
March 21, 2012 Aster Data proprietary and confidential i

Aster MapReduce Analytics
Foundation User’s Guide

Version 4.6.3-ua1 — March 21, 2012

Contents

1 Introduction 1
Analytics at Scale: Full Data Set Analysis .. 1
List of Aster Analytical Functions by Type ... 1

Time Series, Path, and Attribution Analysis .. 2
Statistical Analysis ... 2
Text Analysis ... 3
Cluster Analysis .. 3
Naive Bayes ... 3
Decision Trees .. 4
Relational Analysis ... 4
Graph Analysis ... 4
Data Transformation .. 4
Aster Database Utilities .. 4

Contacting Aster Technical Support ... 4

2 Installing Analytical Functions in Aster Database 7
Installation Procedure .. 7

Download the Analytics Foundation Bundle .. 7
Install the Functions ... 7
Set Permissions to Allows Users to Run Functions ... 8
Test the Functions .. 8

Using ACT’s \install Command to Install ... 8
Installing Aster Database’s Driver-Based Analytical Functions .. 9

Required Components .. 10
Install SQL-MapReduce Functions in Aster Database .. 10
Install the JDK on the client machine ... 10
Install the Aster SQL-MapReduce API on the client machine ... 11
Testing Your Installation of a JDBC-Based Analytics Function .. 11

3 Time Series, Path, and Attribution Analysis 13

Path Generator .. 13
Summary .. 13
Background ... 14
Usage ... 14
Input Data .. 14
Output .. 15
Example ... 15
Error Messages ... 16

Aster Data proprietary and confidential

ii Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Path Starter .. 16
Summary .. 16
Background ... 16
Example ... 18

Path Summarizer ... 19
Summary .. 19
Background ... 19
Usage ... 19
Example ... 21
Error Messages ... 22

Sessionization .. 22
Background ... 22
Usage ... 23
Example ... 24
Error Messages ... 25

Attribution ... 25
Background ... 25
Usage ... 26
Example Input Data ... 28
Example 1: Event models (with multiple optional event models) ... 29
Example 2: Event models (with a single optional event model) .. 30
Example 3: Event models (using dynamic weighted distribution model) 32
Example 4: Window models .. 34
Additional Sample Input Data .. 35
Example 5: A single-window model .. 36
Example 6: Not all segment windows are used ... 37

4 Pattern Matching with nPath 39

What is nPath? ... 39
nPath Permissions ... 40
nPath Syntax and Semantics .. 40

ON clause .. 40
PARTITION BY expression ... 40
ORDER BY expression ... 40
MODE clause ... 41
PATTERN clause .. 41
SYMBOLS clause .. 41
RESULT clause: nPath Output .. 41
Working with nPath Output ... 42

Patterns, Symbols, and Operators in nPath .. 42
Patterns .. 42
Symbols .. 42
Operators ... 43
Nesting parentheses .. 43
Anchors .. 43

Pattern Matching in nPath ... 44
Matching Repeated Patterns in nPath .. 44
LAG expressions in symbol predicates .. 45

Lag expression example ... 46
Applying an SQL aggregate to an nPath result ... 46
nPath Examples ... 47

Clickstream Data: An nPath Example .. 47
Lead: An nPath Example ... 48
Rank: An nPath Example ... 49
Complex Path Query: An nPath Example .. 49

Aster Data proprietary and confidential

March 21, 2012 iii

5 Statistical Analysis 51

Approximate Distinct Count (count_approx_distinct) .. 51
Summary .. 51
Background ... 51
Usage ... 51
Output .. 53
Example ... 53
Error Messages ... 54

Approximate Percentile (approx percentile) ... 54
Summary .. 54
Background ... 54
Usage ... 54
Input Data .. 55
Output .. 55
Example ... 56
Example Output from Approximate Percentile .. 57

Correlation (stats correlation) .. 57
Summary .. 57
Usage ... 57
Example ... 58
Example Output from Correlation Reduce ... 59
Error Messages ... 59

Histogram ... 59
Summary .. 59
Usage ... 59
Permissions ... 60
Output .. 61
Example ... 61
Algorithm .. 63
Error Messages ... 63

Linear Regression (stats linear reg) ... 63
Summary .. 63
Usage ... 63
Example ... 64
Notes .. 65
Error Messages ... 65

Logistic Regression ... 65
Summary .. 65
Usage ... 66
Example ... 68
Error Messages ... 69

Generalized Linear Model (stats glm) ... 69
Summary .. 69
Background ... 70
Usage ... 71
Arguments .. 71
Input .. 72
Output .. 73
Examples .. 73
Error Messages ... 75

Principal Component Analysis (PCA) .. 76
Summary .. 76
Background ... 76
Usage ... 76
Input Data .. 77
Output .. 77

Aster Data proprietary and confidential

iv Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example ... 77
Simple Moving Average (stats smavg) ... 78

Summary .. 78
Background ... 79
Usage ... 79
Example ... 80
Error Messages ... 82

Weighted Moving Average (stats wmavg) .. 82
Summary .. 82
Background ... 82
Usage ... 82
Example ... 83
Error Messages ... 86

Exponential Moving Average (stats emavg) ... 86
Summary .. 86
Background ... 86
Usage ... 86
Example ... 88
Error Messages ... 90

Volume-Weighted Average Price (stats vwap) .. 90
Summary .. 90
Background ... 91
Usage ... 91
Example Query 1 ... 92
Example Query 2 ... 93
Example 2 Output from VWAP .. 93
Error Messages ... 94

6 Text Analysis 95

Levenshtein Distance ... 95
Summary .. 95
Background ... 95
Usage ... 95
Example ... 96

nGram ... 97
Summary ... 97
Background ... 97
Description ... 97
Usage ... 98
Example ... 99

Text Parser (text_parser) .. 100
Summary .. 100
Background ... 100
Usage ... 101
Example ... 102
Algorithm .. 103
Error Messages ... 103

Named Entity Recognition ... 104
Summary .. 104
Background ... 104
Usage ... 104
FindNamedEntity .. 104
Example for FindNamedEntity ... 105
TrainNamedEntityFinder .. 106
EvaluateNamedEntityFinderRow and EvaluateNamedEntityFinderPartition 108
Example for EvaluateNamedEntityFinder ... 109

Aster Data proprietary and confidential

March 21, 2012 v

7 Cluster Analysis 111

k-Means .. 111
Summary .. 111
Background ... 111
Usage ... 112
Arguments .. 112
Example ... 113
Error Messages ... 115

kmeansplot .. 115
Summary .. 115
Usage ... 115
Example ... 116

Minhash .. 118
Summary .. 118
Background ... 118
Usage ... 119
Example ... 120
Error Messages ... 122

Canopy ... 122
Introduction ... 122
Background ... 123
Installation .. 123
Driver Usage ... 123
Arguments .. 123
Example ... 123
Error Messages ... 124

8 Naive Bayes 125

What is Naive Bayes? ... 125
Naive Bayes Syntax and Semantics ... 125

Permissions ... 125
Syntax ... 125
Arguments .. 126

Naive Bayes Examples ... 126
Example Input Data ... 126
Example SQL-MapReduce call ... 127
Example Output of Naive Bayes ... 127

9 Decision Trees 129

Summary .. 129
Background ... 129
Usage .. 129
forest_drive ... 130

Syntax for forest_drive ... 130
Arguments for forest_drive .. 130
Input to forest_drive ... 131
Output from forest_drive .. 131

forest_predict ... 131
Syntax of forest_predict ... 131
Arguments for forest_predict ... 132
Input to forest_predict ... 132
Output from forest_predict .. 133
Example ... 133

forest_analyze .. 134
Usage ... 134

Aster Data proprietary and confidential

vi Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Algorithm .. 135
Error Messages .. 135
Best Practices .. 135

10 Association Analysis 137

Basket Generator .. 137
Summary .. 137
Background ... 137
Usage ... 137
Examples .. 139

Collaborative Filtering .. 140
Summary .. 140
Background ... 140
Usage ... 140
Example ... 142
Error Messages ... 145

11 Graph Analysis 147

nTree ... 147
Summary .. 147
Background ... 147
Usage ... 148
Example 1 .. 150
Using nTree on a pre 5.0 cluster ... 153

Single Source Shortest Path (SSSP) .. 153
Summary .. 153
Installation .. 154
Usage on the queen .. 154
Usage on a remote (non-queen) machine ... 154
Arguments .. 154
Input .. 155
Output .. 155
Example ... 155
Error Messages ... 157

12 Data Transformation 159

Antiselect .. 159
Summary .. 159
Background ... 159
Usage ... 159
Example ... 160

Multicase .. 161
Summary .. 161
Background .. 161
Usage ... 161
Example ... 162

Pack .. 163
Summary .. 163
Usage ... 164
Example: .. 165

Unpack ... 165
Summary .. 165
Usage ... 166
Example ... 167

Pivot ... 168

Aster Data proprietary and confidential

March 21, 2012 vii

Usage ... 168
Arguments .. 169
Example 1 .. 169
Example 2 .. 170

13 Aster Database System Utility Functions 173

Index .. 175

Aster Data proprietary and confidential

viii Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

March 21, 2012 Aster Data proprietary and confidential 1

1

Introduction

Analytics at Scale: Full Data Set Analysis
With Aster Database, you have the ability to efficiently perform analytical tasks on your full
dataset, in place, rather than using samples or bulk-exporting data to a dedicated computing
cluster.

Why run your analytics on your full data set? While applying analytics to a small sample of the
data outside the database might work for some problems, it cannot provide the accurate,
reproducible results that can be obtained by analyzing a complete dataset.

One important application of in-database analytics is to speed up iterations of analysis. Since the
cycle of iteration time is so critical, many organizations want a solution that is faster then
exporting a data sample, analyzing it, and exporting another sample, and so on. In such cases, it
makes sense to push down those analytics into an MPP system to decrease the iteration cycle. We
are working with partners, including the SAS Institute, Inc., to make this process straightforward,
and are additionally developing our functions where appropriate (for example, functionality that
really takes advantage of the MapReduce paradigm).

However, there is a much stronger set of reasons to develop analytics on the entire data set,
within Aster Database:

• “Needle in a Haystack,” “False Negative,” and “Exceptional Cases” searches: Very rare
events can only be found (and defined) against the background of the entire data set
(consider trying to define 'elite baseball player' by looking at the 2008 SF Giants, vs every
player in MLB history).

• Statistical significance: Reliable analytics may require using a large portion of the data,
which cannot be fit on a typical, single database machine.

• Model tuning: The parameters to predictive models depend on aggregate statistics of the
entire data set (for example, residual away from the mean).

• No meaningful way to sample: Sampling a graph is not straightforward, especially if one is
interested in critical behavior that only appears when a certain threshold of connections is
reached.

• Larger data sets are just different: The resulting analytics will be applied to the entire data
set in the cluster. Algorithms developed on smaller data sets may not scale appropriately to
the full data set, requiring redevelopment.

List of Aster Analytical Functions by Type
Below, we list the Aster SQL-MapReduce analytical functions, grouped by the type of analysis
or utility function that each handles.

List of Aster Analytical Functions by Type Aster Data proprietary and confidential

2 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Time Series, Path, and Attribution Analysis
• Pattern Matching with nPath (page 39): nPath is a function for pattern matching that

allows you to specify a pattern in an ordered collection of rows, specify additional
conditions on the rows matching these symbols, and extract useful information from these
row sequences.

• Path Generator (page 13): This function takes as input a set of paths where each path is a
route (series of pageviews) taken by a user from start to end. For each path, it generates the
correctly formatted sequence and all possible sub-sequences for further analysis by the Path
Summarizer function. The first element in the path is the first page a user could visit. The
last element of the path is the last page visited by the user.

• Path Starter (page 16): Generates all the children for a particular parent and sums up their
count. Note that the input data has to be partitioned by the parent column.

• Path Summarizer (page 18): The output of the Path Generator function is the input to this
function. This function is used to sum counts on nodes. “Node” can either be a plain
sub-sequence or an exit sub-sequence. Exit sub-sequence is the one in which both sequence
and the sub-sequence are same. Exit sub-sequences are denoted by appending '$' to the end
of the sequence.

• Sessionization (page 21): Sessionization is the process of mapping each click in a
clickstream to a unique session identifier. One can define a session as a sequence of clicks
by a particular user where no more than n seconds pass between successive clicks (that is, if
we don't see a click from a user for n seconds, we start a new session).

• Attribution (page 24): The attribution operator is often used in web page analysis.
Companies would like to assign weights to pages before certain events, such as a 'click' or a
'buy'. This attribution function enables you to calculate attributions by using a wide range of
distribution models.

Statistical Analysis
• Approximate Distinct Count (count_approx_distinct) (page 51): Computes an

approximate global distinct count of the values in the specified column or combination of
columns. Based on probabilistic counting algorithms, this algorithm counts the approximate
distinct values for any number of columns or combination of columns, while scanning the
table only once. Evaluates all the children for a particular parent and sums up their count.
Note that the input data has to be partitioned by the parent column.

• Approximate Percentile (approx percentile) (page 54): Computes approximate percentiles
for one or more columns of data where the accuracy of the approximation is a parameter
specified by the user.

• Correlation (stats correlation) (page 57): Computes a global correlation between any pair
of columns from a table.

• Histogram (page 59): Counts the number of occurrences of a given data value that fall into
each of a series of user-defined bins.

• Linear Regression (stats linear reg) (page 63): Outputs the coefficients of the linear
regression model represented by the input matrices.

• Logistic Regression (page 65): A series of row functions and partition functions that
establish the weights sequence for the logistic regression.

• Generalized Linear Model (stats glm) (page 68): GLM performs linear regression analysis
for any of a number of distribution functions using a user-specified distribution family and
link function. Supported models in Aster Database are ordinary linear regression, logistic
regression (logit model), and Poisson log-linear model.

http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Arithmetic_mean
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/6/webnotes/install/index.html

Aster Data proprietary and confidential List of Aster Analytical Functions by Type

March 21, 2012 Introduction 3

• Principal Component Analysis (PCA) (page 75): Principal component analysis (PCA) is a
common unsupervised learning technique that is useful for both exploratory data analysis
and dimensionality reduction. It is often used as the core procedure for factor analysis.

• Simple Moving Average (stats smavg) (page 77): Computes the average over a number of
points in a series.

• Weighted Moving Average (stats wmavg) (page 81): Computes the average over a number
of points in a time series while applying an arithmetically-decreasing weighting to older
values.

• Exponential Moving Average (stats emavg) (page 84): Computes the average over a
number of points in a time series while applying an exponentially decaying damping
(weighting) factor to older values so that more recent values are given a heavier weight in
the calculation.

• Volume-Weighted Average Price (stats vwap) (page 88): Computes the average price of a
traded item (usually an equity share) over a specified time interval.

Text Analysis
• Levenshtein Distance (page 95): Computes the Levenshtein distance between two text

values, i.e. the number of edits needed to transform one string into the other, where edits
include insertions, deletions, or substitutions of individual characters.

• nGram (page 97): Tokenizes (or splits) an input stream and emits n multi-grams based on
the specified delimiter and reset parameters. This function is useful for performing sentiment
analysis, topic identification, and document classification.

• Text Parser (text_parser) (page 100): A general tool for working with text fields that can
tokenize an input stream of words, optionally stem them, and then emit the individual words
and counts for the each word appearance.

• “Named Entity Recognition (NER)” on page 103: Named entity recognition (NER) is a
process of finding instances of specified entities in text (e.g. person, location, organization,
etc.) It has functions to train, evaluate and apply models which perform this analysis.

• “Sentiment Extraction Functions” on page 109: The sentiment extraction functions enable
the process of deducing a user's opinion (positive, negative, neutral) from text-based content.

Cluster Analysis
• k-Means (page 111): Simple unsupervised learning algorithm that solves the well-known

clustering problem. The procedure follows a simple and easy way to classify a given data set
through a certain number of clusters (assume k clusters) fixed a priori. The goal is to define
k centroids, one for each cluster.

• Minhash (page 117): A probabilistic clustering method that assigns a pair of users to the
same cluster with probability proportional to the overlap between the set of items that these
users have bought (this relationship between users and items mimics various other
transactional models).

• Canopy (page 122): A simple, fast, accurate method for grouping objects into preliminary
clusters. Each object is represented as a point in a multidimensional feature space. Canopy
clustering is often used as an initial step in more rigorous clustering techniques, such as
k-means clustering.

http://portal.acm.org/author_page.cfm?id=81100334856&coll=GUIDE&dl=GUIDE&trk=0&CFID=78554557&CFTOKEN=41072132
http://portal.acm.org/author_page.cfm?id=81100334856&coll=GUIDE&dl=GUIDE&trk=0&CFID=78554557&CFTOKEN=41072132
http://en.wikipedia.org/wiki/Exponentiation
http://en.wikipedia.org/wiki/Exponentiation

List of Aster Analytical Functions by Type Aster Data proprietary and confidential

4 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Naive Bayes
The Naive Bayes (page 125) set of functions lets you train a Naive Bayes classification model,
and use the model to predict new outcomes. Observed data from a sample set with known
outcomes is input to the function. The function then creates a model that can later be applied to
observed or hypothetical data where the outcome is not known. Predicted outcomes with
statistical probability are then determined and output by the model.

Decision Trees
The Decision Trees (page 129) suite of functions lets you create a predictive model based on a
combination of the CART algorithm for training decision trees, and the ensemble learning
method of bagging.

Relational Analysis
• Basket Generator (page 137): Generates sets or “baskets” of items that occur together in

records in data, typically transaction records or web page logs.

• Collaborative Filtering (page 140): Helps discover which items or events are frequently
paired with other items or events.

Graph Analysis
• nTree (page 137): nTree is a hierarchical analysis SQL-MR function which can build and

traverse through tree structures on all worker machines.

• Single Source Shortest Path (SSSP) (page 142): Given a graph with vertices and edges
between these vertices, the Single Source Shortest Path (SSSP) function finds the shortest
paths from a given vertex to all the other vertices in the graph.

Data Transformation
• Antiselect (page 159): Returns all columns except the columns specified.

• Multicase (page 160): Extends the capability of the SQL CASE statement by supporting
matches to multiple options. The function iterates through the input data set only once and
emits matches whenever a match occurs whereas as soon as CASE has a match it emits the
result and then moves on to the next row.

• Pack (page 163): Compress data in multiple columns into a single “packed” data column.

• Unpack (page 165): Take data from a single “packed” column and expand it to multiple
columns.

• Pivot (page 167): Pivot data stored in rows into columns.

• XML Parser (page 170): Extract the data from XML documents. and flatten it into a
relational table.

• Apache Log Parser (page 176): Parses Apache log file content and extracts multiple
columns of structural information, including search engines and search terms.

Aster Data proprietary and confidential Contacting Aster Technical Support

March 21, 2012 Introduction 5

Aster Database Utilities
Aster Database System Utility Functions (page 173): Used for querying data from local
v-workers. Useful for querying local catalog tables to support database administration activities.

Contacting Aster Technical Support
For assistance and updated documentation, contact Aster Database technical support. Support
during non-business hours is only available to Aster Database Platinum Support customers.

Support Portal: http://www.teradataatyourservice.com/

Email: coresupport@teradata.com

Telephone: +1-650-273-5599

You have an Aster Database account manager and Aster Database support manager whom you
can talk with directly about important issues. Use the portal to find the name of your account
manager and support manager.

Aster Database offers two Service Level Agreements: Aster Database Platinum Support, and
Aster Database Gold Support. With Aster Database Platinum Support, the Aster Database
support team will respond to your needs 24 hours a day, 365 days a year. You can call our
dedicated support line to be immediately connected with a member of our team. With Aster
Database Gold Support, the Aster Database support team will be available between 9 a.m. and 5
p.m. PST on standard business days. If an issue arises outside of these hours, we will respond the
next business day.

Aster Database will use all commercially reasonable best efforts to provide support services
within the following timelines, taking into consideration the complexity of detecting and
correcting the specific issue. These response times apply to both Platinum and Gold Support.

Note: Support during non-business hours is only available to Aster Database Platinum Support
customers.

Copyright and Legal Statements

The product or products described in this book are licensed products of Teradata Corporation or
its affiliates.

Teradata, Aster Data, Aster Database, Aster MapReduce, nCluster, SQL-MapReduce, Aprimo,
BYNET, DBC/1012, DecisionCast, DecisionFlow, DecisionPoint, Eye logo design, InfoWise,
Meta Warehouse, MyCommerce, SeeChain, SeeCommerce, SeeRisk, Teradata Decision Experts,

Level Description Solution
Timeline

Update
Frequency

Initial
Response
Within

Severity 0 Issues that affect external, customer-facing
operations

24 hours 2 hours 4 hours

Severity 1 Issues that cause an important component of Aster
Database to be inaccessible

48 hours 4 hours 8 hours

Severity 2 Issues that cause a major degradation in the
functionality of Aster Database, resulting in a
significant inconvenience

96 hours 8 hours 16 hours

Severity 3 Issues that impact operations but are not severe
enough to impact the use of Aster Database

1 month 24 hours,
upon request

48 hours

http://www.teradataatyourservice.com/

Contacting Aster Technical Support Aster Data proprietary and confidential

6 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Teradata Source Experts, WebAnalyst, "More Data. Big Insights," and "You’ve Never Seen Your
Business Like This Before" are trademarks or registered trademarks of Teradata Corporation or
its affiliates.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.

AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.

BakBone and NetVault are trademarks or registered trademarks of BakBone Software, Inc.

EMC, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC Corporation.

GoldenGate is a trademark of GoldenGate Software, Inc.

Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.

Intel, Pentium, and XEON are registered trademarks of Intel Corporation.

IBM, CICS, RACF, Tivoli, and z/OS are registered trademarks of International Business
Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

LSI and Engenio are registered trademarks of LSI Corporation.

Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered
trademarks of Microsoft Corporation in the United States and other countries.

Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other
countries.

QLogic and SANbox are trademarks or registered trademarks of QLogic Corporation.

SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.

SPARC is a registered trademark of SPARC International, Inc.

Sun Microsystems, Solaris, Sun, and Sun Java are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries.

Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec
Corporation or its affiliates in the United States and other countries.

Unicode is a collective membership mark and a service mark of Unicode, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS-IS”
BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. IN NO EVENT WILL TERADATA CORPORATION BE
LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS OR LOST SAVINGS, EVEN IF EXPRESSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The information contained in this document may contain references or cross-references to
features, functions, products, or services that are not announced or available in your country.
Such references do not imply that Teradata Corporation intends to announce such features,
functions, products, or services in your country. Please consult your local Teradata Corporation
representative for those features, functions, products, or services available in your country.
Information contained in this document may contain technical inaccuracies or typographical

Aster Data proprietary and confidential Contacting Aster Technical Support

March 21, 2012 Introduction 7

errors. Information may be changed or updated without notice. Teradata Corporation may also
make improvements or changes in the products or services described in this information at any
time without notice.

If you’d like to help maintain the quality of this documentation, please send us your comments
on the accuracy, clarity, organization, and usefulness of this document. You can send your
comments to teradata-books@lists.teradata.com.

Any comments or materials (collectively referred to as “Feedback”) sent to Teradata Corporation
will be deemed non-confidential. Teradata Corporation will have no obligation of any kind with
respect to Feedback and will be free to use, reproduce, disclose, exhibit, display, transform,
create derivative works of, and distribute the Feedback and derivative works thereof without
limitation on a royalty-free basis. Further, Teradata Corporation will be free to use any ideas,
concepts, know-how, or techniques contained in such Feedback for any purpose whatsoever,
including developing, manufacturing, or marketing products or services incorporating Feedback.

Copyright © 2011 by Teradata Corporation. All Rights Reserved.

www.teradata.com and www.asterdata.com

http://www.teradata.com
http://www.asterdata.com

Contacting Aster Technical Support Aster Data proprietary and confidential

8 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

March 21, 2012 Aster Data proprietary and confidential 7

2

Installing Analytical Functions in Aster
Database

This section shows you how to install the analytical functions as a set and individually.

Installation Procedure
To make the functions usable, you must download, install, and set permissions on the functions
as explained in the sections below.

Download the Analytics Foundation Bundle
The fastest way to install the Aster SQL-MapReduce analytical functions is to run the
install.sql script provided in each Analytics Foundation bundle. Follow these steps:

1. Download the desired Analytics Foundation bundle from www.asterdata.com/support. The
file name depends on which package of analytical functions you have purchased, but the
name will be similar to this: “Analytics_Foundation.zip”. Contact Aster Database
support if you need login credentials. See “Contacting Aster Technical Support” on page 5.

2. Unpack the zip archive on the machine where you run ACT. You will use ACT to install the
functions from the bundle. On Windows, use a tool such as WinRAR to extract the archive’s
contents. On Linux, use a tool such as Info-Zip unzip.

For this example, we will assume you have extracted the zip’s contents to
C:\analyticslibs on a Windows machine.

Next Step Proceed to “Install the Functions” on page 7, below.

Install the Functions
3. Working at the command line, change to the directory where you extracted the files.

4. Run ACT, logging in with an Aster Database user account that has rights to install functions
in the public schema. Ideally, your account should also have rights to grant EXECUTE and
other permissions on the functions you install. (Note: It doesn’t matter which database you
connect to; the functions will be added to the public schema and will be usable in all
databases.)

 $ act -h <Queen IP Address> -U db_superuser
 Password: ************

5. In ACT, use the \i command to run the install.sql script:

http://www.asterdata.com/support/index.php

Using ACT’s \install Command to Install Aster Data proprietary and confidential

8 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 beehive=>\i install.sql

The script installs the set of functions you purchased.

Note: If you would like to install some but not all of the functions from your package, see
the section below, “Using ACT’s \install Command to Install” on page 8.

6. Type \dF to review the list of installed functions.

Next Step Proceed to “Set Permissions to Allows Users to Run Functions” on page 8, below.

Set Permissions to Allows Users to Run Functions
7. Type \dF <function name> to check which schema the functions belong to.

8. Use the GRANT command to give the EXECUTE privilege to users who will run each
function. The syntax is:

 GRANT EXECUTE
 ON FUNCTION <schema-name>.<function-name>
 TO <user-name or group-name or PUBLIC>;

For example, to give user beehive the right to run the function path_start.jar, you would
type:

 GRANT EXECUTE
 ON FUNCTION public.path_start
 TO beehive;

Note that in most ACT commands for managing functions, when you type the function
name, you do not type its suffix (like “.jar” in this example).

9. Repeat the preceding step for all functions and users. To quickly grant broad access, grant
the EXECUTE privilege on each function to PUBLIC.

To learn more about the rules that govern who can install and run functions in Aster Database,
see the section, “SQL-MapReduce Security” in the Aster Database User’s Guide.

Test the Functions
After you have performed the preceding steps, the function is installed and usable by all users to
whom you’ve granted EXECUTE rights. Test your functions by following the steps below to run
them:

1. Run Aster Database ACT and log in as an SQL user who has the EXECUTE privilege on a
function.

2. Invoke the function in a statement such as a SELECT or other data-retrieval statement.
Make sure you schema-qualify the function’s name, or have its schema in your schema
search path.

Using ACT’s \install Command to Install
You can install and manage individual Aster SQL-MapReduce Analytics functions,
SQL-MapReduce functions, stream() functions, and other installed files using the \install
command and related commands in the Aster Database ACT tool. (Note that if you’re installing
all the analytics functions, it’s faster to use the install.sql script as explained in “Download the
Analytics Foundation Bundle” on page 7.)

Using \install, you can install:

Aster Data proprietary and confidential Installing Aster Database’s Driver-Based Analytical Functions

March 21, 2012 Installing Analytical Functions in Aster Database 9

• SQL-MapReduce functions: Compiled Java and C executables that can be called by name
in the FROM clause of a SELECT.

• Scripts for stream(): Each script is installed as a file that you will invoke in a call to
stream().

• Files: Installed files are typically used to provide settings to SQL-MapReduce functions and
to stream() functions. Installed files can only be used in your SQL-MapReduce and stream()
functions. Installed files are not directly invokable or accessible via SQL.

The ACT commands for installing and removing files and functions are listed below. Here, we
refer to a file or function as “local” when it resides on your local file system, and as “remote”
when it resides in Aster Database.

The install and \remove commands can be used transactionally in a BEGIN / COMMIT
block just like any transactional SQL command.

Tip! You can only install files in the public schema of your database.

Installing Aster Database’s Driver-Based Analytical
Functions

Some Aster SQL-MapReduce analytical functions are packaged as driver-based applications that
connect to the database over JDBC. These functions can be thought of as stored procedures, but

Command Meaning

\dF Lists all installed files and functions.

\install file [installed_filename] Installs the file or function called file. The
argument, file, is the path name of the file
relative to the directory where ACT is running.

Optionally, you can give the file or function an
installed_filename alias. Aliases are provided
as a convenience that’s mainly useful for renaming
helper files you install. Using an alias for an
SQL-MapReduce function can be confusing, so we
don’t recommend doing it.

If no installed_filename is specified, the file’s
name will be used as its name in Aster Database.
Keep in mind that, when you call an
SQL-MapReduce function in your queries, you
drop its filename suffix. If the file or function does
have an installed_filename, then all calls to it
from other functions or from queries must use its
installed_filename.

\download installed_filename [newfilename] Downloads the specified, installed file or function
(identified by its installed_filename) to the
machine where ACT is running.

Optionally, you can specify a new name for the file
by supplying the newfilename argument. This
argument can be a path, but the destination
directory must exist on the file system where
you’re running ACT.

\remove installed_filename Removes the file or function specified by its FILE_
ALIAS.

Installing Aster Database’s Driver-Based Analytical Functions Aster Data proprietary and confidential

10 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

with more capability for developing logical applications. These JDBC programs typically consist
of two components: a JDBC client-function and one or more SQL-MapReduce functions. The
JDBC client-function executes on the client machine (which can be of any platform). The
SQL-MapReduce functions reside in a database in your Aster Database cluster, and they are
executed on the cluster. The JDBC client-function interacts with the SQL-MapReduce functions
over the network.

This section shows you how to install and set up the components you need in order to use
driver-based analytical functions.

Required Components
To run a JDBC-based Aster Analytics function, the function’s components must be installed in
your cluster, and on your client machine you must have:

• the JDK (Java SE Development Kit) version 5 or later

• the Aster Database JDBC driver

• the Aster SQL-MapReduce API library

Below, we will show you how to set these up.

Install SQL-MapReduce Functions in Aster Database
1. If you have already installed all the SQL-MapReduce functions by running the install script

install.sql, you may skip this step and proceed to Step 2. Otherwise:

Install in Aster Database the desired Aster Analytics SQL-MapReduce functions. You can
find the list of needed functions in the description of the function (for example, in “Single
Source Shortest Path (SSSP)” on page 110) To do this:

a. Run ACT, connecting as a database administrator who has the INSTALL FILE privilege
and the CREATE FUNCTION privilege in the schema where you will install the
function:

 # act -h 10.50.52.100 -U db_superuser

b. Run the \install command, passing the name of the function to be installed:

 \install <function_name>.<jar/zip>

For example, to use the Single-Source Shortest Path (SSSP) function, you must install three
SQL-MapReduce functions on your cluster. These functions can be installed using the
following commands in ACT:

 beehive=> \install sssp_prepare.jar
 beehive=> \install sssp_map.jar
 beehive=> \install sssp_reduce.jar

Install the JDK on the client machine
2. Download the JDK from http://java.sun.com/javase/downloads/index.jsp and

3. Install the JDK on your client machine according to the JDK installation instructions at
http://java.sun.com/javase/6/webnotes/install/index.html

Install the Aster Database JDBC driver on the client machine

4. Get the Aster Database JDBC driver, noarch-ncluster-jdbc-driver.jar, in one of
these ways:

Aster Data proprietary and confidential Installing Aster Database’s Driver-Based Analytical Functions

March 21, 2012 Installing Analytical Functions in Aster Database 11

a. copy the package from your queen node. On the queen, you can find the installers in
/home/beehive/clients_all/platform (where platform is the name of your
client machine’s operating system); or

b. download the driver from asterdata.com/support.

5. Copy the driver to a location in your CLASSPATH on the client machine, or edit the client
machine’s CLASSPATH to include its directory.

Install the Aster SQL-MapReduce API on the client
machine
6. Download the Aster SQL-MapReduce API, ncluster-sqlmr-api.jar, from the queen to

your client machine. This library can be found on your Aster Database queen in the
directory, saved as /home/beehive/bin/lib/sqlmr/ncluster-sqlmr-api.jar

7. Copy the SQL-MapReduce API library to a location in your CLASSPATH on the client
machine, or edit the client machine’s CLASSPATH to include its directory.

Testing Your Installation of a JDBC-Based Analytics
Function

Optional approach: Run it directly on the Aster Database queen
beehive@coordinator:~$ java -jar <JDBC-Client-Function>.jar <Command line arguments>

Typical approach: Run it from your client machine
user@machine:~$ java -classpath
<JDBC-Client-Function>.jar:<ncluster-sqlmr-apr>.jar:<JDBC-Driver>.jar <main-class to
be invoked with the full package name> <Command line arguments>

Command-Line Arguments for Driver-Based Functions

Typically you will pass a set of mandatory arguments and a set of optional arguments. Mandatory
arguments are of two types, generic arguments and function-specific arguments. The mandatory
generic arguments include:

• domain: Required argument. Host is the Aster Database queen hostname or IP address. (To
specify an IPv6 address, enclose the host parameter in square brackets. For example, "[::
1]:2406".) The Port is the port number where the Aster Database queen accepts client
connections. Default is the Aster Database standard port number (2406). For example:
-domain=10.51.23.100:2406

• database: Required argument. This is the name of the database where the input table is
present. For example: -database=beehive

• userid: Required argument. The database user name of the user in Aster Database. For
example: -userid=beehive

• password: Required argument. The database password of the user in Aster Database. For
example: -password=beehive

The rest of the arguments are specific to the function and are listed in the function’s
documentation, such as “Single Source Shortest Path (SSSP)” on page 110 or “Collaborative
Filtering” on page 113, or “Canopy” on page 97.

http://www.asterdata.com/support

Installing Aster Database’s Driver-Based Analytical Functions Aster Data proprietary and confidential

12 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

March 21, 2012 Aster Data proprietary and confidential 13

3

Time Series, Path, and Attribution Analysis

In this section we describe:

• “Path Generator” on page 13

• “Path Starter” on page 16

• “Path Summarizer” on page 187

• “Sessionization” on page 21

• “Attribution” on page 24

• See also “Pattern Matching with nPath” on page 39

Path Generator

Summary
This function takes as input a set of paths where each path is a route (series of pageviews) taken
by a user in a single session from the start of the session until its end. For each path, Path
Generator generates the correctly formatted sequence and all possible sub-sequences for further
analysis by the Path Summarizer function. The first element in the path is the first page a user
could visit. The last element of a path is the last page visited by the user.

Together, the Path Generator, Path Summarizer, and Path Starter functions are used to perform
clickstream analysis of common sequences of users’ pageviews on a website. The roles of the
three functions are:

• Path Generator generates all the possible paths (sequences of pageviews on a website);

• Path Summarizer counts the number of times various paths were traveled and measures the
depth in pageviews of each path; and

• Path Starter generates all the child paths for a particular parent path and sums up the count
of times each child path was traveled.

In the discussion below, we will use the terms:

• Path: An ordered, start-to-finish series of actions (for example, pageviews) for which you
wish to generate sequences and sub-sequences. You will run Path Generator on the set of all
observed paths users have traveled while navigating your website.

• Sequence: The sequence is the path prefixed with a carat ('^') to indicate the start of the
path. For example, if a user visited page a, page b, and page c in that order, we would say
that his session had the sequence, ^,a,b,c.

Path Generator Aster Data proprietary and confidential

14 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

• Sub-sequence: For a given sequence of actions, a sub-sequence is one possible subset of the
steps that begins with the initial action. For example, the path a,b,c generates three
sub-sequences: ^,a; ^,a,b; and ^,a,b,c.

Background
This tool is useful for performing clickstream analysis of website traffic. These functions can
also be used for doing other types of sequence/path analysis, such as the analysis required for
advertisement attribution and referral attribution.

Usage

Permissions

You must grant EXECUTE on the function “path_generator” to the database user who will run
the function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
 FROM path_generator
 (
 ON { table_name | view_name | (query) }
 SEQ('sequence_column')
 [DELIMITER('delimiter_character')]
)

Arguments

SEQ: Required. Name of the column in the input relation that contains the paths to be analyzed.
The SEQ column must be of type varchar. Each path string is a delimited list of alphanumeric
symbols that represents an ordered sequence of pageviews (or actions). Typically each symbol is
a code that represents a unique pageview.

DELIMITER: Optional. Specifies the single-character delimiter you used in the path string
(default is ",").

Input Data
You specify your path column in the SEQ parameter. The data source can be rows from a table or
the result of an nPath query. In the query that generates the input data, you must GROUP BY
your path column so that there is one row for each unique path traveled on your website, with a
count of times that path was traveled.

Output
The function emits a row for each sub-sequence it generates. Each output row contains:

• The sub-sequence (called the “prefix”)

Aster Data proprietary and confidential Path Generator

March 21, 2012 Time Series, Path, and Attribution Analysis 15

• The formatted sequence with a carat (“^”) character added as the first element in the
sequence; the carat indicates the start of the sequence. For example, a sequence in which a
user viewed pages a, b, c, and then d would be expressed as the sequence ^,a,b,c,d.

• The path and all other columns of the input row that generated this sub-sequence.

Example
The input table user_flows contains the columns user_id, path, and cnt. Path Generator operates
only on the path data, and outputs the other columns’ data untouched.

Example Input Data

Table 3-1 Example input table user_flows

Example SQL-MapReduce call
SELECT *
 FROM PATH_GENERATOR
 (
 ON user_flows
 SEQ('path')
 DELIMITER(',')
);

Example Output from Path Generator

As mentioned above, the function generates a row for every sub-sequence it generates. The
sub-sequence itself is output in the “prefix” column. All input columns (user_id, path, and cnt,
here) are returned in the results, as well.

Table 3-2 Example output from Path Generator

user_id path cnt

1 a,b,c,d 1

2 a,b 2

3 b,e,g 5

4 a 7

5 a,e 5

user_id path cnt prefix sequence

1 a,b,c,d 1 ^,a ^,a,b,c,d

1 a,b,c,d 1 ^,a,b ^,a,b,c,d

1 a,b,c,d 1 ^,a,b,c ^,a,b,c,d

1 a,b,c,d 1 ^,a,b,c,d ^,a,b,c,d

2 a,b 2 ^,a ^,a,b

2 a,b 2 ^,a,b ^,a,b

3 b,e,g 5 ^,b ^,b,e,g

3 b,e,g 5 ^,b,e ^,b,e,g

Path Starter Aster Data proprietary and confidential

16 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Error Messages
You may see the following error message:

• ERROR: “Please provide the SEQ argument, usage: SEQ(<columnname>)”

REASON: SEQ argument is missing

Path Starter

Summary
The output of Path Summarizer function is the input to this function. This function generates all
the children for a particular parent and sums up their count. Note that the input data has to be
partitioned by the parent column.

Background
This function is useful for website clickstream analysis and other sequence/path analysis tasks
such as advertisement attribution.

Usage

Permissions

You must grant EXECUTE on the function “path_start” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
 FROM PATH_START
 (
 ON { table_name | view_name | (query) }
 PARTITION BY expression [, ...]
 CNT('count-column')
 [DELIMITER(',')]
 PARENT('parent-column')
 PARTITIONNAMES('partitionby-col-name' [, ...])
 NODE('node-column')
)

3 b,e,g 5 ^,b,e,g ^,b,e,g

4 a 7 ^,a ^,a

5 a,e 5 ^,a ^,a,e

5 a,e 5 ^,a,e ^,a,e

Aster Data proprietary and confidential Path Starter

March 21, 2012 Time Series, Path, and Attribution Analysis 17

Arguments

CNT: Required. Name of the column that contains the count values.

DELIMITER: Optional. Single-character delimiter to use (default is “,”).

PARENT: Required. Name of the column that contains the path of the parent node. You must
partition the input data on this column.

PARTITIONNAMES: Required. This is a comma-delimited list of names to be used in the output
as the names of the partition-by columns. Make sure you specify one name in this clause for each
column you included in the PARTITION BY clause.

NODE: Required. Name of column that contains the path of the current node.

Assumptions

The user is expected to partition the input data based on the PARENT column (required) and
optionally on any additional columns. All the columns used for partitioning will be emitted as-is.
The PARTITIONNAMES argument clause is used to give output-column names to all the
columns that are being used to partition the input data set. The number of columns in the
PARTITION BY clause must same as the number of names in the PARTITIONNAMES
argument. The NODE argument clause is used to specify the column containing the path to the
node.

Input Data

Input column datatype requirements:

• The node column and the parent column should be of type varchar.

• The cnt column should be of type bigint or int.

All other columns are ignored unless they are part of the partition function.

Output

The function emits node, parent, children, cnt, depth, and all columns that are part of the
partition function.

Example
Input table user_flow_subpaths contains node, cnt, parent, prefix, depth, and children.

Example Input Data

Table 3-3 Example input table user_flow_subpaths

node cnt parent prefix depth children

^,a 15 ^ ^,a 1 [(^,a,$),(^,a,b),(^,a,e)]

^,a,$ 7 ^,a ^,a 2

^,a,b 3 ^,a ^,a,b 2 [(^,a,b,$),(^,a,b,c)]

^,a,b,$ 2 ^,a,b ^,a,b 3

^,a,b,c 1 ^,a,b ^,a,b,c 3 [(^,a,b,c,d)]

^,a,b,c,d 1 ^,a,b,c ^,a,b,c,d 4 [(^,a,b,c,d,$)]

Path Summarizer Aster Data proprietary and confidential

18 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example SQL-MapReduce call
SELECT *
 FROM PATH_START
 (
 ON user_flow_subpaths
 PARTITION BY (parent)
 CNT('cnt')
 DELIMITER(',')
 PARENT('parent')
 PARTITIONNAMES('partitioned')
 NODE('node')
);

Example Output from Path Start

Table 3-4 Example output table from Path Start

Path Summarizer

Summary
The output of the Path Generator function is the input to this function. This function is used to
sum counts on nodes. A node can either be a plain sub-sequence or an exit sub-sequence. An exit
sub-sequence is one in which the sequence and the sub-sequence are the same. Exit
sub-sequences are denoted by appending a dollar sign ('$') to the end of the sequence.

^,a,b,c,d,$ 1 ^,a,b,c,d ^,a,b,c,d 5

^,a,e 5 ^,a ^,a,e 2 [(^,a,e,$)]

^,a,e,$ 5 ^,a,e ^,a,e 3

^,b 5 ^ ^,b 1 [(^,b,e)]

^,b,e 5 ^,b ^,b,e 2 [(^,b,e,g)]

^,b,e,g 5 ^,b,e ^,b,e,g 3 [(^,b,e,g,$)]

^,b,e,g,$ 5 ^,b,e,g ^,b,e,g 4

node parent children cnt depth partitioned

^ [(^,a),(^,b)] 20 0 ^

^,a ^ [(^,a,$),(^,a,b),
(^,a,e)]

15 1 ^,a

^,b ^ [(^,b,e)] 5 1 ^, b

^,a,b ^,a [(^,a,b,$),(^,a,b,c)] 3 2 ^,a,b

^,a,e ^,a [(^,a,e,$)] 5 2 ^,a,e

^,b,e ^,b [(^,b,e,g)] 5 2 ^,b,e

^,a,b,c ^,a,b [(^,a,b,c,d)] 1 3 ^,a,b,c

^,b,e,g ^,b,e [(^,b,e,g,$)] 5 3 ^,b,e,g

^,a,b,c,d ^,a,b,c [(^,a,b,c,d,$)] 1 4 ^,a,b,c,d

Aster Data proprietary and confidential Path Summarizer

March 21, 2012 Time Series, Path, and Attribution Analysis 19

Background
This function is useful for website clickstream analysis and other sequence/path analysis tasks
such as advertisement attribution.

