82, 83, 85
support, 4
symbol predicate, 41

LAG expression, 45
SYMBOLS clause, 41
system utility functions, 173

T
technical support, 4
telephone number, 4
text

split into words or grams, 97
text analysis, 97

Named Entity Recognition, 104
text analysis functions, 95
text parser, 100
text_parser, 100
time series functions, 13
time series pattern matching, 45
tokenize, 97, 100
tokenize_cnt, 100
traffic analysis, 13

attribution, 25, 39
Path Generator, 13
Path Starter, 16
Path Summarizer, 19

transformation functions, 159
transpose columns into rows, 168

U
unique words, finding, 100
unpack function, 165
upload

install SQL-MapReduce application code, 7
upload file to Aster, 7
upload SQL-MapReduce function, 7
URL, 4
user-defined function

nPath, 39
utilities

nPath, 39
utility functions, 173

V
Volume-Weighted Average Price, 90
vwap, 90

W
website traffic analysis, 13

attribution, 25
finding patterns, 39
Path Generator, 13
Path Starter, 16
Path Summarizer, 19

Weighted Moving Average, 82, 83, 85
WHERE

in nPath, 42
wmavg, 82, 83, 85
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