Usage

Permissions

You must grant EXECUTE on the function “path_summarizer” to the database user who will run
the function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
 FROM PATH_SUMMARIZER
 (
 ON {table_name|view_name|(query)}
 PARTITION BY expression [, ...]
 CNT('count_column')
 DELIMITER(',')
 SEQ('sequence-column')
 PARTITIONNAMES('partitionby-col-name' [, ...])
 HASH('true|false')
 PREFIX('prefix-column')
)

Arguments

CNT: Required. Name of the column containing the count values. If an input row has no CNT
value, then the row is assumed to have a count of 1.

DELIMITER: Optional. Single-character delimiter to use (default is ",").

SEQ: Required. Name of the column containing the path of the current node.

PARTITIONNAMES: Required. Names for the columns specified in the PARTITION BY clause.
The number of names specified in this argument must match the number of columns in the
PARTITION BY clause.

HASH: Optional. Boolean that specifies whether the hash code of the NODE column should be
included in the output. (Default is “false”.)

PREFIX: Required. Name of the column containing the prefix of a given node.

Assumptions

The user is expected to partition the input data on the PREFIX column (required) and optionally
on additional columns. All the columns used for partitioning will be emitted as-is. The
PARTITIONNAMES argument clause is used to name all the columns being used to partition the
input data set. The number of columns in the PARTITION BY clause must be same as the
number of names in the PARTITIONNAMES argument. Use the SEQ argument clause to specify
the column containing the path to the node.

Path Summarizer Aster Data proprietary and confidential

20 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Input Data

All other columns are ignored unless part of the partition function. Observe the following
datatype requirements for input columns to Path Summarizer:

• The PREFIX and SEQ columns should be of type varchar.

• The CNT column should be of type bigint or int.

Output

The function emits the node, parent to the node, children, cnt (the sum of input counts), depth,
and columns part of the partition function. The parent of the node is the route traversed by the
users before visiting this node. Children of the node are the set of routes traversed by the users
after visiting this node. Depth is the number of elements visited before entering this node.

Example
Input table output_of_path_generator contains user_id, path, prefix, sequence, and cnt.

Example Input Data

Table 3-5 Example input table output_of_path_generator

Example SQL-MapReduce call
SELECT *
 FROM PATH_SUMMARIZER
 (
 ON output_of_path_generator
 PARTITION BY prefix
 SEQ('sequence')
 PREFIX('prefix')
 PARTITIONNAMES('prefix')
 DELIMITER(',')
 CNT('cnt')
 HASH('false')

user_id path prefix sequence cnt

1 a,b,c,d ^,a ^,a,b,c,d 1

1 a,b,c,d ^,a,b ^,a,b,c,d 1

1 a,b,c,d ^,a,b,c ^,a,b,c,d 1

1 a,b,c,d ^,a,b,c,d ^,a,b,c,d 1

2 a,b ^,a ^,a,b 2

2 a,b ^,a,b ^,a,b 2

3 b,e,g ^,b ^,b,e,g 5

3 b,e,g ^,b,e ^,b,e,g 5

3 b,e,g ^,b,e,g ^,b,e,g 5

4 a ^,a ^,a 7

5 a,e ^,a ^,a,e 5

5 a,e ^,a,e ^,a,e 5

Aster Data proprietary and confidential Sessionization

March 21, 2012 Time Series, Path, and Attribution Analysis 21

);

Example Output from Path Summarizer

Table 3-6 Example output table from Path Summarizer

Error Messages
You may see one or more of the following error messages when you attempt to use this function:

• ERROR: Please provide the SEQ argument, usage: SEQ(<columnname>)

REASON: SEQ argument is missing

• ERROR: Please specify the column containing the prefix

REASON: PREFIX argument is missing

• ERROR: Please specify the column containing the cnt

REASON: CNT argument is missing

• ERROR: Please specify the names for the partition columns

REASON: PARTITIONNAMES argument is missing

Sessionization

Background
Sessionization is the process of mapping each click in a clickstream to a unique session
identifier. We define a session as a sequence of clicks by a particular user where no more than n
seconds pass between successive clicks (that is, if we don't see a click from a user for n seconds,
we start a new session). Sessionization can be easily done with the Sessionize SQL-MapReduce
function. Sample code is included with the Aster SQL-MapReduce Java API. This sessionize

node parent children cnt depth prefix

^,a ^ [(^,a,$),(^,a,b),(^,a,e)] 15 1 ^,a

^,a,$ ^,a 7 2 ^,a

^,a,b ^,a [(^,a,b,$),(^,a,b,c)] 3 2 ^,a,b

^,a,b,$ ^,a,b 2 3 ^,a,b

^,a,b,c ^,a,b [(^,a,b,c,d)] 1 3 ^,a,b,c

^,a,b,c,d ^,a,b,c [(^,a,b,c,d,$)] 1 4 ^,a,b,c,d

^,a,b,c,d,$ ^,a,b,c,d 1 5 ^,a,b,c,d

^,a,e ^,a [(^,a,e,$)] 5 2 ^,a,e

^,a,e,$ ^,a,e 5 3 ^,a,e

^,b ^ [(^,b,e)] 5 1 ^,b

^,b,e ^,b [(^,b,e,g)] 5 2 ^,b,e

^,b,e,g ^,b,e [(^,b,e,g,$)] 5 3 ^,b,e,g

^,b,e,g,$ ^,b,e,g 5 4 ^,b,e,g

Sessionization Aster Data proprietary and confidential

22 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

SQL-MapReduce function can also be used to detect web crawler (“bot”) activity. If the time
between successive clicks is less than the user-specified threshold, bot activity will be flagged.

Usage

Permissions

You must grant EXECUTE on the function “sessionize” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
 FROM SESSIONIZE(
 ON { table_name | view_name | (query) }
 PARTITION BY expression [, ...]
 ORDER BY order_by_columns
 TIMECOLUMN ('timestamp_column')
 TIMEOUT (session_timeout_value)
 [RAPIDFIRE (min_human_click_lag)]
 [EMITNULL]
)

Arguments

TIMECOLUMN: Specifies the column name containing the timing information. The specified
column can be of type TIME, TIMESTAMP, INT, BIGINT, or SMALLINT. If the column is of
type INT, BIGINT, or SMALLINT, it is assumed to contain timestamp values in milliseconds.

TIMEOUT: Specifies the maximum number of seconds a user can wait between one pageview
and the next, before it the new pageview is considered to be part of a new session. This value can
have the datatype REAL.

RAPIDFIRE: Optional. Specifies minimum number of seconds that must elapse between clicks
in order for this session to be considered a real (human) session. If the time between clicks is less
than the min_human_click_lag, SESSIONIZE considers the session to be a bot session and
ignores it. RAPIDFIRE must be less than TIMEOUT. The datatype of this value is REAL.

EMITNULL: Optional. If true, emits the row with null values for sessionid and rapidfire even if
the TIMECOLUMN has null value. If false, rows with null values for TIMECOLUMN would
not be emitted. By default EMITNULL is false.

Assumptions

Data is assumed to be partitioned such that each partition contains all the rows of an entity.

Aster Data proprietary and confidential Sessionization

March 21, 2012 Time Series, Path, and Attribution Analysis 23

Example
Example Input Data

Table 3-7 Example Input Data, table sessionize_table

Example SQL-MapReduce call
SELECT *
 FROM SESSIONIZE
 (
 ON sessionize_table
 PARTITION BY partition_id
 ORDER BY clicktime
 TIMECOLUMN('clicktime')
 TIMEOUT('60')
 RAPIDFIRE('0.2')
)
 ORDER BY partition_id, clicktime;

Example Output from Sessionize

Table 3-8 Example Output from Sessionize

partition_id clicktime userid productname pagetype referrer productprice

1 1110000 333 home www.yahoo.com

1 1112000 333 ipod checkout www.yahoo.com 200.2

1 1160000 333 bose checkout 340

1 1200000 333 home www.google.com

1 1203000 67403 home www.google.com

1 1300000 67403 home www.google.com

1 1301000 67403 home

1 1302000 67403 home

1 1340000 67403 iphone checkout 650

1 1450000 67403 bose checkout 750

1 1450200 80000 home www.godaddy.com

1 1450600 80000 bose checkout 340

1 1450800 80000 itrip checkout 450

1 1452000 80000 iphone checkout 650

partition
_id

click
time

userid product
name

pagetype referrer product
price

session
id

rapid
fire

1 1110000 333 home www.yahoo.com 0 f

1 1112000 333 ipod checkout www.yahoo.com 200.2 0 f

1 1160000 333 bose checkout 340 0 f

1 1200000 333 home www.google.com 0 f

1 1203000 67403 home www.google.com 0 f

Attribution Aster Data proprietary and confidential

24 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Output contains all the input columns; in addition it contains sessionid and rapidfire columns.

Error Messages
You may see the following error messages when using this function:

• ERROR: Requires specified timecolumn column (<column_name>)) to have
any of the following types:integer, smallint, bigint, timestamp,
time

REASON: column specified in the TIMECOLUMN argument is not among any of the
allowed datatypes.

• ERROR: TIMEOUT should be a real value greater than 0

REASON: TIMEOUT argument is not a real value greater than 0

• ERROR: RAPIDFIRE should be a real value greater than 0

REASON: RAPIDFIRE argument is not a real value greater than 0

• ERROR: rapidfire should be less than the timeout

REASON: RAPIDFIRE argument should be less than the TIMEOUT argument

Attribution

Background
The attribution operator is often used in web page analysis. Companies would like to assign
weights to pages before certain events, such as a 'click' or a 'buy'. This attribution function
enables you to calculate attributions by using a wide range of distribution models.

1 1300000 67403 home www.google.com 1 f

1 1301000 67403 home 1 f

1 1302000 67403 home 1 f

1 1340000 67403 iphone checkout 650 1 f

1 1450000 67403 bose checkout 750 2 f

1 1450200 80000 home www.godaddy.com 2 t

1 1450600 80000 bose checkout 340 2 f

1 1450800 80000 itrip checkout 450 2 t

1 1452000 80000 iphone checkout 650 2 f

partition
_id

click
time

userid product
name

pagetype referrer product
price

session
id

rapid
fire

Aster Data proprietary and confidential Attribution

March 21, 2012 Time Series, Path, and Attribution Analysis 25

Usage

Permissions

You must grant EXECUTE on the function “attribution” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * FROM attribution
(
 ON { input_table | view | query }
 PARTITION BY expression [, ...]
 ORDER BY order_by_columns
 EVENT_COLUMN_NAME('event_column')
 CONVERSION_EVENT_TYPE_VALUE('click1', 'click2', ...)
 [EXCLUDING_EVENT_TYPE_VALUE('email')]
 [OPTIONAL_EVENT_TYPE_VALUE('optional1', 'optional2')]
 TIMESTAMP_COLUMN_NAME('timestamp_column')
 WINDOW('rows:K | seconds:K | rows:K&seconds:K')
 MODEL1('TYPE', 'K|EVENT:WEIGHT:MODEL:PARAMETERS', ...)
 [MODEL2('TYPE', 'K|EVENT:WEIGHT:MODEL:PARAMETERS', ...)]
);

Simple arguments

EVENT_COLUMN_NAME: Required argument. This is the name of the event column.

CONVERSION_EVENT_TYPE_VALUE: Required argument. A list of strings or integers that
define the impact events.

EXCLUDING_EVENT_TYPE_VALUE: Optional argument. A list of strings or integers that
define the cause events which need to be excluded from the attribution calculation. A row with
one of these event type values will be ignored. Note that the excluding event type values can not
overlap with the conversion event type values.

OPTIONAL_EVENT_TYPE_VALUE: Optional argument. A list of strings or integers that define
the cause events that are optional, which means if there are no other cause events, they will be
attributed, otherwise they will be excluded. These values also can not overlap with conversion
event and excluding event.

TIMESTAMP_COLUMN_NAME: Required argument. This is the name of the timestamp column.
The column type can be integer, smallint, bigint, timestamp, and time.

Window arguments

WINDOW: Required argument. This argument specifies the maximum window size used in the
attribution calculation. There are three modes:

• The 'rows:K' mode considers the maximum number of cause events to be attributed,
excluding cause events with an event type value specified in the 'excludingEventTypeValue'
argument, which means assigning attributions to at most K effective cause events before
current impact event.

• The 'seconds:K' considers the maximum time difference between current impact event and
the earliest effective cause event to be attributed.

Attribution Aster Data proprietary and confidential

26 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

• And the mixed mode 'rows:K&seconds:K' (two K's are not necessarily the same) considers
both constraints and complies to the more strict one.

MODEL1/MODEL2 arguments

TYPE will be one of:

• 'SIMPLE' - Using a single distribution model for all the events. In this case, you can specify
only one distribution model following the 'TYPE' argument, which is in the format of
'MODEL:PARAMETERS'.

• 'EVENT_REGULAR' - In this case, you specify a list of
'EVENT:WEIGHT:MODEL:PARAMETERS', which is a list of regular event models. All
the weights have to sum to 1.

• 'EVENT_OPTIONAL' - In this case, you specify a list of
'EVENT:WEIGHT:MODEL:PARAMETERS', which is a list of optional event models.
'EVENT' should be one of those in the 'OPTIONAL_EVENT_TYPE_VALUE' list. All the
weights have to sum to 1.

• 'SEGMENT_ROWS' - In this case, you specify a list of
'K:WEIGHT:MODEL:PARAMETERS', which is a list of window slices by rows, from the
newest (the most recent happened) to the oldest. All the K_i's have to sum to K as specified
in the 'rows:K' mode. All the Ks have to sum to the 'K' specified in 'rows:K'. All the weights
have to sum to 1.

• 'SEGMENT_SECONDS' - In this case, you specify a list of
'K:WEIGHT:MODEL:PARAMETERS', which is a list of window slices by seconds, from
the newest (the most recent happened) to the oldest. All the K_i's have to sum to K as
specified in the 'seconds:K' mode. All the Ks have to sum to the 'K' specified in 'seconds:K'.
All the weights have to sum to 1.

The allowed MODEL1/MODEL2 combinations are:

• MODEL1('SIMPLE')

• MODEL1('EVENT_REGULAR')

• MODEL1('EVENT_REGULAR'), MODEL2('EVENT_OPTIONAL') - When specify
'OPTIONAL_EVENT_TYPE_VALUE'.

• MODEL1('SEGMENT_ROWS')

• MODEL1('SEGMENT_SECONDS')

• MODEL1('SEGMENT_ROWS'), MODEL2('SEGMENT_SECONDS') - When specify
'rows:K&seconds:K' in the WINDOW argument.

MODEL: This is the model used to calculate the attribution. Currently supported models are
'LAST_CLICK', 'UNIFORM', 'WEIGHTED', 'EXPONENTIAL', 'FIRST_CLICK'. This
argument is case sensitive.

PARAMETERS:

• When the distribution model is 'LAST_CLICK', 'UNIFORM', or 'FIRST_CLICK', parameter
should be 'NA', otherwise you will get an error.

• When the distribution model is 'WEIGHTED': If it is in 'rows:K' mode, you need to specify
a list of weights whose size should be equal to 'K', which is specified in the 'window'
argument (or equal to K_i which is specified in corresponding 'K_i:MODEL_i:WEIGHT_i').
Otherwise (in 'seconds:K' mode or in an event model) you can specify as many weights as
you want, since they will be dynamically re-normalized. Each weight should be in range
[0,1], and all the weights must sum to 1. The weights are specified in the order from left to
right as newest to oldest attributed cause event. Semantic of the weights: suppose we have
sequence "impression1,impression2,click1,impression3,click2,click3", the window is row

Aster Data proprietary and confidential Attribution

March 21, 2012 Time Series, Path, and Attribution Analysis 27

based for 3 preceding rows, the user specified weights are "0.5,0.3,0.2". For click1,
impression1 has attribution 0.375 (0.3 normalized by 0.3+0.5), impression2 has attribution
0.625 (0.5 normalized by 0.3+0.5). For click2, there is only 1 qualifying cause event:
impression3 has attribution 1.0 (0.5 normalized by 0.5).

• When the distribution model is 'EXPONENTIAL', you need to specify a single parameter
'alpha' in range (0,1). Consider the power series:

which sum to 1. These exponential weights can be considered in the same fashion as above
(relative weights) when the actual rows being looked back are not infinite.

Example Input Data

Table 3-9 The input table, attribution_sample_table2

user_id event time_stamp

1 impression 2001-09-27 23:00:01

1 impression 2001-09-27 23:00:03

1 impression 2001-09-27 23:00:05

1 impression 2001-09-27 23:00:07

1 impression 2001-09-27 23:00:09

1 impression 2001-09-27 23:00:11

1 impression 2001-09-27 23:00:13

1 email 2001-09-27 23:00:15

1 impression 2001-09-27 23:00:17

1 impression 2001-09-27 23:00:19

1 click1 2001-09-27 23:00:20

1 optional1 2001-09-27 23:00:21

1 optional2 2001-09-27 23:00:22

1 click2 2001-09-27 23:00:23

2 impression 2001-09-27 23:00:29

2 impression 2001-09-27 23:00:31

2 impression 2001-09-27 23:00:33

2 impression 2001-09-27 23:00:36

2 impression 2001-09-27 23:00:38

2 impression 2001-09-27 23:00:43

2 impression 2001-09-27 23:00:47

2 optional 2001-09-27 23:00:49

2 impression 2001-09-27 23:00:51

2 impression 2001-09-27 23:00:53

2 impression 2001-09-27 23:00:55

2 click1 2001-09-27 23:00:59

Attribution Aster Data proprietary and confidential

28 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Some explanation about the input table:

• The 'user_id = 1' partition is mainly used to test the 'rows:K' mode.

• The 'user_id = 2' partition is mainly used to test the 'seconds:K' mode.

• Conversion events are 'click1', 'click2'.

• 'email' serves as potential 'excluding cause event'.

• 'optional', 'optional1', and 'optional2' are potential 'optional cause events'.

Example 1: Event models (with multiple optional event
models)
In this example, we specify one distribution model for each type of 'regular' cause event, and one
distribution model for each type of optional cause event.

Example 1 SQL-MR Call
SELECT * FROM attribution
(
 ON attribution_sample_table2
 PARTITION BY user_id
 ORDER BY time_stamp

 EVENT_COLUMN_NAME('event')
 CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
 OPTIONAL_EVENT_TYPE_VALUE('optional','optional1', 'optional2')
 TIMESTAMP_COLUMN_NAME('time_stamp')
 WINDOW('rows:10&seconds:20')
 MODEL1('EVENT_REGULAR', 'email:0.19:LAST_CLICK:NA', 'impression:0.81:UNIFORM:NA')
 MODEL2('EVENT_OPTIONAL', 'optional:0.5:UNIFORM:NA', 'optional1:0.3:UNIFORM:NA',
'optional2:0.2:UNIFORM:NA')
)
ORDER BY user_id, time_stamp;

Example 1 Output from Attribution

Table 3-10 Example 1 Output from the attribution function

user_id event time_stamp attribution time_to_conversion

1 impression 2001-09-27 23:00:01 0.09 -19

1 impression 2001-09-27 23:00:03 0.09 -17

1 impression 2001-09-27 23:00:05 0.09 -15

1 impression 2001-09-27 23:00:07 0.09 -13

1 impression 2001-09-27 23:00:09 0.09 -11

1 impression 2001-09-27 23:00:11 0.09 -9

1 impression 2001-09-27 23:00:13 0.09 -7

1 email 2001-09-27 23:00:15 0.19 -5

1 impression 2001-09-27 23:00:17 0.09 -3

1 impression 2001-09-27 23:00:19 0.09 -1

Aster Data proprietary and confidential Attribution

March 21, 2012 Time Series, Path, and Attribution Analysis 29

Example 3: Event models (using dynamic weighted
distribution model)
In this example, we show that a WEIGHTED distribution model can be used in event models.
You can specify as many weights as you want, which determine the maximum number of cause
events you want to attribute for an impact event. If the number of effective cause events is larger
than the number of weights, then the extra (from oldest) cause events will get zero attribution. If
the opposite happens, then the weights will be re-normalized.

Example 3 SQL-MR Call
SELECT * FROM attribution
(
 ON attribution_sample_table2
 PARTITION BY user_id
 ORDER BY time_stamp

 EVENT_COLUMN_NAME('event')
 CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
 OPTIONAL_EVENT_TYPE_VALUE('optional','optional1', 'optional2')
 TIMESTAMP_COLUMN_NAME('time_stamp')
 WINDOW('rows:10&seconds:20')
 MODEL1('EVENT_REGULAR', 'email:0.19:LAST_CLICK:NA',
 'impression:0.81:WEIGHTED:0.4,0.3,0.2,0.1')
 MODEL2('EVENT_OPTIONAL', 'ALL:1:WEIGHTED:0.4,0.3,0.2,0.1')
)
ORDER BY user_id, time_stamp;

1 click1 2001-09-27 23:00:20

1 optional1 2001-09-27 23:00:21 0.6 -2

1 optional2 2001-09-27 23:00:22 0.4 -1

1 click2 2001-09-27 23:00:23

2 impression 2001-09-27 23:00:29 0

2 impression 2001-09-27 23:00:31 0

2 impression 2001-09-27 23:00:33 0

2 impression 2001-09-27 23:00:36 0

2 impression 2001-09-27 23:00:38 0

2 impression 2001-09-27 23:00:43 0.2 -16

2 impression 2001-09-27 23:00:47 0.2 -12

2 impression 2001-09-27 23:00:51 0.2 -8

2 impression 2001-09-27 23:00:53 0.2 -6

2 impression 2001-09-27 23:00:55 0.2 -4

2 click1 2001-09-27 23:00:59

user_id event time_stamp attribution time_to_conversion

Attribution Aster Data proprietary and confidential

30 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example 3 Output

Table 3-11 Example 3 Output of Attribution

Comments on Example 3

Please note:

• See click1 in 'user_id = 1'. Based on 'rows:10' mode, the one 'email' and all nine
'impression's are effective. According to the event models 'email:LAST_CLICK:0.19' and
'impression:WEIGHTED:0.81', all 'email's get 0.19 attribution, and all 'impression's get 0.81
attribution. It is clear for 'email' here, while for 'impression's, since we use a WEIGHTED
distribution with weights '0.4:0.3:0.2:0.1', so only the newest four 'impression's are
attributed, and all the extra older 'impression's get zero attribution. The analysis for click1 in
'user_id = 2' is similar.

• See click2 in 'user_id = 1'. We use a single WEIGHTED distribution model for all types of
optional cause event. Since the number of weights is four but the number of effective cause

user_id event time_stamp attribution time_to_conversion

1 impression 2001-09-27 23:00:01 0

1 impression 2001-09-27 23:00:03 0

1 impression 2001-09-27 23:00:05 0

1 impression 2001-09-27 23:00:07 0

1 impression 2001-09-27 23:00:09 0

1 impression 2001-09-27 23:00:11 0.081 -9

1 impression 2001-09-27 23:00:13 0.162 -7

1 email 2001-09-27 23:00:15 0.19 -5

1 impression 2001-09-27 23:00:17 0.243 -3

1 impression 2001-09-27 23:00:19 0.324 -1

1 click1 2001-09-27 23:00:20

1 optional1 2001-09-27 23:00:21 0.428571 -2

1 optional2 2001-09-27 23:00:22 0.571429 -1

1 click2 2001-09-27 23:00:23

2 impression 2001-09-27 23:00:29 0

2 impression 2001-09-27 23:00:31 0

2 impression 2001-09-27 23:00:33 0

2 impression 2001-09-27 23:00:36 0

2 impression 2001-09-27 23:00:38 0

2 impression 2001-09-27 23:00:43 0

2 impression 2001-09-27 23:00:47 0.1 -12

2 impression 2001-09-27 23:00:51 0.2 -8

2 impression 2001-09-27 23:00:53 0.3 -6

2 impression 2001-09-27 23:00:55 0.4 -4

2 click1 2001-09-27 23:00:59

Aster Data proprietary and confidential Attribution

March 21, 2012 Time Series, Path, and Attribution Analysis 31

events is only two, so the weights get re-normalized to 0.4/(0.4+0.3) = 0.571429, and
0.3/(0.4+0.3) = 0.428571.

Example 4: Window models
In this example we specify both the 'WINDOW_SEGMENTATION_BY_ROWS' and the
'WINDOW_SEGMENTATION_BY_SECONDS' distribution model lists.

Example 4 SQL-MR Call
SELECT * FROM attribution
(
 ON attribution_sample_table2
 PARTITION BY user_id
 ORDER BY time_stamp

 EVENT_COLUMN_NAME('event')
 CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
 EXCLUDING_EVENT_TYPE_VALUE('email')
 OPTIONAL_EVENT_TYPE_VALUE('optional', 'optional1', 'optional2')
 TIMESTAMP_COLUMN_NAME('time_stamp')
 WINDOW('rows:10&seconds:20')
 MODEL1('SEGMENT_ROWS', '3:0.5:EXPONENTIAL:0.5',
 '4:0.3:WEIGHTED:0.4,0.3,0.2,0.1', '3:0.2:FIRST_CLICK:NA')
 MODEL2('SEGMENT_SECONDS', '6:0.5:UNIFORM:NA', '8:0.3:LAST_CLICK:NA',
 '6:0.2:FIRST_CLICK:NA')
)
ORDER BY user_id, time_stamp;

Example 4 Output of Attribution

Table 3-12 Example 4 Output of Attribution

user_id event time_stamp attribution time_to_conversion

1 impression 2001-09-27 23:00:01 0.2 -19

1 impression 2001-09-27 23:00:03 0

1 impression 2001-09-27 23:00:05 0.03 -15

1 impression 2001-09-27 23:00:07 0.06 -13

1 impression 2001-09-27 23:00:09 0.09 -11

1 impression 2001-09-27 23:00:11 0.12 -9

1 impression 2001-09-27 23:00:13 0.0714286 -7

1 impression 2001-09-27 23:00:17 0.142857 -3

1 impression 2001-09-27 23:00:19 0.285714 -1

1 click1 2001-09-27 23:00:20

1 optional1 2001-09-27 23:00:21 0.333333 -2

1 optional2 2001-09-27 23:00:22 0.666667 -1

1 click2 2001-09-27 23:00:23

2 impression 2001-09-27 23:00:29 0

2 impression 2001-09-27 23:00:31 0

Attribution Aster Data proprietary and confidential

32 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Comments on Attribution Example 4
• In this example we excluded the 'email'.

• For 'user_id = 1', the 'rows:K' mode was triggered, and the 'WINDOW_SEGMENTATION_
BY_ROWS' models were applied to compute attributions.

• For 'user_id = 2', the 'seconds:K' mode was triggered, and the 'WINDOW_
SEGMENTATION_BY_SECONDS' models were applied to compute attributions. The three
segmentation windows are (from newest to oldest): [58,53], [52,45], [44,39].

Additional Sample Input Data
Here we introduce more sample data, in the input table “attribution_sample_table3.” We’ll use
this data in examples 5 and 6.

Table 3-13 The input table, attribution_sample_table2

2 impression 2001-09-27 23:00:33 0

2 impression 2001-09-27 23:00:36 0

2 impression 2001-09-27 23:00:38 0

2 impression 2001-09-27 23:00:43 0.2 -16

2 impression 2001-09-27 23:00:47 0

2 impression 2001-09-27 23:00:51 0.3 -8

2 impression 2001-09-27 23:00:53 0.25 -6

2 impression 2001-09-27 23:00:55 0.25 -4

2 click1 2001-09-27 23:00:59

user_id event time_stamp

1 impression 2001-09-27 23:00:07

1 impression 2001-09-27 23:00:09

1 impression 2001-09-27 23:00:11

1 impression 2001-09-27 23:00:13

1 email 2001-09-27 23:00:15

1 impression 2001-09-27 23:00:17

1 impression 2001-09-27 23:00:19

1 click1 2001-09-27 23:00:21

1 click2 2001-09-27 23:00:23

2 impression 2001-09-27 23:00:29

2 impression 2001-09-27 23:00:31

2 impression 2001-09-27 23:00:33

2 impression 2001-09-27 23:00:47

2 impression 2001-09-27 23:00:51

2 impression 2001-09-27 23:00:53

user_id event time_stamp attribution time_to_conversion

Aster Data proprietary and confidential Attribution

March 21, 2012 Time Series, Path, and Attribution Analysis 33

Example 5: A single-window model

Example 5 SQL-MR Call
SELECT * FROM attribution
(
 ON attribution_sample_table3
 PARTITION BY user_id
 ORDER BY time_stamp

 EVENT_COLUMN_NAME('event')
 CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
 EXCLUDING_EVENT_TYPE_VALUE('email')
 TIMESTAMP_COLUMN_NAME('time_stamp')
 WINDOW('rows:10&seconds:20')
 MODEL1('SIMPLE', 'UNIFORM:NA')
)
ORDER BY user_id, time_stamp;

Example 5 Output from Attribution

Table 3-14 Example 5 Output from Attribution

2 impression 2001-09-27 23:00:55

2 click1 2001-09-27 23:00:59

user_id event time_stamp attribution time_to_conversion

1 impression 2001-09-27 23:00:07 0.166667 -14

1 impression 2001-09-27 23:00:09 0.166667 -12

1 impression 2001-09-27 23:00:11 0.166667 -10

1 impression 2001-09-27 23:00:13 0.166667 -8

1 impression 2001-09-27 23:00:17 0.166667 -4

1 impression 2001-09-27 23:00:19 0.166667 -2

1 click1 2001-09-27 23:00:21

1 click2 2001-09-27 23:00:23

2 impression 2001-09-27 23:00:29 0

2 impression 2001-09-27 23:00:31 0

2 impression 2001-09-27 23:00:33 0

2 impression 2001-09-27 23:00:47 0.25 -12

2 impression 2001-09-27 23:00:51 0.25 -8

2 impression 2001-09-27 23:00:53 0.25 -6

2 impression 2001-09-27 23:00:55 0.25 -4

2 click1 2001-09-27 23:00:59

user_id event time_stamp

Attribution Aster Data proprietary and confidential

34 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example 6: Not all segment windows are used
In this example, we show that in case that not all segment window models are used, certain
re-normalization scheme will come into play to ensure that all attributions add up to 1 for one
impact event.

Example 6 SQL-MR Call
SELECT * FROM attribution
(
 ON attribution_sample_table3
 PARTITION BY user_id
 ORDER BY time_stamp

 EVENT_COLUMN_NAME('event')
 CONVERSION_EVENT_TYPE_VALUE('click1', 'click2')
 TIMESTAMP_COLUMN_NAME('time_stamp')
 WINDOW('rows:10&seconds:20')
 MODEL1('SEGMENT_ROWS', '3:0.5:EXPONENTIAL:0.5',
 '4:0.3:WEIGHTED:0.4,0.3,0.2,0.1', '3:0.2:FIRST_CLICK:NA')
 MODEL2('SEGMENT_SECONDS', '6:0.5:UNIFORM:NA', '8:0.3:LAST_CLICK:NA',
 '6:0.2:FIRST_CLICK:NA')
)
ORDER BY user_id, time_stamp;

Example 6 Output from Attribution

Table 3-15 Example 6 Output from Attribution

user_id event time_stamp attribution time_to_conversion

1 impression 2001-09-27 23:00:07 0.0375 -14

1 impression 2001-09-27 23:00:09 0.075 -12

1 impression 2001-09-27 23:00:11 0.1125 -10

1 impression 2001-09-27 23:00:13 0.15 -8

1 email 2001-09-27 23:00:15 0.0892857 -6

1 impression 2001-09-27 23:00:17 0.178571 -4

1 impression 2001-09-27 23:00:19 0.357143 -2

1 click1 2001-09-27 23:00:21

1 click2 2001-09-27 23:00:23

2 impression 2001-09-27 23:00:29 0

2 impression 2001-09-27 23:00:31 0

2 impression 2001-09-27 23:00:33 0

2 impression 2001-09-27 23:00:47 0

2 impression 2001-09-27 23:00:51 0.375 -8

2 impression 2001-09-27 23:00:53 0.3125 -6

2 impression 2001-09-27 23:00:55 0.3125 -4

2 click1 2001-09-27 23:00:59

Aster Data proprietary and confidential Attribution

March 21, 2012 Time Series, Path, and Attribution Analysis 35

Comments on Attribution Example 6
• For 'user_id = 1', the 'rows:K' mode was triggered, so the 'WINDOW_SEGMENTATION_

BY_ROWS' model list was used. But there are only seven rows before click1, so only the
first two distribution models, '3:EXPONENTIAL:0.5' and '4:WEIGHTED:0.3' were used. In
this situation, we need to re-normalize the window weights to 0.5/(0.5+0.3) = 0.625, and
0.3/(0.5+0.3) = 0.375. That is almost exactly what we see here: (0.357143 + 0.178571 +
0.0892857) = 0.625, and (0.15 + 0.1125 + 0.075 + 0.0375) = 0.375.

• For 'user_id = 2', the 'seconds:K' mode was triggered. In this situation, we have rows in
segments [58,53] and [52,45], but we do not have any rows in segment [44,39]. So as above,
only the first two distribution models, '6:UNIFORM:0.5' and '8:LAST_CLICK:0.3' were
used. We can see that similar re-normalization scheme plays here.

Attribution Aster Data proprietary and confidential

36 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

March 21, 2012 Aster Data proprietary and confidential 39

4

Pattern Matching with nPath

This section shows you how to use Aster Data nPath to perform regular pattern matching over a
sequence of rows. Aster Data nPath is an SQL extension designed to perform fast analysis on
ordered data. The clauses in nPath let you express complicated pathing queries and ordering
relationships that might otherwise require you to write multi-level joins of relations in ANSI
SQL. With nPath, you indicate a desired ordering and then specify a pattern that will be matched
across the ordered rows of data. For each matched PATTERN in the sequence of rows, nPath
generates a row of output that contains SQL aggregates computed over the rows in the matched
PATTERN.

This section is divided into the following segments:

• “What is nPath?” on page 39

• “nPath Syntax and Semantics” on page 40

• “Patterns, Symbols, and Operators in nPath” on page 42

• “Pattern Matching in nPath” on page 44

• “Matching Repeated Patterns in nPath” on page 44

• “LAG expressions in symbol predicates” on page 45

• “Applying an SQL aggregate to an nPath result” on page 46

• “nPath Examples” on page 47

What is nPath?
The Aster Database nPath function allows you to perform regular pattern matching over a
sequence of rows. With it, you can find sequences of rows that match a pattern you’ve specified
and easily extract information from these matched PATTERNs using symbols that represent the
matched rows in the pattern. For clarity, we’ll refer to each sequence of matched rows as a
“matched PATTERN” in this discussion.

Depicted in a step-by-step fashion, nPath lets you:

• use a regular expression to specify a pattern you want to match in an ordered collection of
rows and label individual matching rows with symbols; and

• compute SQL aggregates on or find particular values in each matched PATTERN (your
nPath RESULTS clause operates on the symbols to get these aggregates and values).

nPath uses regular expressions because they are simple, widely understood, and flexible enough
to express most search criteria. While most uses of regular expressions focus on matching
patterns in strings of text; nPath enables matching patterns in sequences of rows.

nPath Permissions Aster Data proprietary and confidential

40 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

In its simplest application, nPath can be used to compute SQL 1999 aggregates such as RANK,
LAG/LEAD, running aggregates, FIRST_VALUE, LAST_VALUE, and others. Many
applications of nPath can compute aggregates over sequences that cannot be expressed in SQL
1999, or that would require self-joins for multiple passes over the data if expressed in SQL 1999.

nPath Permissions
You must grant EXECUTE on the function “nPath” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

nPath Syntax and Semantics
nPath has the following syntax:

SELECT ...
 FROM NPATH
 (
 ON { table_name | view_name | (query) }
 PARTITION BY expression [, ...]
 ORDER BY expression [ASC | DESC] [, ...]
 MODE ({ OVERLAPPING | NONOVERLAPPING })
 PATTERN ('pattern_of_symbols')
 SYMBOLS (symbol_predicate AS symbol [, ...])
 RESULT (aggregate_function(expression OF symbol)
 AS alias [, ...])
) [, ...]
 [WHERE ...]
 [GROUP BY ...]
 [HAVING ...]
 [ORDER BY ...]
 [LIMIT ...]
 [OFFSET ...]

Below, we describe the Arguments you pass to the nPath clause.

ON clause
The ON clause specifies the input relation, which can be a table, view, or query. If you provide a
query, you must enclose it in parentheses.

PARTITION BY expression
The PARTITION BY expression defines the scope of a partition of input rows over which nPath
searches for pattern matches.

ORDER BY expression
The ORDER BY expression specifies the sort-order of the input rows.

Aster Data proprietary and confidential nPath Syntax and Semantics

March 21, 2012 Pattern Matching with nPath 41

MODE clause
The MODE clause indicates whether matched PATTERNs may overlap. After we have found one
sequence of rows that matches our desired pattern, we look for the next match. To begin the next
pattern search, the choice of the starting row depends on the match mode you have chosen:

• In OVERLAPPING match mode, nPath finds every occurrence of the pattern in the
partition, regardless of whether it might have been part of a previously found match. This
means that, in OVERLAPPING mode, one row can match multiple symbols in a given
matched PATTERN.

• In NONOVERLAPPING match mode, nPath begins the next pattern search at the row that
follows the last PATTERN match. Note that this is the default behavior of many commonly
used pattern matching utilities like the popular grep utility in UNIX systems.

PATTERN clause
The PATTERN clause defines the sequence of rows nPath searches for. You express the pattern
using symbols and operators. For example, to match every instance in which a row that matches
symbol A is followed directly by a row that matches symbol B, you would write “A.B” (the dot
operator means “is followed by”). See “Patterns, Symbols, and Operators in nPath” on page 42.

SYMBOLS clause
The SYMBOLS clause defines the row-elements in the pattern, expressed as a comma-separated
list of symbol definitions. Each symbol definition is written in the form “symbol_predicate AS
symbol” where symbol_predicate is an SQL predicate and symbol is a case-insensitive string
you’ll use to represent rows that match this predicate. It’s common to define each symbol as just
one or two uppercase letters, since short symbols are easy to read when assembled into a pattern
expression.

For example, a SYMBOLS clause for analyzing website visits might look like this:

 SYMBOLS(
 pagetype = 'homepage' AS H,
 pagetype <> 'homepage' AND pagetype <> 'checkout' AS PP,
 pagetype = 'checkout' AS CO)

A symbol is applied to a row only if the row satisfies the symbol’s predicate. If a null value is
encountered when trying to match the symbol predicate, it’s treated as a non-match. A symbol
may be associated with the predicate “true”, meaning that the symbol can match any row. Note
that the predicates for different symbols may overlap, and therefore multiple symbols may match
the same row.

In your symbol predicate, you can compare the current row to a preceding row to determine if it
is considered a match for the symbol. See “LAG expressions in symbol predicates” on page 45.

RESULT clause: nPath Output
The RESULT clause defines the output columns of this nPath query as a comma-separated list of
expressions. The RESULT clause is evaluated once for each matched PATTERN in the partition.
In other words, nPath generates one output row per PATTERN match.

In the RESULT clause, each expression operates on one or more symbols, and each expression is
followed by the alias to be applied to this column of output. The form of an output column
definition in the RESULTS clause is:

Patterns, Symbols, and Operators in nPath Aster Data proprietary and confidential

42 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 aggregate_function (expression OF symbol) AS alias

Since each symbol represents all the rows that matched that symbol’s predicate in this particular
matched PATTERN, you must specify an expression (often just the column name) to state what
values you want to retrieve from the matched rows, and then apply an aggregate function to the
results of that expression, in order to generate a single, useful value from the set of matched rows
in the symbol.

For example, imagine that we want to count how many product pages a web visitor viewed
during a visit to our website. To do this, our output column definition in the RESULT clause
might look like the following. Let’s assume we’ve defined the symbol PP to represent rows that
record a user’s views of our product pages on the website:

 COUNT (* OF PP) AS count_product_pages_visited

For a list of supported aggregate functions, see “Applying an SQL aggregate to an nPath result”
on page 46.

Working with nPath Output
The output rows from nPath can subsequently be used like the results of any SQL query. Rows
from nPath may be filtered outside nPath using WHERE, aggregated using GROUP BY (with
groups optionally vetted using a HAVING clause), sorted using ORDER BY, de-duplicated using
DISTINCT/DISTINCT ON, truncated using LIMIT/OFFSET, and so on.

Patterns, Symbols, and Operators in nPath
nPath performs pattern matching and returns a row with aggregates for each matched PATTERN.
In this section, we illustrate what we mean by a pattern, what it means to match the pattern
against a sequence of rows, and how each matched PATTERN translates to an output row.

Patterns
A pattern consists of several elements: symbols, operators, nesting parentheses, and anchors.
Below is a simple pattern that matches every instance in which a row of type B follows a row of
type A. In this example, A and B are symbols, and the dot is the operator:

 A.B

You can write a PATTERN definition so that it matches only those patterns that repeat, or that
contain repeated elements. See “Matching Repeated Patterns in nPath” on page 44.

Symbols
The meaning of a symbol depends on its context:

• In a PATTERN clause, a symbol represents a row of a particular type that you’re searching
for as part of a row sequence. (In the SYMBOLS clause, you write a predicate to define the
type of row that matches the symbol.)

• In the RESULT clause, a symbol represents all the rows that matched that symbol’s predicate
in this particular matched PATTERN. This allows you to apply an aggregate function to all
the symbol’s rows in the matched PATTERN.

Aster Data proprietary and confidential Patterns, Symbols, and Operators in nPath

March 21, 2012 Pattern Matching with nPath 43

nPath uses any valid identifier (a character, followed by characters and digits) as a symbol.
Symbols are not case sensitive; for example A and a refer to the same symbol. It’s common to
use short symbols of one or two letters to make your patterns easier to read.

Each symbol is the result of a match of a symbol predicate you defined in your SYMBOLS
clause (see “nPath Syntax and Semantics” on page 40 for instructions). Here’s a simple symbol
predicate that defines a symbol, H, to match any row in which a column “pagetype” contains the
value “homepage”:

 pagetype = 'homepage' AS H

Operators
You form patterns to be matched by combining symbols with operators. The following operators
may be used in a pattern.

Table 4-1 nPath Operators

The precedence of operators is, from highest to lowest:

1. Cascade operator (“.”)

2. Alternative operator (“|”)

3. Frequency operators (“?”, “*”, “+”)

Operators with equal precedence associate left to right.

Nesting parentheses
Patterns can be nested using parentheses “(” and “)”.

Anchors
The special characters “^” and “$” are placeholders for the start and the end of the sequence
respectively. The character “^” only makes sense at the start of a pattern, and “$” only makes
sense at the end of a pattern.

Operator Meaning

. is followed by; the cascade operator. The expression A.B means “A is followed
by B”. (Note! The dot operator does not represent a wildcard as in some other
regular expression syntaxes.)

| or; alternative

? occurs at most once

* occurs zero or more times

+ occurs at least once. If you want to match the case where a symbol (or pattern)
repeats a specific number of times, use the range matching feature as explained
in “Matching Repeated Patterns in nPath” on page 44.

Pattern Matching in nPath Aster Data proprietary and confidential

44 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Pattern Matching in nPath
Conceptually, nPath’s pattern matching proceeds like this: Starting from a row in a partition,
nPath tries to match the given pattern along the row sequence in the partition (recall that the rows
within a partition are ordered as specified in the ORDER BY clause). If a match is not possible
starting at the current row, nothing is output. Otherwise, nPath continues to the next row. When
nPath finds a sequence of rows that match the PATTERN, it picks the largest set of rows that
constitute that match and generates an output row based on this match, as discussed next.

Consider a match starting at a row t1 and ending at the row t4. For this example, let’s assume the
pattern to be matched is 'A.B+'. In this case, let’s assume further that t1 maps to the symbol A,
and each row from t2 through t4 maps to the symbol B. (This means that each of the rows t2, t3,
and t4 individually satisfies the symbol predicate for B.) After the matching is complete, our
symbol A represents row t1, and symbol B represents rows t2, t3, and t4 in the matched
PATTERN.

Now that the symbols are populated with rows from the match, nPath evaluates the RESULT
clause to generate output using the data in the symbols. Typically, this amounts to applying an
SQL aggregate to each symbol for the match. nPath returns one row with the result values, and
proceeds to search for the next PATTERN match.

Matching Repeated Patterns in nPath
If a particular sub-sequence has to appear multiple times within the PATTERN, you can easily
represent this requirement using the range matching feature in nPath. (Here, we use the term
“sub-sequence” to refer to any portion of the PATTERN that you enclose in parentheses.) The
range matching feature allows you to specify the minimum and maximum number of times a
sub-sequence must appear in the sequence. The repetition count thresholds for sub-sequences can
be specified in one of the following formats:

• sub-sequence{n} or

• sub-sequence{n,} or

• sub-sequence{n,m}

where

• {n} means exactly n times

• {n,} means at least n times

• {n,m} means at least n times, but no more than m times

For example, if the sub-sequence (A.B|C) should appear exactly three times in the sequence,
then you can represent the pattern in the following way using the PATTERN clause:

 PATTERN('X.(Y.Z).(A.B|C){3}')

This is equivalent to the pattern

 PATTERN('X.(Y.Z).(A.B|C).(A.B|C).(A.B|C)')

If the sub-sequence (A.B|C) should appear at least four times, you can represent the pattern in
the following way:

 PATTERN('X.(Y.Z).(A.B|C){4,}')

which is same as

 PATTERN('X.(Y.Z).(A.B|C).(A.B|C).(A.B|C).(A.B|C).(A.B|C)*')

Aster Data proprietary and confidential LAG expressions in symbol predicates

March 21, 2012 Pattern Matching with nPath 45

If the sub-sequence (A.B|C) should appear at least two times and at most four times, you can
represent the pattern in the following way:

 PATTERN('X.(Y.Z).(A.B|C){2,4}')

which is same as

 PATTERN('X.(Y.Z).(A.B|C).(A.B|C).(A.B|C)?(A.B|C)?')

LAG expressions in symbol predicates
You can compare the current row with previously seen rows to decide if a symbol applies to it.
To do this, use the LAG expression in your SYMBOLS clause. You write the LAG expression in
either of the following formats:

 LAG (expression-prev, lag-rows [, default-value]) operator expression-current

or

 expression-current operator LAG (expression-prev, lag-rows, [default_value])

where:

• expression-current is the name of the column from the current row, or an expression
operating on this column.

• the operator can be >, >=, <, <=, =, or !=

• expression-prev is the name of the column from the current row, or an expression operating
on this column.

• lag-rows is the number of rows to count back from the current row to reach the row we
designate as the earlier row. For example, to compare with the immediately preceding row,
use “1”.

• default-value is the optional value to be used when there are no rows which can be
designated as “earlier row,” in such a case the default-value will be evaluated on the current
row and used in place of the expression-prev.

To evaluate the LAG expression, Aster Database uses the operator to compare the value of
expression-current with the value of column-previous.

Notes:
• You can use multiple LAG expressions to define a symbol.

• If your symbol definition includes a LAG expression, the definition cannot contain a
disjunctions (OR operator).

Tip! When using the LAG() function to define a symbol, the left-hand side (LHS) of the
expression (the portion to the left of the relational operator) may only contain the LAG() function
as a single term; e.g:

Lag(rec_date, 1) <= expr ... AS alias

So, if you want to check that the time interval between the last row and the current row is less
than one hour, the following will not work:

rec_date - Lag(rec_date,1) < '1 hour'::Interval AS B

However, the following equivalent form will work:

Lag(rec_date,1) > rec_date - '1 hour'::Interval AS B

Applying an SQL aggregate to an nPath result Aster Data proprietary and confidential

46 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Lag expression example
The example below uses a LAG expression in a symbol definition. Here, for all the patterns
where the user visits the home page, then visits checkout pages and buys increasingly expensive
products (in sequence), this nPath query will find the first product bought and the most expensive
product bought.

SELECT *
 FROM NPATH
 (
 ON aggregate_clicks
 PARTITION BY sessionid
 ORDER BY clicktime ASC
 MODE (NONOVERLAPPING)
 PATTERN ('H+.D*.X*.P1.P2+')
 SYMBOLS
 (
 'true' AS X,
 pagetype = 'home' AS H,
 pagetype <> 'home' AND pagetype <> 'checkout' AS D,
 pagetype = 'checkout' AS P1,
 pagetype = 'checkout' AND
 productprice > 100 AND
 productprice > LAG (productprice, 1, 100::REAL) AS P2
)
 RESULT
 (
 FIRST (productprice OF P1) AS first_product,
 MAX_CHOOSE (productprice, productname OF P2) AS max_product,
 FIRST (sessionid OF P2) AS sessionid
)
)
 ORDER BY sessionid ;

Applying an SQL aggregate to an nPath result
In the nPath RESULT clause, you compute SQL aggregates such as COUNT, SUM, MAX, MIN,
AVG, and the special nPath sequence aggregates FIRST, LAST, FIRST_NOTNULL, LAST_
NOTNULL, MAX_CHOOSE, and MIN_CHOOSE over each matched pattern.

For example, for a pattern match:

• COUNT (* OF B) gives the number of rows that map to symbol B in this matched
PATTERN,

• FIRST (pageid OF B) gives the pageid (here we use “pageid” as an example column
name) of the first row in the match that maps to B (row t2 in our example in “Pattern
Matching in nPath” on page 44)

• LAST (pageid OF B) gives the pageid of the last row that maps to symbol B in the
match.

• FIRST_NOTNULL (pageid OF B) gives the first non-null pageid among the rows that
map to B.

• LAST_NOTNULL (pageid OF B) gives the last non-null pageid among the rows that
map to B.

• MAX_CHOOSE (product_price, product_name OF B) gives the product_name of
the most expensive product among the rows that map to B. The MAX_CHOOSE function

Aster Data proprietary and confidential nPath Examples

March 21, 2012 Pattern Matching with nPath 47

takes the form, MAX_CHOOSE (quantifying_column, descriptive_column OF
symbol) and returns the descriptive_column value of the row with the highest-sorted
quantifying_column value. The qualifying_column has a sortable datatype (smallint, integer,
biginteger, real, date, time, timestamp, varchar, and character are supported) and the
descriptive_column can be of any datatype.

• MIN_CHOOSE (product_price, product_name OF B) gives the product_name of
the least expensive product among the rows that map to B. The MIN_CHOOSE function
operates like MAX_CHOOSE, but returns the descriptive_column value of the lowest-sorted
row. It supports the same argument datatypes as MAX_CHOOSE.

You can compute an aggregate over more than one symbol. For example, SUM (val OF ANY
(A,B)) computes the sum of the values of the attribute val across all rows in the matched
segment that map to A or B.

nPath Examples
This section includes the following examples:

• “Clickstream Data: An nPath Example” on page 47

• “Lead: An nPath Example” on page 48

• “Rank: An nPath Example” on page 49

• “Complex Path Query: An nPath Example” on page 49

Clickstream Data: An nPath Example
Consider a table with clickstream data. The table is defined as:

clicks
 (ts time,
 userid int,
 pageid int,
 category int,
 val float,
 refurl varchar(256)
)
 DISTRIBUTE BY HASH(category)

To consider a sequence of rows for each user, ordered by time, the first clauses of nPath are
written like this:

SELECT ...
FROM NPATH(
 ON clicks
 PARTITION BY userid
 ORDER BY ts
 ...
)
...

For this example, let’s define the following symbols:

nPath Examples Aster Data proprietary and confidential

48 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Table 4-2 Symbols for nPath Example

To match a symbol shown in the first column, a row must satisfy the associated predicate shown
in the second column. In the nPath syntax, this is written as the SYMBOLS clause:

SELECT ...
 FROM nPath
 (
 ...
 SYMBOLS
 (
 pageid IN (10, 25) AS A,
 category = 10 OR (category = 20 AND pageid <> 33) AS B,
 category IN
 (
 SELECT catid
 FROM categories
 GROUP BY catid
 HAVING COUNT(*) > 10
) AS C,
 refurl LIKE '%google%' AS D,
 true AS X
)
 ...
)
...

These symbols can now be used with the operators to construct a pattern. The pattern

 A.(B|C)+.D?.X*.A

for instance, will match a pattern of rows in which the first row satisfies the predicate for A,
followed by a non-empty sequence of rows, each satisfying the predicate for B or C, followed by
at most one row satisfying the predicate for D, followed by a sequence of arbitrary rows ending
at a row satisfying the predicate for A.

Lead: An nPath Example
nPath is also handy for cases when you don’t want to match a particular pattern but instead want
to create output that combines values from one row in a sequence with values from the next row
in the sequence. For example, imagine that you’re analyze pageviews on your website, and you
want to find out what pageview follows each other pageview. In this example, for each row, we
get its pageid as well as the pageid of the next row in sequence:

SELECT sessionid, pageid, next_pageid
 FROM nPath(
 ON clicks
 PARTITION BY sessionid

Symbol Predicate

A pageid IN (10, 25)

B category = 10 OR (category = 20 AND pageid <> 33)

C category IN (SELECT catid FROM categories GROUP BY catid
HAVING COUNT(*) > 10)

D refurl LIKE '%google%'

X true

Aster Data proprietary and confidential nPath Examples

March 21, 2012 Pattern Matching with nPath 49

 ORDER BY ts
 MODE (OVERLAPPING)
 PATTERN ('A.B')
 SYMBOLS (true AS A,
 true AS B)
 RESULT (FIRST(sessionid OF A) AS sessionid,
 FIRST(pageid OF A) AS pageid,
 FIRST(pageid OF B) AS next_pageid)
)

Rank: An nPath Example
For each row, count the number of preceding rows including this row in a given sequence.

SELECT sessionid, pageid, rank
 FROM nPath(
 ON clicks
 PARTITION BY sessionid
 ORDER BY ts DESC
 MODE (OVERLAPPING)
 PATTERN('A*')
 SYMBOLS (true AS A)
 RESULT (FIRST(sessionid OF A) AS sessionid,
 FIRST(pageid OF A) AS pageid,
 COUNT(* OF A) AS rank)
)

Note the use of DESC in the ORDER BY clause. The reason is that the pattern needs to be
matched over the rows preceding the start row, while the semantics dictates that the pattern be
matched over the rows following the start row. Reversing the ordering of the rows resolves the
issue.

Complex Path Query: An nPath Example
Find user click-paths starting at pageid 50 and passing exclusively through either pageid 80 or
pages in category 9 or category 10. Find the pageid of the last page in the path and count the
number of times page 80 was visited. Report the maximum count for each last page, and sort the
output by the latter. Restrict to paths containing at least 5 pages. Ignore pages in the sequence
with category < 0.

SELECT last_pageid, MAX(count_page80)
 FROM nPath(
 ON (SELECT * FROM clicks WHERE category >= 0)
 PARTITION BY sessionid
 ORDER BY ts
 PATTERN ('A.(B|C)*')
 MODE (OVERLAPPING)
 SYMBOLS (pageid = 50 AS A,
 pageid = 80 AS B,
 pageid <> 80 AND category IN (9,10) AS C)
 RESULT (LAST (pageid OF ANY (A,B,C)) AS last_pageid,
 COUNT (* OF B) AS count_page80,
 COUNT (* OF ANY (A,B,C)) AS count_any)
)
 WHERE count_any >= 5
 GROUP BY last_pageid
 ORDER BY MAX(count_page80)

nPath Examples Aster Data proprietary and confidential

50 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

March 21, 2012 Aster Data proprietary and confidential 51

5

Statistical Analysis

In this section we describe:

• “Approximate Distinct Count (count_approx_distinct)” on page 51

• “Approximate Percentile (approx percentile)” on page 54

• “Correlation (stats correlation)” on page 57

• “Linear Regression (stats linear reg)” on page 63

• “Logistic Regression” on page 65

• “Generalized Linear Model (stats glm)” on page 68

• “Simple Moving Average (stats smavg)” on page 77

• “Weighted Moving Average (stats wmavg)” on page 81

• “Exponential Moving Average (stats emavg)” on page 84

• “Volume-Weighted Average Price (stats vwap)” on page 88

Approximate Distinct Count (count_approx_distinct)

Summary
Based on probabilistic counting algorithms, this function quickly estimates the number of
distinct values in a column or combination of columns, while scanning the table only once.

For a column or column combination with large cardinality, it can calculate an approximate
count of the distinct values in much less time than would be required to calculate a precise
distinct count using SQL’s DISTINCT.

Background
Probabilistic Counting Algorithms for Data Base Applications by Philippe Flajolet and G. Nigel
Martin (See http://portal.acm.org/citation.cfm?id=5215)

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

http://portal.acm.org/citation.cfm?id=5215

Approximate Distinct Count (count_approx_distinct) Aster Data proprietary and confidential

52 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

• approx_dcount_combine

• approx_dcount_partial

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax

You call this function by combining a local row function followed by a partition function:

SELECT *
 FROM APPROX_DCOUNT_COMBINE
 (
 ON
 (SELECT *
 FROM APPROX_DCOUNT_PARTIAL
 (
 ON { table_name | view_name | (query) }
 COLUMNS ('column_name')
 [ERROR ('error_tolerance')]
)
)
 PARTITION BY expression [, ...]
);

Note! You may choose to omit the SELECT statements inside internal function calls in
SQL-MR, in which case this function has this synopsis:

SELECT *
 FROM APPROX_DCOUNT_COMBINE
 (
 ON
 (APPROX_DCOUNT_PARTIAL
 (
 ON { table_name | view_name | (query) }
 COLUMNS ('column_name')
 [ERROR ('error_tolerance')]
)
)
 PARTITION BY expression [, ...]
);

Arguments

COLUMNS: Required. Specifies the name(s) of the column or columns for which an
approximate distinct count will be calculated. This can by any column(s) or combinations of
columns, such as, for example: ('col1', 'col2', '(col5:col9)')

ERROR: Optional. Specifies the acceptable error rate, expressed using decimal representation.
Ten percent is written as 10, one percent as 1. The default error tolerance rate is ten percent, or
10. Permissible values are any value x, where x is between five one-hundredths of a percent and
ten percent (that is, 0.05 < x <= 10).

Output
The output consists of these columns:

column_name: The name of the input column or columns for which the approximate distinct
count was computed. Multiple column names are joined with underscores.

Aster Data proprietary and confidential Approximate Distinct Count (count_approx_distinct)

March 21, 2012 Statistical Analysis 53

cnt: The approximate distinct count.

method: The approach used for calculating the approximate distinct count.

Example

Example Input Data

The example table page_tracking contains the columns member_id, page_key, referrer, and pg_
seq.

Table 5-1 Example Input Data, table page_tracking

Example SQL-MapReduce call
SELECT *
 FROM APPROX_DCOUNT_COMBINE
 (
 ON APPROX_DCOUNT_PARTIAL
 (
 ON page_tracking
 COLUMNS ('member_id', 'page_key', '(member_id:page_key)')
 ERROR (1)
)
 PARTITION BY column_name
);

Example Output

Table 5-2 Example Output of Approximate Distinct Count

Error Messages
You may encounter these errors when attempting to run this function:

• ERROR: Maximum error threshold is 10. Select value for error <= 10
or omit error clause.

REASON: Specified error value is greater than the maximum error threshold.

member_id page_key referrer pg_seq

1 Home http://google... 1

1 Profile 2

2 Jobs 1

4 News http://yahoo... 1

5 Profile 1

column_name cnt method

member_id 4 nearExact

member_id_page_key 5 nearExact

page_key 4 nearExact

Approximate Percentile (approx percentile) Aster Data proprietary and confidential

54 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

• ERROR: must be > 0.05. Select value for error > 0.05 or omit error
clause.

REASON: Specified error values is less than the minimum error threshold.

Approximate Percentile (approx percentile)

Summary
This function computes approximate percentiles for one or more columns of data. The accuracy
of the approximation is a parameter the user can vary. Higher accuracy requires longer compute
time and vice versa. Optionally, you can specify a column to group by, to compute approximate
percentiles over different groups.

Background
The function is based on an algorithm developed by Greenwald and Khanna. It gives
e-approximate quantile summaries of a set of N elements, where e is the value you specify as the
function’s ERROR parameter. Given any rank r, an e-approximate summary returns a value
whose rank r' is guaranteed to be within the interval [r - eN, r + eN]. The algorithm has a worst
case space requirement of O((1/e) * log(eN)).

Usage
This section describes the syntax for using the function, parameter options and data types, and a
description of the expected output.

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• approx_percentile

• approx_percentile_summary

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax

The synopsis below shows the syntax for invoking the approximate percentile function for a
column of data, grouping the data by a different set of columns:

SELECT *
 FROM approx_percentile
 (
 ON(
 SELECT *
 FROM approx_percentile_summary
 (
 ON { table_name | view_name | (query) }
 TARGET_COLUMN('column_name')
 ERROR(tolerance_value)
 [GROUP_COLUMNS('column_name' [, ...])]

Aster Data proprietary and confidential Approximate Percentile (approx percentile)

March 21, 2012 Statistical Analysis 55

)
)
 PARTITION BY expression [, ...]
 PERCENTILE(percentile [, ...])
 [GROUP_COLUMNS('column_name' [, ...])]
)

Arguments

TARGET_COLUMN: Required. Specifies the column for which we want to compute the quantile
summary. The column must contain data of type smallint, integer, bigint, numeric, real or double
precision.

ERROR: Optional. Specifies the desired accuracy of the approximation. Lower error is more
accurate. Must be between .01 and 50. Error of 10 means the quantile will be correct within 10%
in either direction. Default value is 1.

GROUP_COLUMNS: Optional. Specifies the columns to group the data by. Omitting the group_
columns clause results in no grouping, and quantiles are computed for the entire column. Note
that if you include this clause, you must include it in both the approx_percentile and the approx_
percentile_summary functions.

PERCENTILE: Optional. A comma separated list of integers that specifies which approximate
percentiles you wish to compute. Default is to compute the quartiles: 0, 25, 50, 75 and 100.

Input Data
TARGET_COLUMN: Required. A column of type smallint, integer, bigint, numeric, real or
double. This is the column for which we calculate the percentiles.

GROUP_COLUMNS: Optional. Columns can be of type varchar or integer. These are group
identifying columns. Suppose we have a table with the columns State (varchar), Town (varchar),
and Population (integer), and we specify GROUP_COLUMNS('STATE'). Instead of computing
quantiles for Population across all towns, each state would have its quantiles computed
individually.

Output
GROUP_COLUMNS: (if group_columns clause was specified) Column(s) specifying which
group the percentile belongs to.

PERCENTILE: The percentile we are estimating. E.g., percentile: 50 is the median, 75 is the
upper quartile, 100 is the maximum.

VALUE: The approximate value of the corresponding percentile, accurate to the degree specified
in the ERROR argument.

Example

Example Input Data

A sample table called “some_values” with two columns, “segment” and “value”:

Approximate Percentile (approx percentile) Aster Data proprietary and confidential

56 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Table 5-3 Example Input Data, table some_values

Example SQL-MapReduce call:
SELECT *
 FROM approx_percentile
 (
 ON
 (
 SELECT *
 FROM approx_percentile_summary
 (
 ON some_values
 TARGET_COLUMN('value')
 GROUP_COLUMNS('segment')
 ERROR(1)
)
)
 PARTITION BY segment
 GROUP_COLUMNS('segment')
 PERCENTILE(50)
);

Example Output from Approximate Percentile
Note that the Approximate Percentile SQL-MR function returns an “approximate” percentile and
not the exact percentile. This function will return a more accurate approximate percentile when
the dataset is large.

Table 5-4 Example Output from Approximate Percentile

segment value

A 0

A 2

A 4

A 6

A 8

B 1

B 3

B 5

B 7

B 9

segment percentile value

A 50 2

B 50 3

Aster Data proprietary and confidential Correlation (stats correlation)

March 21, 2012 Statistical Analysis 57

Correlation (stats correlation)

Summary
The correlation functions, CORR_REDUCE and CORR_MAP, compute a global correlation
between any pair of columns from a table. You may run this pair of functions on multiple pairs of
columns in a single invocation. Measuring correlation allows you to determine if the value of one
variable is useful in predicting the value of another.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• corr_reduce

• corr_map

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax
SELECT *
 FROM CORR_REDUCE
 (
 ON CORR_MAP
 (
 ON { table_name | view_name | (query) }
 COLUMNS ('[col1:col2][,...]')
 KEY_NAME ('key_name')
)
 PARTITION BY key_name
);

Arguments

COLUMNS: Required. The list of pairs of columns for which correlation will be calculated.
Columns whose correlations you calculate must be of type int, bigint, or real. If the columns are
of any other compatible type, you must type cast it to one of these three types. Each pair is
specified as a colon-separated pair inside square brackets, in the form [col1:col2]. To retrieve
multiple correlations in a single function invocation, list multiple pairs separated by commas.
Enclose the entire list in single quotes. For example, COLUMNS (
'[col1:col2],[col2:col3],[col3:col4]'). There must be no spaces between the pairs.

KEY_NAME: Required. The column name you wish to give to an intermediate column generated
by the CORR_MAP function. This intermediate data should then be partitioned on this newly
named column before passing it to the CORR_REDUCE function.

Correlation (stats correlation) Aster Data proprietary and confidential

58 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example

Example Input Data

The input table, income_statistics, contains the columns:

• participant [int]

• income [bigint]

• years_of_education [real]

• years_of_experience [real]

Table 5-5 Example Input Data, table income_statistics

Example SQL-MapReduce call
SELECT *
 FROM CORR_REDUCE
 (
 ON CORR_MAP
 (
 ON income_statistics
 COLUMNS
 ('[income:years_of_education],[income:years_of_experience]'
)
 KEY_NAME ('key')
)
 PARTITION BY key
);

Example Output from Correlation Reduce
The example output shows the correlation between the requested columns:

Table 5-6 Example Output from Correlation Reduce

Participant Income Years_of_education Years_of_experience

2 100000 20 5

4 35000 16 1

5 41000 18 1

6 29000 12 1

8 24000 12 0

9 50000 16 3

10 60000 17 2

1 125000 19 8

3 40000 16 2

7 35000 14 1

Corr value

Income:Years_of_Education 0.788726

Aster Data proprietary and confidential Histogram

March 21, 2012 Statistical Analysis 59

Error Messages
You may encounter the following error message when you run this function:

• ERROR: COLUMNS should be of the form "[X1:Y1],[X2:Y2],[X3:Y3]"

REASON: Columns argument is not specified in the proper format. Each pair should be in
the form "[<col1>:<col2>]" and multiple pairs should be separated by "," (comma). Please
note that there should not be any white space between the pairs.

Histogram

Summary
The histogram function maps each input row to one or more bins based on criteria you specify
and returns the row count for each bin. The SQL-MapReduce histogram function is a
combination of SQL-MapReduce row function (histogram_map) and an SQL-MapReduce
partition function (histogram_reduce). The output of the histogram function is useful for
assessing the shape of a data distribution.

Usage
In order to generate a histogram on an input data set you must run a map and reduce step on the
data. Below is the syntax for running the map phase.

Permissions
You must grant EXECUTE on the following functions to the database user who will run them:

• histogram_reduce

• histogram_map

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax of the Map Function
SELECT *
 FROM histogram_map
 (
 ON {table_name | view_name | subquery }
 VALUE_COLUMN (column-name)
 [BIN_SIZE (bin-size)]
 [START_VALUE(start-value)]
 [INTERVALS('interval-spec', ...)]
 [BIN_COLUMN_NAME(output-column-name)]
 [START_COLUMN_NAME(output-column-name)]
 [END_COLUMN_NAME(output-column-name)]
 [FREQUENCY_COLUMN_NAME (output-column-name)]
)

Income:Years_of_Experience 0.970773

Histogram Aster Data proprietary and confidential

60 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Arguments

to the Map Function

VALUE_COLUMN: Required. Name of the column the histogram will run on; only one column
is permitted.

BIN_SIZE: Optional. For equally sized bins, specifies the width of the bin. Omit this argument if
you are not using equally sized bins.

START_VALUE: Optional. For equally sized bins, specifies the minimum (starting) value for the
first bin. Omit this argument if you are not using equally sized bins.

INTERVALS: Optional. If the bins are not all equally sized, you can use the INTERVALS clause
to specify the minimum value and maximum value of each bin. Intervals are expressed as a
comma-separated list of interval-specs. Each interval-spec has the form, 'min:max'. Bins can
overlap. Using the INTERVALS clause is an alternative to using BIN_SIZE and START_
VALUE argument clauses.

BIN_COLUMN_NAME: Optional. Name of output column that shows which bin one or more
subject rows were sorted into. Each bin is identified by its bin number. The default name is "bin".

START_COLUMN_NAME: Optional. Name of output column that shows the start (min.) value of
this bin. Default name is "start_bin".

END_COLUMN_NAME: Optional. Name of output column that shows the end (max.) value of
this bin. Default name is "end_bin".

FREQUENCY_COLUMN_NAME: Optional. Name of output column that shows the count
("local frequency") of rows that sorted into this bin on this partition. Default name is
"frequency".

Syntax of the Reduce Function
SELECT *
 FROM histogram_reduce
 (
 ON { histogram_map_subquery }
 [ACCUMULATE (column_name [, ...])]
 [FREQUENCY_COLUMN_NAME (column-name)]
)

Arguments to the Reduce Function

ON: Required. The ON clause supplies the results of a histogram_map query.

ACCUMULATE: Optional. List of input columns that will be piped directly through to the
output. By default, no input columns are included in the output.

FREQUENCY_COLUMN_NAME: Optional. Name of the input column that contains the local,
per-v-worker row counts. This must be the same name you used as the FREQUENCY_
COLUMN_NAME in histogram_map. The default name is “frequency”. (The default values in
both functions are same, so you can safely omit this clause.) This name will also be used as the
name of the frequency output column.

Output
The histogram function returns one row per bin. Each row describes the bin, shows the count
(“frequency”) of rows in that bin, and includes any piped-through columns you specified in
ACCUMULATE clause.

Aster Data proprietary and confidential Histogram

March 21, 2012 Statistical Analysis 61

Example

Example Input Data

Table 5-7 Example Input Data, table am_histogram_data

Example Query 1: Fixed-size bins

The first example shows how to define bins of a fixed size using the BIN_SIZE and START_
VALUE clauses:

SELECT *
 FROM histogram_reduce
 (
 ON histogram_map
 (
 ON am_histogram_data
 BIN_SIZE('10')
 START_VALUE('0')
 VALUE_COLUMN('age')
)
 PARTITION BY bin
 ACCUMULATE('bin','start_bin','end_bin')
)
 ORDER BY bin;

Output of Example Query 1

Table 5-8 Output of Example Query 1 for Histogram Reduce

id name age graduate

100 Henry Cavendish 12 f

200 Sir William 15 f

300 Johann August 19 f

400 Martin Heinrich 20 f

500 Ralph Arthur 25 t

600 Marguerite Catherine 35 t

700 Philip Hauge 40 t

800 Joseph Louis 28 f

900 Marie Curie 12 t

bin start_bin end_bin frequency

1 10 20 4

2 20 30 3

3 30 40 1

4 40 50 1

Histogram Aster Data proprietary and confidential

62 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example Query 2: Custom-sized bins

The second example shows how to use the INTERVALS clause to define each bin individually:

SELECT *
 FROM histogram_reduce
 (
 ON histogram_map
 (
 ON am_histogram_data
 VALUE_COLUMN('age')
 INTERVALS('0:30','20:30','40:70','70:100000')
)
 PARTITION BY bin
 ACCUMULATE('bin','start_bin','end_bin')
) ORDER BY bin;

Output of Example Query 2

Table 5-9 Output of Example Query 2 for Histogram Reduce

Algorithm
histogram_map is a row function that sorts and counts rows on a per-v-worker basis. It reads
each row, determines which bin(s) the row belongs to, and updates a locally maintained
hashmap. The hashmap's key is the bin number, and its value is the count. If a row belongs to
more than one bin (because of overlapping bins) then the function updates the hashmap for all
the matched bins. Once all v-worker-local rows are processed, the hashmap is complete. The
function then emits the counts for all bins in the hashmap.

histogram_reduce is a partition function that sums each bin’s count across all v-workers and
emits each bin’s global count.

Error Messages
You may encounter the following error messages from the function:

• ERROR: Please specify either the INTERVAL clause or all of the
following clauses: BIN_SIZE, START_VALUE.

• ERROR: INTERVALS should be in the form of <min>:<max>. <min> should
be less than or equal to <max>. For example 10:20.

bin start_bin end_bin frequency

0 0 30 7

1 20 30 3

2 40 70 1

Aster Data proprietary and confidential Linear Regression (stats linear reg)

March 21, 2012 Statistical Analysis 63

Linear Regression (stats linear reg)

Summary
Outputs coefficients of the linear regression model represented by the input matrices. The zero'th
coefficient corresponds to the slope intercept.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• linreg

• linregmatrix

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax
SELECT *
FROM LINREG
 (
 ON LINREGMATRIX
 (
 ON { table_name | view_name | (query) }
)
 PARTITION BY 1
)

Assumptions

All the data should be submitted to one worker which means that user needs to perform a
"PARTITION BY 1". It is also assumed that the Y component of the data point is provided in the
last input column.

Example

Example Input Data

The sample table data_set contains:

• X1 [int]

• X2 [int]

• Y [int]

Table 5-10 Example Input Data, table data_set

X1 X2 Y

300 1000 30000

Linear Regression (stats linear reg) Aster Data proprietary and confidential

64 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example SQL-MapReduce call
SELECT *
 FROM LINREG
 (
 ON LINREGMATRIX
 (
 ON data_set
)
 PARTITION BY 1
);

Example Output from Linear Regression

Table 5-11 Example Output from Linear Regression

Notes
Please note that all the rows should be provided to one worker. Hence "PARTITION BY 1"
should be used.

Error Messages
You may encounter the following errors when using this function:

• ERROR: The input data results in a singular matrix and hence there
is no solution. The input data set provided is perfectly linear.

If two or more input columns are co-linear, or very closely correlated, then no solution to linear
regression exists, so the function will fail. Looking at correlations between columns using Aster
Database’s Correlation (stats correlation) function can help uncover sources of co-linearity.
Removing co-linear columns should resolve the issue.

300 3000 10000

100 1000 10000

100 2000 20000

100 3000 30000

200 1000 20000

200 2000 10000

coeffecient_index value

0 19696.9696969697

1 -3.03030303030308

2 -0.303030303030308

Aster Data proprietary and confidential Logistic Regression

March 21, 2012 Statistical Analysis 65

Logistic Regression

Summary
This is a series of row functions and partition functions on the training data, which establishes
the weights sequence for the logistic regression based on the gradient descent algorithm. A
SQL-MapReduce driving program written using the JDBC API allows for the iteration of the
series of training functions until the weights converge within a user-specified window. The
weight sequence generated by the logistic regression function can then be used to predict any
future data points.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• log_regression

• log_regression_partition

• log_regression_row

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax
SELECT *
 FROM log_regression
 (
 ON (SELECT 1)
 PARTITION BY 1
 [DOMAIN(ip_address)]
 [DATABASE(database_name)]
 [USERID(user_id)]
 PASSWORD(password)
 INPUTTABLE(inputtable_name)
 OUTPUTTABLE(outputtable_name)
 [WEIGHTS(weights_list)]
 [COLUMNNAMES(columnnames_list)]
 [LEARNINGRATE(learning_rate)]
 [THRESHOLD(threshold)
 [MAXITERNUM(maximum_number_of_iterations)]
);

Arguments

DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default
database is beehive.

Logistic Regression Aster Data proprietary and confidential

66 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

USERID: Optional. The Aster Database user name of the user running this function. The default
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user running this function.

INPUTTABLE: Required. The inputtable is the table containing the list of features and the
associated labels.

OUTPUTTABLE: Required. This is the name of the output table where this function will store its
output. This table should not exist before you run the function; the function will create the
outputtable for you. If the output table does exist, the function drops it and recreates it, so any
values it held will be lost when you run the log_regression function. The output table contains
the columns listed in “Output” below.

WEIGHTS: Optional. This is the initial set of weights for each of the features. Default weight is
0.1 for all the label and all the features.

COLUMNNAMES: Optional. This is the list of columns containing the label and the features. By
default, all the columns in the input table will be considered as input columns.

LEARNINGRATE: Optional. This is the learning rate of the algorithm. This should be a value
between 0 and 1. Default learningRate is 0.1

THRESHOLD: Optional. This is the threshold for convergence. The algorithm converges if the
least mean square distance between the old set of weights and new set of weights is less than the
threshold. Default threshold is 0.05

MAXITERNUM: Optional. This is the maximum number of times the algorithm would attempt to
converge. If the convergence does not happen within the specified MAXITERNUM, the latest
weights would be emitted. Default MAXITERNUM is 10.

Assumptions

For this implementation we consider binary classification where each example is labeled +1 or
-1. We assume that an example has l (that’s a lower case letter “L”) features, each of which can
take the value zero or one. We denote an example by x and the value of the kth feature as xk. We
define an additional feature, x0 = 1, and call it the bias feature.

Input

In the columnNames argument, you pass the list of columns containing the label and the features.
All the label columns and the feature columns should be of type Boolean. You pass the input
column names as a comma-separated list, as shown in this example:

 COLUMNNAMES('Y','X1','X2','X3','X4','X5')

The example above describes input columns of the following form:

The first column represents the label, and rest of the columns represent the features.

In the WEIGHTS argument, you pass the initial set of weights for each of the features in the
form:

 WEIGHTS('0.1','0.1','0.1','0.1','0.1','0.1')

Y X1 X2 X3 X4 X5 X6

Y X1 X2 X3 X4 X5 X6

Y X1 X2 X3 X4 X5 X6

Aster Data proprietary and confidential Logistic Regression

March 21, 2012 Statistical Analysis 67

This example specifies six weights, which we can picture as:

where W0 represents the bias weight. W1 represents the weight for feature X1, W2 represents the
weight for feature X2 and so on.

Output

The output is both returned to the SQL prompt or client and saved to the table you specify in the
OUTPUTTABLE argument. This table should not exist before you run the function. If a table of
this name exists already, the existing table will be dropped and its data lost. The output table
contains the following columns:

• attribute: the feature

• weight: the weight of the feature

Example

Example Input Table

Table 5-12 Example Input Data, table log_reg_driver_data

Example SQL-MapReduce call
SELECT *
 FROM log_regression
 (
 ON (select 1)
 PARTITION BY 1
 DATABASE('beehive')
 USERID('beehive')
 PASSWORD('beehive')
 INPUTTABLE('log_reg_driver_data')
 OUTPUTTABLE('log_reg_output')
 WEIGHTS('0.1','0.1','0.1','0.1','0.1','0.1')
 COLUMNNAMES('Y','X1','X2','X3','X4','X5')
 MAXITERNUM('20')
);

W0 W1 W2 W3 W4 W5 W6

id Y X1 X2 X3 X4 X5

1 true false true true true true

2 true false false true true true

3 true false false false true true

4 true false false false false true

5 true false false false false false

Generalized Linear Model (stats glm) Aster Data proprietary and confidential

68 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example Output Table

Table 5-13 Example Output from Logistic Regression

In the above table, attribute 0 represents the intercept and rest of the attributes represent the
weights of the features.

Error Messages
When you run this function, you may encounter one or more of these errors:

• ERROR: Please specify the name of the input table with an
'inputTable' clause.

REASON: If the input table is not specified.

• ERROR: Please specify the name of the output table with an
'outputTable' clause.

REASON: If the output table is not specified.

• ERROR: Weight should be a double value in decimal point notation.

REASON: If the input weights are not real values.

• ERROR: Feature vector should be real, integer, or boolean values.

REASON: If the input feature columns are not of number types.

• ERROR: Response can only take boolean values.

REASON: If the input label column is not of boolean type.

• ERROR: Number of weights should be equal to the number of input
columns.

REASON: If the number of weights does not match the number of input columns.

Generalized Linear Model (stats glm)

Summary
Generalized linear model (GLM) is an extension of the linear regression model that enables the
linear equation to be related to the dependent variable(s) via a link function. GLM performs
linear regression analysis for any of a number of distribution functions using a user-specified
distribution family and link function. The link function is chosen based upon the distribution
family used and the assumed nonlinear distribution of expected outcomes. Supported link models
in Aster Database are ordinary linear regression, logistic regression (logit model), and Poisson
log-linear model.

Attribute Weight

0 1.38262

1 0.1

2 0.251579

3 0.426133

4 0.642104

5 0.93531

Aster Data proprietary and confidential Generalized Linear Model (stats glm)

March 21, 2012 Statistical Analysis 69

A GLM has three parts:

1. A random component - the probability distribution of Y from the exponential family

2. A fixed linear component - the linear expression of the predictor values (X1,X2,...,Xp),
expressed as or

3. A link function that describes the relationship of the distribution function to the expected
value of Y (e.g. linear regression, logistic or logit regression, or Poisson loglinear model)

Background
The table below, from Venables and Ripley 2002, pages 184-185, describes the common
Families and Link Functions. In the table, 'D' denotes the default link for each family.

Table 5-14 Common Families and Link Functions

Table 5-15 Canonical (default) Links and Variance Functions

More information on the canonical links follows:

• Binomial (or logistic) regression is used when the dependent variable (Y) has only two
different possible values (0 and 1, "yes" and "no", "true" and "false"). The analysis applies
the model to the data and predicts the most likely of the two possible outcomes for each
input. A logit, or logarithm of odds is supplied for each outcome.

• Poisson regression is used to model count data (non-negative integers) and contingency
models (matrices of the frequency distribution of variables). It assumes that the dependent

Link Symbol in GLM binomial
(logistic)

Gamma Gaussian inverse-

Gaussian

Poisson negative-

binomial

logit LOGIT D

probit PROBIT *

cloglog
COMPLEMENTARY_
LOG_LOG

*

identity IDENTITY * D * * *

inverse INVERSE D * *

log LOG * * * * D D

INVERSE_MU_
SQUARED

D

sqrt SQUARE_ROOT *

Family Symbol in GLM Canonical link Name Variance function

binomial
(logistic)

BINOMIAL / LOGISTIC logit

Poisson POISSON log

Gaussian GAUSSIAN identity

η Xβ

1

μ2

μ
1 μ–
------------log μ 1 μ–()

μlog μ

μ σ2

Generalized Linear Model (stats glm) Aster Data proprietary and confidential

70 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

variable (Y) has a Poisson distribution. A Poisson distribution segments the data into
intervals (e.g. of time, geographic location, etc.) It then calculates the discrete probability of
one or more events occurring within these segments. The logarithm link is used.

• Gaussian regression happens when the data is grouped around a single mean, and can be
graphed in a "normal" or bell curve distribution.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• glm

• glm_reducesolveandupdate

• glm_reducebymatrixindex

• glm_map

• glm_reduceasymptoticstats

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax
SELECT *
FROM GLM (
 ON (SELECT 1)
 PARTITION BY 1
 [DOMAIN('host_ip')]
 [DATABASE('db_name')]
 [USERID('user_id')]
 [PASSWORD('password')]
 INPUTTABLE('input_table_name')
 OUTPUTTABLE('output_table_name')
 COLUMNNAMES('column_names')
 [FAMILY('family')]
 [LINK('link')]
 [WEIGHT('weight_column_name')]
 [THRESHOLD('threshold')]
 [MAXITERNUM('max_iterations')]
);

Arguments
DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default
USERID is “beehive”.

PASSWORD: Required. The Aster database password of the user.

Aster Data proprietary and confidential Generalized Linear Model (stats glm)

March 21, 2012 Statistical Analysis 71

INPUTTABLE: Required. Input table is a table with several columns containing the list of
features by which we are clustering the data. One of them is the response, and some other
columns are the predictors. There can also be columns used as 'weight' or 'offset'.

OUTPUTTABLE: Required. Specify a name for the output table for the coefficients. This table
must not exist, so if it does exist, you must DROP it before running the function again. For Stats
GLM, the output is written to the screen, and the output table is the table where the coefficients
are stored.

COLUMNNAMES: Required. First supply the dependent variable column name and then the
predictor column names from the input table. The list of input column names must be in the
format of 'Y,X1,X2,...,Xp'.

FAMILY: Optional. The default value is 'BINOMIAL', which is equivalent to 'LOGISTIC'. The
allowed families are: BINOMIAL/LOGISTIC, POISSON, GAUSSIAN, GAMMA, INVERSE_
GAUSSIAN, NEGATIVE_BINOMIAL.

LINK: Optional. The default value is 'CANONICAL'. The canonical link functions and the link
functions that are allowed for a particular exponential family are listed in the table “Common
Families and Link Functions” on page 69.

WEIGHT: Optional. The default value is '1'. You may specify an integer, or a column name in the
input table whose type must be real or integer. The 'weight' is primarily used to assign some
weight to each response. You may find the following explanation in R useful:

"Non-‘NULL’ ‘weights’ can be used to indicate that different observations have different
dispersions (with the values in ‘weights’ being inversely proportional to the dispersions); or
equivalently, when the elements of ‘weights’ are positive integers w_i, that each response y_i is
the mean of w_i unit-weight observations. For a binomial GLM prior weights are used to give
the number of trials when the response is the proportion of successes: they would rarely be used
for a Poisson GLM."

THRESHOLD: Optional. Specify the convergence threshold. The default value is 0.01.

MAXITERNUM: Optional. This is the maximum number of iterations that the algorithm will run
before quitting if the convergence threshold has not been met. The default value is 25.

Input
In the columnNames argument, you pass the list of columns containing the variables. You must
pass the dependent variable first, before passing the predictors. You pass the input column names
as a comma-separated list, as shown in this example:

 COLUMNNAMES('Y','X1','X2','X3','X4','X5')

The example above describes input columns of the following form:

The first column represents the dependent variable, and rest of the columns represent the
predictors.

There may optionally be one or more other columns containing values used as a 'weight' or
'offset'. In the WEIGHT argument, you can optionally pass a weight as an integer. Alternatively,
you can specify a column that contains weight values for each record. The column values must
be of the type real or integer. The weight column is used to assign a relative weight to each
response. An example of the use of weight or offset might be to give data that were observed

Y X1 X2 X3 X4 X5 X6

Y X1 X2 X3 X4 X5 X6

Y X1 X2 X3 X4 X5 X6

Generalized Linear Model (stats glm) Aster Data proprietary and confidential

72 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

more than ten years ago a lower weight in the calculation, and gradually increase the weight until
the data are current. Another example might be to weight product reviews more heavily by
reviewer based on the number of reviews submitted or on the number of followers.

Output
The onscreen output of the Stats GLM function is a regression analysis of the data, using the
family and link function(s) specified.

Output Columns

When a particular column is not used for its corresponding row, the column will contain a value
of zero (0). The following is a description of the columns that appear in the output:

• predictor - This column contains the column name for each predictor that was input to the
function. It is also used to label the other (non-predictor) rows (Intercept, ITERATIONS#,
ROWS#, Residual deviance, AIC and BIC).

• estimate - The mean of the supplied values for each predictor.

• std_error - Standard deviation of the mean for each predictor (standard error)

• z_score - The z-score is a measure of the likelihood that the null hypothesis is true, given
this sample. It is derived by taking the difference between the observed sample mean and the
hypothesized mean, divided by the standard error.

• p_value - The significance level (p-value) for each predictor

• significance - The likelihood that the predictor is significant. The most significant predictor
in the analysis will be designated with “***”. Less significant predictors will be designated
with “.”, and variables without significance will have nothing in this column.

Output Rows

Output includes a row for each of the following with a value for estimated value, standard error,
z-score, p-value, and significance:

• Intercept - the value of the logit (Y) when all predictors are 0.

• Predictors - A row for each predictor value (X1,X2,...,Xp)

The following values are also output in the second column (estimate). The description is given
for each item below in the last (significance) column:

• ITERATIONS# - The number of Fisher Scoring iterations performed on the function

• ROWS# - The number of rows of data received as input

• Residual deviance - The deviance, with degrees of freedom noted in the significance column

• AIC - Akaike information criterion

• BIC - Bayesian information criterion

The coefficients are also stored in the table outputtable for later use.

Aster Data proprietary and confidential Generalized Linear Model (stats glm)

March 21, 2012 Statistical Analysis 73

Examples
Example Input Data

The example table shows the temperature and the level of damage recorded at each temperature
for a piece of equipment.

Table 5-16 Example Input Data, table glm_test1

Example SQL-MapReduce call
SELECT * FROM GLM (
 ON (SELECT 1)
 PARTITION BY 1
 database('beehive')
 userid('beehive')
 password('beehive')
 inputTable('glm_test1')
 outputTable('glm_output1')
 columnNames('damage','temp')
 family('LOGISTIC')
 link('CANONICAL')

id temp damage

1 53 5

2 57 1

3 58 1

4 63 1

5 66 0

6 67 0

7 67 0

8 67 0

9 68 0

10 69 0

11 70 1

12 70 0

13 70 1

14 70 0

15 72 0

16 73 0

17 75 0

18 75 1

19 76 0

20 76 0

21 78 0

22 79 0

23 81 0

Generalized Linear Model (stats glm) Aster Data proprietary and confidential

74 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 weight('6')
 threshold('0.01')
 maxIterNum('10')
);

Example Output of Stats GLM

The output of the stats GLM function is a regression analysis of the data, using the family and
link function(s) specified. The table is output to the screen, and has the following format:

Table 5-17 Example Output of stats GLM to screen

The coefficients are also stored in the ‘glm_output1’ table for later use. You may issue a
SELECT statement to view them:

SELECT * FROM glm_output1;

Table 5-18 Example Output of stats GLM glm_output1 table

Error Messages
You may see the following errors:

• ERROR: SQL-MR function GLM failed: ERROR: SQL-MR function GLM_MAP
failed unexpectedly.

The following is information that may be useful to the developer of
GLM_MAP: org.apache.commons.math.MathRuntimeException$4: the Poisson
mean must be positive (0)

REASON: The Poisson mean is negative. This type of link cannot be applied to this data.

• ERROR: SQL-MR function GLM failed: The table glm_output1 already
exists.

REASON: You must drop the output table before running the function.

• ERROR: SQL-MR function GLM failed: Connection to
jdbc:ncluster://10.50.129.100/beehive could not be established

REASON: JDBC connection could not be made. Test your JDBC connection.

predictor estimate std_error z-score p_value significance

(Intercept) 11.663 3.29627 3.53823 0.000402812 ***

temp -0.216234 0.0531772 -4.06628 4.7769e-05 ***

ITERATIONS # 6 0 0 0 Number of Fisher Scoring iterations

ROWS # 23 0 0 0 Number of rows

Residual deviance 16.9123 0 0 0 on 21 degrees of freedom

AIC 33.6748 0 0 0 Akaike information criterion

BIC 35.9458 0 0 0 Bayesian information criterion

attribute predictor estimate std_error z-score p_value significance

0 (Intercept) 11.663 3.29627 3.53823 0.000402812 ***

1 temp -0.216234 0.0531772 -4.06628 4.7769e-05 ***

Aster Data proprietary and confidential Principal Component Analysis (PCA)

March 21, 2012 Statistical Analysis 75

Principal Component Analysis (PCA)

Summary
Principal component analysis (PCA) is a common unsupervised learning technique that is useful
for both exploratory data analysis and dimensionality reduction. It is often used as the core
procedure for factor analysis.

Background
PCA takes an data matrix (N observations, M variables), and generates an
“rotation matrix.” Each column of the rotation matrix represents an axis in M-dimensional space.
The first k columns are the k dimensions along which the data varies most, and thus in some
cases can be considered the most important. We can throw away the remaining columns,
and we are left with a rotation matrix. To get the values of our dataset in the coordinate
system of our principal components, we multiply the original dataset by the
rotation matrix to get a final matrix. This matrix represents our dataset with a reduced
dimensionality of

Usage

Syntax
SELECT * FROM pca_reduce (
 ON (
 SELECT * FROM pca_map (
 ON target_table
 [TARGET_COLUMNS(target_columns)]
)
)
 [COMPONENTS(num_components)]
 PARTITION BY 1
) ORDER BY component_rank;

Arguments

TARGET_COLUMNS: Optional argument. The columns containing the data. The user can either
explicitly list all the names, e.g., target_columns('input1','input2', ...), or specify
a range of columns, e.g., target_columns('[4:33]'), or some combination of the above,
e.g., target_columns('input1','[4:21]','[25:53]','input73'). Ranges are
specified with the syntax: “[<start_column>:<end_column>]”, and the column index starts
from 0. These columns must contain numeric values. If this parameter is not specified, the
function assumes that every column is part of the data matrix.

COMPONENTS: Optional argument. The number of principal components to return. If K is
specified here, the function will emit the top K components. If this parameter is omitted, the
function emits every principle component.

Input Data
See the TARGET_COLUMNS parameter, above.

N M× M M×

M k–
M k×

N M× M k×
N k×

k M≤

Principal Component Analysis (PCA) Aster Data proprietary and confidential

76 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Output
Each row of output represents one eigenvector. The number of eigenvectors output is equal to the
number of input columns. The PCA function outputs as its first row the row whose
corresponding eigenvalue is the largest eigenvalue in the matrix. The output rows are ranked
(component_rank) in descending order by the standard deviation of the combination of
components along the eigenvector of each row. The sd column shows the standard deviation.

Example

Table 5-19 Example Input Data: The swap_rates Table

Example SQL-MapReduce call
SELECT * FROM pca_reduce (
 ON (
 SELECT * FROM pca_map (
 ON swap_rates
 TARGET_COLUMNS('[1:8]')
)
)
 PARTITION BY 1
) ORDER BY component_rank;

month year_1 year_2 year_3 year_4 year_5 year_7 year_10 year_30

Jul-2000 7.05 7.12 7.14 7.15 7.17 7.2 7.24 7.2

Aug-2001 3.73 4.27 4.74 5.06 5.29 5.57 5.8 6.18

Aug-2000 6.95 6.98 6.99 7 7.02 7.04 7.07 7.05

Dec-2001 2.44 3.56 4.33 4.8 5.11 5.5 5.82 6.2

Oct-2001 2.52 3.2 3.8 4.21 4.5 4.9 5.24 5.84

Apr-2001 4.51 4.81 5.12 5.33 5.5 5.75 6 6.41

Mar-2001 4.77 4.95 5.17 5.33 5.46 5.65 5.82 6.14

Nov-2000 6.65 6.58 6.61 6.66 6.7 6.78 6.85 6.91

Jun-2001 4.06 4.63 5.08 5.37 5.58 5.85 6.07 6.41

Nov-2001 2.4 3.2 3.84 4.27 4.57 4.95 5.25 5.74

Sep-2001 3.05 3.69 4.2 4.56 4.82 5.18 5.49 6.04

Dec-2000 6.18 6.06 6.07 6.11 6.14 6.2 6.27 6.41

Jul-2001 3.99 4.58 5.05 5.36 5.57 5.84 6.05 6.38

Jan-2001 5.38 5.44 5.56 5.66 5.74 5.87 6.02 6.26

Oct-2000 6.7 6.65 6.67 6.7 6.73 6.8 6.88 6.94

Feb-2001 5.14 5.28 5.44 5.57 5.68 5.84 6.01 6.29

Sep-2000 6.8 6.79 6.81 6.83 6.86 6.92 7 7.04

May-2001 4.29 4.8 5.19 5.45 5.64 5.9 6.15 6.49

Aster Data proprietary and confidential Simple Moving Average (stats smavg)

March 21, 2012 Statistical Analysis 77

Example Output of the PCA Function

Table 5-20 Example output, first five columns

Table 5-21 Example output, last five columns

Here we include the component_rank column again for orientation.

Simple Moving Average (stats smavg)

Summary
The Simple Moving Average function computes the average over a number of points in a series.

Background
A simple moving average (SMA) is the unweighted mean of the previous n data points. For
example, a 10-day simple moving average of closing price is the mean of the previous 10 days'
closing prices.

To calculate this, we compute the arithmetic average of first R rows as specified by the
WINDOW_SIZE argument. Then, for each subsequent row, compute new value as

 new_smavg = old_smavg - (PM-n+PM) / N

where N is the number of rows as specified by the WINDOW_SIZE argument.

component
_rank

year_1 year_2 year_3 year_4

1 0.573453763336183 0.463152945479102 0.379424599328294 0.325478575999851

2 -0.621714840761568 -0.14985696974009 0.0983355735945921 0.225150624401579

3 0.316337107240867 -0.116113737446476 -0.256160840847205 -0.29799452273954

4 0.409297871228184 -0.636553812994135 -0.340702659940797 0.104357634897204

5 0.0694489805603556 0.000442880934856472 -0.010814100943979 -0.120994144003131

6 -0.103341677470819 0.554738957638507 -0.520033578471959 -0.384527271283778

7 -0.0177100062755995 0.189836624633163 -0.627785211273145 0.619016764376793

8 0.034802553890609 -0.0239922807523107 -0.00206652008482501 -0.444968629825824

com-
po-
nent_
rank

year_5 year_7 year_10 year_30 sd

1 0.289238489135625 0.243798977083416 0.208603116772691 0.141875633029829 2.74055709909578

2 0.300760470623755 0.373536522222103 0.412004179651348 0.361824568708033 0.357539829216913

3 -0.255888704035256 -0.0624809367397319 0.212436076304392 0.785822715227842 0.0647221703465131

4 0.277638446570702 0.42439032934183 0.00524218802496824 -0.207576342896498 0.017949188755367

5 -0.354106515662139 -0.0280853636453506 0.824467507743213 -0.417723870377971 0.00781553352448869

6 0.105271027044617 0.488659485360552 -0.0466968194431294 -0.106011163385703 0.00455943666200235

7 0.0921410171266871 -0.401738622179051 0.124874329862384 0.02957870360213 0.00245643939148816

8 0.733729322869908 -0.464812548679898 0.209904421207981 -0.0417433824763499 0.00216985409614942

Simple Moving Average (stats smavg) Aster Data proprietary and confidential

78 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Usage

Permissions

You must grant EXECUTE on the function “smavg” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM SMAVG
 (
 ON {table_name|view_name|(query)}
 PARTITION BY partition_column
 ORDER BY order_by_column
 COLUMNS('column_names')
 RETURN_ALL('true|false')
 WINDOW_SIZE('window_size')
)

Arguments

COLUMNS: Optional. Specifies the column name for which exponential moving average is
required. If this clause is omitted, all the input rows are output as is.

WINDOW_SIZE: Optional. Specifies the number of old values to be considered for calculating
the new weighted moving average. Default window_size is 10.

RETURN_ALL: Optional. Specifies if the first WINDOW_SIZE rows should be output or not.
Since exponential moving average for the first WINDOW_SIZE is not defined, null's will be
returned for those columns. Default value is false.

Assumptions

Data is assumed to be partitioned such that each partition contains all the rows of an entity. For
example if the simple moving average of a particular share is required, then all transactions of
that share should be part of one partition. It is assumed that the input rows are provided in the
correct order.

Example

Example Input Data

Table 5-22 Example Input Data, table stock_data

symbol price volume ts

APPL 60.33 200 2011-10-04 04:40:00

APPL 59.44 150 2011-10-04 04:41:00

APPL 59.38 200 2011-10-04 04:42:00

APPL 59.38 100 2011-10-04 04:43:00

APPL 59.22 200 2011-10-04 04:44:00

Aster Data proprietary and confidential Simple Moving Average (stats smavg)

March 21, 2012 Statistical Analysis 79

Example SQL-MapReduce call
SELECT *
 FROM SMAVG
 (
 ON stock_data
 PARTITION BY symbol
 ORDER BY ts
 COLUMNS('price','volume')
 WINDOW_SIZE('10')
 RETURN_ALL('true')
)
 ORDER BY ts;

Example Output

Output contains all the input columns, in addition one extra column is output for each of the
columns on which simple moving average is requested.

Table 5-23 Example Output from SMAVG

APPL 59.88 300 2011-10-04 04:45:00

APPL 59.55 100 2011-10-04 04:46:00

APPL 59.5 400 2011-10-04 04:47:00

APPL 58.66 410 2011-10-04 04:48:00

APPL 59.05 810 2011-10-04 04:49:00

APPL 57.15 370 2011-10-04 04:50:00

APPL 57.32 470 2011-10-04 04:51:00

APPL 57.65 520 2011-10-04 04:52:00

APPL 56.14 120 2011-10-04 04:53:00

APPL 55.33 420 2011-10-04 04:54:00

APPL 55.86 360 2011-10-04 04:55:00

APPL 54.92 3260 2011-10-04 04:56:00

APPL 53.74 1260 2011-10-04 04:57:00

APPL 54.80 160 2011-10-04 04:58:00

APPL 54.86 1650 2011-10-04 04:59:00

symbol price volume ts price_mavg volume_mavg

APPL 60.33 200 2011-10-0
4 04:40:00

APPL 59.44 150 2011-10-0
4 04:41:00

APPL 59.38 200 2011-10-0
4 04:42:00

APPL 59.38 100 2011-10-0
4 04:43:00

APPL 59.22 200 2011-10-0
4 04:44:00

Simple Moving Average (stats smavg) Aster Data proprietary and confidential

80 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Note

Note that the new columns being added for moving averages are of type real.

Error Messages
You may see this error message:

• ERROR: Moving Average requires datatype of columns to be Double
Precision or Integer or BigInteger or Numeric

REASON: One or more columns specified in the COLUMNS arguments are not of correct
type.

APPL 59.88 300 2011-10-0
4 04:45:00

APPL 59.55 100 2011-10-0
4 04:46:00

APPL 59.50 400 2011-10-0
4 04:47:00

APPL 58.66 410 2011-10-0
4 04:48:00

APPL 59.05 810 2011-10-0
4 04:49:00

59.439 287.0

APPL 57.15 370 2011-10-0
4 04:50:00

59.121 304.0

APPL 57.32 470 2011-10-0
4 04:51:00

58.909000000000006 336.0

APPL 57.65 520 2011-10-0
4 04:52:00

58.736000000000004 368.0

APPL 56.14 120 2011-10-0
4 04:53:00

58.412000000000006 370.0

APPL 55.33 420 2011-10-0
4 04:54:00

58.023 392.0

APPL 55.86 360 2011-10-0
4 04:55:00

57.621 398.0

APPL 54.92 3260 2011-10-0
4 04:56:00

57.158 714.0

APPL 53.74 1260 2011-10-0
4 04:57:00

56.582 800.0

APPL 54.80 160 2011-10-0
4 04:58:00

56.196 775.0

APPL 54.86 1650 2011-10-0
4 04:59:00

55.777 859.0

Aster Data proprietary and confidential Weighted Moving Average (stats wmavg)

March 21, 2012 Statistical Analysis 81

Weighted Moving Average (stats wmavg)

Summary
The weighted moving average computes the average over a number of points in a time series but
applies a weighting to older values. The weighting for the older values decreases arithmetically.

Background
A weighted average is any average that has multiplying factors to give different weights to
different data points. Mathematically, the moving average is the convolution of the data points
with a moving average function. In technical analysis, a weighted moving average (WMA) has
the specific meaning of weights that decrease arithmetically. In an n-day WMA, the latest day
has weight n, the second latest has (n - 1), and so on, counting down to zero.

Total_[M+1] = Total_[M] + P_[M+1] - P_[M-n+1]

Numerator_[M+1] = Numerator_[M] +n*P_[M+1] - Total[M]

new_WMAVG = Numerator_[M+1]/(n(n+1)/2)

Where n is the number of rows as specified by the WINDOW_SIZE argument.

Usage

Permissions

You must grant EXECUTE on the function “wmavg” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM WMAVG
 (
 ON {table_name|view_name|(query)}
 PARTITION BY partition_column
 ORDER BY order_by_column
 COLUMNS('column_names')
 RETURN_ALL('true|false')
 WINDOW_SIZE('window_size')
)

Arguments

COLUMNS: Optional. Specifies the column name for which the weighted moving average will
be calculated. If this clause is omitted, all the input rows are output as-is.

RETURN_ALL: Optional. Specifies if the first WINDOW_SIZE rows should be output or not.
Since exponential moving average for the first WINDOW_SIZE is not defined, nulls will be
returned for those columns. Default value is false.

Weighted Moving Average (stats wmavg) Aster Data proprietary and confidential

82 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

WINDOW_SIZE: Optional. Specifies the number of old values to be considered for calculating
the new weighted moving average. Default window_size is 10.

Assumptions

Data is assumed to be partitioned such that each partition contains all the rows of an entity. For
example if the exponential moving average of a particular equity share price is required, then all
transactions of that equity share should be part of one partition. It is assumed that the input rows
are provided in the correct order.

Example

Example Input Data

Table 5-24 Example Input Data for Weighted Moving Average, table stock_data

symbol price volume ts

APPL 60.33 200 2011-10-04
04:40:00

APPL 59.44 150 2011-10-04
04:41:00

APPL 59.38 200 2011-10-04
04:42:00

APPL 59.38 100 2011-10-04
04:43:00

APPL 59.22 200 2011-10-04
04:44:00

APPL 59.88 300 2011-10-04
04:45:00

APPL 59.55 100 2011-10-04
04:46:00

APPL 59.5 400 2011-10-04
04:47:00

APPL 58.66 410 2011-10-04
04:48:00

APPL 59.05 810 2011-10-04
04:49:00

APPL 57.15 370 2011-10-04
04:50:00

APPL 57.32 470 2011-10-04
04:51:00

APPL 57.65 520 2011-10-04
04:52:00

APPL 56.14 120 2011-10-04
04:53:00

APPL 55.33 420 2011-10-04
04:54:00

Aster Data proprietary and confidential Weighted Moving Average (stats wmavg)

March 21, 2012 Statistical Analysis 83

Example SQL-MapReduce call
SELECT *
FROM WMAVG
 (
 ON stock_data
 PARTITION BY symbol
 ORDER BY ts
 COLUMNS('price','volume')
 WINDOW_SIZE('10')
 RETURN_ALL('true')
)
ORDER BY ts;

Example Output

Table 5-25 Example Output from Weighted Moving Average

APPL 55.86 360 2011-10-04
04:55:00

APPL 54.92 3260 2011-10-04
04:56:00

APPL 53.74 1260 2011-10-04
04:57:00

APPL 54.80 160 2011-10-04
04:58:00

APPL 54.86 1650 2011-10-04
04:59:00

symbol price volume ts price_mavg volume_mavg

APPL 60.33 200 2011-10-04
04:40:00

APPL 59.44 150 2011-10-04
04:41:00

APPL 59.38 200 2011-10-04
04:42:00

APPL 59.38 100 2011-10-04
04:43:00

APPL 59.22 200 2011-10-04
04:44:00

APPL 59.88 300 2011-10-04
04:45:00

APPL 59.55 100 2011-10-04
04:46:00

APPL 59.5 400 2011-10-04
04:47:00

APPL 58.66 410 2011-10-04
04:48:00

APPL 59.05 810 2011-10-04
04:49:00

59.30072727272727 363.45454545454544

Exponential Moving Average (stats emavg) Aster Data proprietary and confidential

84 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Output contains the input columns plus a column for each weighted moving average. The
weighted moving average output columns have a datatype of real.

Error Messages
You may see the following error:

• ERROR: Moving Average requires datatype of columns to be Double
Precision or Integer or BigInteger or Numeric.

REASON: One or more columns specified in the COLUMNS arguments are not of correct
type.

Exponential Moving Average (stats emavg)

Summary
The exponential moving average function, EMAVG, computes the average over a number of
points in a time series but applies a damping (weighting) factor to older values. The weighting
for the older values decreases exponentially without entirely discarding the older values.

Background
Exponential moving average (EMA), sometimes also called an exponentially weighted moving
average (EWMA), applies weighting factors that decrease exponentially. The weighting for each
older data point decreases exponentially, giving much more importance to recent observations
while still not discarding older observations entirely.

APPL 57.15 370 2011-10-04
04:50:00

58.88454545454545 378.54545454545456

APPL 57.32 470 2011-10-04
04:51:00

58.55709090909092 408.72727272727275

APPL 57.65 520 2011-10-04
04:52:00

58.32818181818182 442.1818181818182

APPL 56.14 120 2011-10-04
04:53:00

57.856181818181824 397.09090909090907

APPL 55.33 420 2011-10-04
04:54:00

57.29581818181819 406.1818181818182

APPL 55.86 360 2011-10-04
04:55:00

56.90254545454546 400.3636363636364

APPL 54.92 3260 2011-10-04
04:56:00

56.411454545454546 920.7272727272727

APPL 53.74 1260 2011-10-04
04:57:00

55.790000000000006 1020.0

APPL 54.8 160 2011-10-04
04:58:00

55.466 903.6363636363636

APPL 54.86 1650 2011-10-04
04:59:00

55.22309090909091 1062.7272727272727

Aster Data proprietary and confidential Exponential Moving Average (stats emavg)

March 21, 2012 Statistical Analysis 85

We compute the arithmetic average of the first n rows as specified by START_ROWS argument.
Then, for each subsequent row, we compute the new value as:

 new_emavg = alpha * new_value + (1-alpha) * old_emavg

Usage

Permissions

You must grant EXECUTE on the function “emavg” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM EMAVG
 (
 ON {table_name|view_name|(query)}
 PARTITION BY partition_column
 ORDER BY order_by_column
 [COLUMNS('column_names')]
 [RETURN_ALL('true|false')]
 [START_ROWS('number')]
 [ALPHA('alpha_value')]
)

Arguments

COLUMNS: Optional. Name of the column name for which the exponential moving average will
be calculated. If this clause is omitted, all the input rows are output as-is.

ALPHA: Optional. Specifies the damping factor, which is the degree of weighting decrease. The
damping factor must have a value between 0 and 1, which translates to a percentage value of
zero to 100. For example, specify an ALPHA of 0.2 to specify a 20% damping factor. A higher
ALPHA discounts older observations faster. The default value is 0.1.

START_ROWS: Optional. Specifies the lag, expressed in rows, after which exponential moving
average will start to be calculated. The exponential moving average for the first START_ROWS
rows is not defined. The default number of START_ROWS is 2.

RETURN_ALL: Optional. Specifies whether the first START_ROWS rows should be included in
the output or not. Since exponential moving average for the first START_ROWS is not defined,
setting START_ROWS to true causes your query to return nulls for those columns. Default value
is false.

Assumptions

This function makes the following assumptions:

• Data is assumed to be partitioned such that each partition contains all the rows of an entity.
For example if the exponential moving average of a particular exchange-traded equity share
price is required, then all transactions of that equity share should be part of one partition.

It is assumed that the input rows are provided in historical order.

Exponential Moving Average (stats emavg) Aster Data proprietary and confidential

86 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Output

For each column on which you calculate an average, the function returns a column containing the
moving average. The name of each moving average column is the corresponding input column’s
name with the suffix, “_mavg” appended to it. All input columns are also returned.

Example

Example Input Data

Table 5-26 Example Input Data, table stock_data

symbol price volume ts

APPL 60.33 200 2011-10-04
04:40:00

APPL 59.44 150 2011-10-04
04:41:00

APPL 59.38 200 2011-10-04
04:42:00

APPL 59.38 100 2011-10-04
04:43:00

APPL 59.22 200 2011-10-04
04:44:00

APPL 59.88 300 2011-10-04
04:45:00

APPL 59.55 100 2011-10-04
04:46:00

APPL 59.5 400 2011-10-04
04:47:00

APPL 58.66 410 2011-10-04
04:48:00

APPL 59.05 810 2011-10-04
04:49:00

APPL 57.15 370 2011-10-04
04:50:00

APPL 57.32 470 2011-10-04
04:51:00

APPL 57.65 520 2011-10-04
04:52:00

APPL 56.14 120 2011-10-04
04:53:00

APPL 55.33 420 2011-10-04
04:54:00

APPL 55.86 360 2011-10-04
04:55:00

APPL 54.92 3260 2011-10-04
04:56:00

Aster Data proprietary and confidential Exponential Moving Average (stats emavg)

March 21, 2012 Statistical Analysis 87

Example SQL-MapReduce call
SELECT *
FROM EMAVG
 (
 ON stock_data
 PARTITION BY symbol
 ORDER BY ts
 COLUMNS('price','volume')
 ALPHA('0.1818')
 START_ROWS('10')
 RETURN_ALL('true')
)
ORDER BY ts,price,volume,price_mavg,volume_mavg;

Example Output

from EMAVG

Table 5-27 Example Output from EMAVG

APPL 53.74 1260 2011-10-04
04:57:00

APPL 54.80 160 2011-10-04
04:58:00

APPL 54.86 1650 2011-10-04
04:59:00

symbol price volume ts price_mavg volume_mavg

APPL 60.33 200 2011-10-0
4 04:40:00

APPL 59.44 150 2011-10-0
4 04:41:00

APPL 59.38 200 2011-10-0
4 04:42:00

APPL 59.38 100 2011-10-0
4 04:43:00

APPL 59.22 200 2011-10-0
4 04:44:00

APPL 59.88 300 2011-10-0
4 04:45:00

APPL 59.55 100 2011-10-0
4 04:46:00

APPL 59.5 400 2011-10-0
4 04:47:00

APPL 58.66 410 2011-10-0
4 04:48:00

APPL 59.05 810 2011-10-0
4 04:49:00

59.439 287.0

APPL 57.15 370 2011-10-0
4 04:50:00

59.022859800000006 302.0894

Volume-Weighted Average Price (stats vwap) Aster Data proprietary and confidential

88 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

The output consists of a column for each exponential moving average you are calculating, plus
all of the input columns returned as-is.

Notes

Note that the new columns being added for moving averages are of type real.

Error Messages
You may see the following error message when you run this function:

• ERROR: Moving Average requires datatype of columns to be Double
Precision or Integer or BigInteger or Numeric.

REASON: One or more columns specified in the COLUMNS arguments are not of correct
type.

Volume-Weighted Average Price (stats vwap)

Summary
This function computes, for each in a series of equal-length intervals, the volume-weighted
average price of a traded item (usually an equity share). You specify the interval length in the
TIMEINTERVAL argument. The first interval starts at the time of the earliest timestamp in the
partition, and it ends with the last row timestamped less than TIMEINTERVAL seconds later. The
second interval starts immediately after the end of the first, and so on. All intervals have the
same length.

APPL 57.32 470 2011-10-0
4 04:51:00

58.713279888360006 332.61554708000006

APPL 57.65 520 2011-10-0
4 04:52:00

58.51997560465616 366.68204062085607

APPL 56.14 120 2011-10-0
4 04:53:00

58.08729603972967 321.83524563598445

APPL 55.33 420 2011-10-0
4 04:54:00

57.58601961970682 339.6815979793625

APPL 55.86 360 2011-10-0
4 04:55:00

57.27222925284413 343.3754834667144

APPL 54.92 3260 2011-10-0
4 04:56:00

56.84459397467707 873.6178205724657

APPL 53.74 1260 2011-10-0
4 04:57:00

56.280178790080775 943.8621007923914

APPL 54.8 160 2011-10-0
4 04:58:00

56.01108228604409 801.3559708683347

APPL 54.86 1650 2011-10-0
4 04:59:00

55.80181552644128 955.6394553644714

Aster Data proprietary and confidential Volume-Weighted Average Price (stats vwap)

March 21, 2012 Statistical Analysis 89

Background
Compute the sum of the product of the volume and price divided by the total volume traded in a
specified window:

 VWAP = sum(vol*price)/sum(vol)

NOTE: In the formula above, "sum" refers to the sum within the current window.

Usage

Permissions

You must grant EXECUTE on the function “vwap” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
 FROM VWAP
 (
 ON { table_name | view_name | (query) }
 PARTITION BY expression [, ...]
 [PRICE('price_column')]
 [VOLUME ('volume_column')]
 [TIMEINTERVAL('number_of_seconds')]
 [DT('date_column')]
)

Arguments

PRICE: Optional. Name of the traded price column in the input table. Each row typically records
one transaction. The PRICE column records the price at which the item traded. Default is
"price".

VOLUME: Optional. Name of the column that holds the count of units traded in the
transaction(s) recorded in a given row. Default is "volume".

DT: Optional. Name of the column that records the date and time of the trade. Default is "dt"

TIMEINTERVAL: Optional. Specifies the length of the time interval, expressed in seconds. The
default is 0, which has the effect of calculating no averages, since every row is considered to be
an interval unto itself.

Assumptions

The function has been build with these assumptions:

• Partitioning of input data: The function assumes that you will partition the input data so
that each partition contains all the price quotes for a particular entity. For example, to
calculate the volume-weighted average of a particular equity share, you should pass to the
function a single partition containing the records of all transactions of that equity share in
the period for which you want to calculate an average.

• Sort order of input data: The function assumes that the rows are sorted in ascending order
based on the DT column.

Volume-Weighted Average Price (stats vwap) Aster Data proprietary and confidential

90 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

• Start time: The timestamp of the first row in the partition is considered to be the start time
of the first interval. The next interval starts immediately after the end of the first, and so on.

• Datatypes: The DT input column should be of type timestamp. The PRICE and VOLUME
input columns are of type numeric, integer, biginteger, or real.

Example Query 1

Input Data for Example 1

The sample table stockdata contains these columns:

• memberid [int]

• name [varchar]

• dt [timestamp]

• price [numeric]

• volume [int]

Table 5-28 Example Input Data for Example 1, table stockdata

Example Query 1
SELECT *
 FROM VWAP
 (
 ON
 (
 SELECT *
 FROM stockdata
)
 PARTITION BY memberID
 PRICE('price')
 VOLUME ('volume')
 DT('dt')
);

Example 1 Output from VWAP

Table 5-29 Example 1 Output from VWAP

memberid name dt price volume

1 Google 1989-02-20 09:00:45 40 25

1 Google 1989-02-20 09:50:22 50 21

1 Google 1989-02-21 09:00:46 50 29

1 Google 1989-02-22 09:00:46 40 2

memberid name timestamp vwap

1 Google 1989-02-20 09:00:45 40

1 Google 1989-02-20 09:50:22 50

1 Google 1989-02-21 09:00:46 50

1 Google 1989-02-22 09:00:46 40

Aster Data proprietary and confidential Volume-Weighted Average Price (stats vwap)

March 21, 2012 Statistical Analysis 91

All the input columns are output as-is, except for PRICE, VOLUME, and DT, which are not
included in the output. In addition, the timestamp and vwap columns are added to the output
table. This example is really an anti-example. Since we omitted the TIMEINTERVAL argument in
our sample query, the function used the default value of 0, which had the effect of calculating no
averages, since every row was considered to be an interval unto itself.

Example Query 2

Input Data for Example 2

Use the same input data you used in Example 1.

Example Query 2
SELECT * FROM VWAP
 (
 ON
 (
 SELECT *
 FROM stockdata
)
 PARTITION BY MemberID
 PRICE('price')
 VOLUME ('volume')
 DT('dt')
 TIMEINTERVAL ('86400')
);

Example 2 Output from VWAP

Table 5-30 Example 2 Output from VWAP

This time, since we specified a TIMEINTERVAL of 86,400 seconds (one day), the first two rows
are grouped together, and the last two rows are grouped together, and the function calculates the
volume-weighted average price for each group.

Error Messages
You may see the following error messages:

• ERROR: Must have column named price or specify name of price column.

REASON: PRICE argument is missing and there exists no column in the input table with the
name 'Price'

• ERROR: Must have column named volume or specify name of volume
column.

REASON: VOLUME argument is missing and there exists no column in the input table with
the name 'Volume

MemberID Name timestamp vwap

1 Google 1989-02-20 09:50:22 44.5652

1 Google 1989-02-22 09:00:46 45.9184

Volume-Weighted Average Price (stats vwap) Aster Data proprietary and confidential

92 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

• ERROR: Must have column named price or specify name of Dt column.

REASON: DT argument is missing and there exists no column in the input table with the
name 'Dt'

March 21, 2012 Aster Data proprietary and confidential 95

6

Text Analysis

In this section we describe:

• “Levenshtein Distance” on page 95

• “nGram” on page 97

• “Text Parser (text_parser)” on page 100

• “Named Entity Recognition (NER)” on page 103

• “Sentiment Extraction Functions” on page 109

Levenshtein Distance

Summary
This function computes the Levenshtein distance between two text values. This is useful for
fuzzy matching of sequences and strings. It is one measure used to compare how "far apart" two
strings are. The Levenshtein distance computes the number of edits needed to transform one
string into the other, where edits include insertions, deletions, or substitutions of individual
characters.

Background
This function is frequently used to resolve a user-entered value to a standard value, such as when
a person types “Hanning Mankel” when he’s actually searching for Henning Mankell.

Usage

Permissions

You must grant EXECUTE on the function “ldist” to the database user who will run the function.
For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax

Below, we show how you invoke the Levenshtein distance function. Use a SELECT statement
that calls the function:

Levenshtein Distance Aster Data proprietary and confidential

96 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

SELECT *
 FROM ldist
 (
 ON { table_name | view_name | (query) }
 SOURCE (column1 [, column2,...])
 TARGET(column1)
 [THRESHOLD(val)]
 [OUTPUT_COLUMN_NAME(column_name)]
 [TARGET_COLUMN_NAME(column_name)]
 [SOURCE_COLUMN_NAME(column_name)]
 [ACCUMULATE(column1 [, column2,...])
);

Arguments

SOURCE: Required. A comma-delimited list of columns containing the source text whose
Levenshtein distance from the target text will be calculated. SOURCE columns must be
character-type columns such as CHAR or VARCHAR.

TARGET: Required. Column containing the target text whose Levenshtein distance from each
source text will be calculated. Must be character-type column.

THRESHOLD: Optional. Use an integer value greater than zero. This is the minimum
Levenshtein distance value that will be returned. In other words, if the Levenshtein distance for a
(source, target) pair is equal to or below this threshold, then the threshold value itself is returned.

OUTPUT_COLUMN_NAME: Optional. Name you wish to apply to the output column
containing the Levenshtein distance. The default is distance.

TARGET_COLUMN_NAME: Optional. Name for the output column containing the compared
target text. Default is target.

SOURCE_COLUMN_NAME: Optional. Name for the output column containing the compared
source text. Default is source.

ACCUMULATE: Optional. List of input columns that will be passed as-is to the output.

Example

Example Input Data

Table 6-1 Example Input Data, table sample_lev_input

Example SQL-MapReduce call
SELECT *
 FROM ldist
 (
 ON sample_lev_input
 SOURCE('col1', 'col2', 'col3')
 TARGET('company')
 ACCUMULATE('company_id')
);

col1 col2 col3 company company_id

Astre Astter Astur Aster 749

Aster Data proprietary and confidential nGram

March 21, 2012 Text Analysis 97

Example Output from Levenshtein Distance

Table 6-2 Example Output from Levenshtein Distance

nGram

Summary
The nGram function tokenizes (or splits) an input stream of text and emits n multi-grams (which
we call “n-grams”) based on the specified delimiter and reset parameters. This function is useful
when trying to do text analysis and allows more flexibility than the standard tokenization. Many
two-word phrases carry important meaning (e.g. “machine learning”) that uni-grams
(single-word tokens) do not capture. This, combined with additional analytical techniques, can
be useful for performing sentiment analysis, topic identification, and document classification.

nGram considers each input row to be one document, and it returns a row for each unique n-gram
in each document. Optionally, you can have nGram also return the counts of each n-gram and the
total number of n-grams, per document.

Background
General background on tokenization can be found here: http://en.wikipedia.org/wiki/Lexical_
analysis#Tokenizer

Description
An n-gram is a sub-sequence of n items from a given sequence. This function tokenizes an input
sequence into sub-sequences of n-grams.

Usage

Permissions

You must grant EXECUTE on the function “nGram” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
 FROM nGram
 (
 ON { table_name | view_name | (query) }
 TEXT_COLUMN('column_name')

company_id target source distance

749 Aster Astre 2

749 Aster Astter 1

749 Aster Astur 1

http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer
http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer

nGram Aster Data proprietary and confidential

98 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 [DELIMITER('delimiter_regular_expression')]
 GRAMS(gram_number)
 [OVERLAPPING({'true'|'false'})]
 [CASE_INSENSITIVE({'true'|'false'})]
 PUNCTUATION('punctuation_regular_expression')
 RESET('reset_regular_expression')
 [TOTAL]
 [ACCUMULATE('column_name [, ...]')]
 [NGRAM_COLUMN_NAME('column_name')]
 [COUNT_COLUMN_NAME('column_name')]
)

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be tokenized; only one
column is permitted

DELIMITER: Optional. In the input text, the DELIMITER is the character or string that divides
one word from the next. The default is a single space character (‘ ’). You can use a regular
expression as the DELIMITER value. This is useful, for example, if you wish to recognize both
tabs and space characters as delimiters.

GRAMS: Required. Integer specifying the desired length, in words, of each n-gram (i.e., the
value of n)

OVERLAPPING: A true or false value that determines if you allow for overlapping n-grams. The
default is 'true', which allows overlapping. When running in overlapping more, each word in
each sentence is the start of an n-gram, provided enough words follow it (in the same sentence)
to form a whole n-gram of the size you’ve specified. See RESET for information on sentences.

CASE_INSENSITIVE: A true or false value that specifies whether the function will leave the
lettercase of the text as-is, or convert all letters to lowercase. The default is 'true', which converts
all text to lowercase.

PUNCTUATION: Optional. A regular expression that specifies the punctuation characters nGram
will remove before it evaluates the input text. These characters are removed and not replaced
with any character, so that, for example, “hocus-pocus” becomes “hocuspocus”. The default set
of PUNCTUATION characters that are removed includes `~#^&*()-

RESET: Optional. A regular expression listing one or more punctuation characters or strings, any
of which the nGram function will recognize as the end of a sentence of text. The end of each
sentence resets the search for n-grams, meaning that nGram discards any partial n-grams and
proceeds to the next sentence to search for the next n-gram. In other words, no n-gram can span
two sentences. The default set of RESET characters includes .,?!

TOTAL: Optional. A true or false value that specifies whether nGram will return a total n-gram
count for the document. Each row is considered to be one document. (Note that this count is not
the distinct number of n-grams, but rather the total number of n-grams in the document.) The
default is false. If set to true then the column returned is called totalcnt.

ACCUMULATE: Optional. A list of columns you want to return for each word; note that the
columns accumulated cannot have the same names as those specified by NGRAM_COLUMN_
NAME and COUNT_COLUMN_NAME. By default all input columns are emitted.

NGRAM_COLUMN_NAME: Optional. This is the name of the column for the n-grams
generated. Default value is 'ngram'.

COUNT_COLUMN_NAME: Optional. This is the name of the count column. Default value is
'frequency'.

Aster Data proprietary and confidential nGram

March 21, 2012 Text Analysis 99

Output

The output columns include columns specified in the accumulate clause and the column
containing the n-gram and the count of occurrences of that n-gram.

Example

Example Input Data

Table 6-3 Example Input Data, table my_docs

Example SQL-MapReduce call
SELECT *
 FROM nGram
 (
 ON my_docs
 TEXT_COLUMN('txt')
 DELIMITER(' ')
 GRAMS(2)
 OVERLAPPING('true')
 CASE_INSENSITIVE('true')
 PUNCTUATION('\[.,?\!\]')
 RESET('\[.,?\!\]')
 ACCUMULATE('id','src')
);

Example output from nGram

Table 6-4 Example output from nGram

id src txt

1 wikipedia the Quick brown fox jumps over the lazy dog

2 sampledoc hello world. again, I say hello world

id src ngram frequency

1 wikipedia the quick 1

1 wikipedia quick brown 1

1 wikipedia brown fox 1

1 wikipedia fox jumps 1

1 wikipedia jumps over 1

1 wikipedia over the 1

1 wikipedia the lazy 1

1 wikipedia lazy dog 1

2 sampledoc hello world 2

2 sampledoc again I 1

2 sampledoc I say 1

2 sampledoc say hello 1

Text Parser (text_parser) Aster Data proprietary and confidential

100 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

The output includes all the columns specified in the OUTPUT clause, plus an ngram column and
a count (“cnt”) column.

Text Parser (text_parser)

Summary
Text parser (“text_parser” formerly “tokenize_cnt”) is a general tool for working with text fields.
It can tokenize an input stream of words, optionally stem them, and then emit the individual
words and counts for the each word appearance.

Background
General background on tokenization can be found here: http://en.wikipedia.org/wiki/Lexical_
analysis#Tokenizer

Usage

Permissions

You must grant EXECUTE on the function “text_parser” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
 FROM text_parser
 (
 ON {table_name|view_name|(query)}
 [PARTITION BY expression [, ...]]
 TEXT_COLUMN('text_column_name')
 [CASE_INSENSITIVE('true'|'false')]
 [STEMMING('true'|'false')]
 [DELIMITER('delimiter_regular_expression')]
 [TOTAL('true'|'false')]
 [PUNCTUATION('punctuation_regular_expression')]
 [ACCUMULATE('column [, ...]')]
 [TOKEN_COLUMN_NAME('token_column_name')]
 [FREQUENCY_COLUMN_NAME('frequency_column_name')]
 [TOTAL_COLUMN_NAME('total_column_name')]
 [REMOVE_STOP_WORDS('true'|'false')]
 [POSITION_COLUMN_NAME('position_column_name')]
 [LIST_POSITIONS('true'|'false')]
)

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be tokenized. Only one
column is permitted.

http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer
http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer

Aster Data proprietary and confidential Text Parser (text_parser)

March 21, 2012 Text Analysis 101

CASE_INSENSITIVE: Optional. [true|false] Treat text as-is (false) or convert to all lowercase
(true); (defaults to 'true')

STEMMING: Optional. [true|false] If true, apply Porter Stemming to each token to reduce it to its
root form (default = false)

DELIMITER: Optional. Regular expression of character or string used to split words. (Default
value is '[\t\b\f\r]+')

TOTAL: Optional. [true|false] Return column showing total number of words in document
(default = 'false')

PUNCTUATION: Optional. List of punctuation characters to be removed, written as a regular
expression. (default is [.,!?])

ACCUMULATE: Optional. List of columns you want to return in addition to the parse word; note
that no output column name can be the same as the TOKEN_COLUMN_NAME or TOTAL_
COLUMN_NAME. By default, if ACCUMULATE is not selected, all input columns are
returned.

TOKEN_COLUMN_NAME: Optional. Name of the column containing tokens. (default = 'token')

FREQUENCY_COLUMN_NAME: Optional. Name of the column containing frequency counts.
(default = 'frequency')

TOTAL_COLUMN_NAME: Optional. Name of the column containing the total count for the
document. (default = 'total_count')

REMOVE_STOP_WORDS: Optional. [true|false] If true, ignore certain common words
when parsing the text. (default = false)

POSITION_COLUMN_NAME: Optional. Name of the column containing the position of a word
within a document. (default='position')

LIST_POSITIONS: [true|false]: Optional. Return position of a word in list form (if 'true'), or emit
a different row for each occurrence (if 'false') (default=false).

PARTITION BY: Optional. The function can be invoked as either a row function or a partition
function. If a partition by clause is specified, it will assume that all rows in any given partition
constitute a single document. If no partition by clause is specified, it is invoked as a row
function, and the function assumes each individual row constitutes a single document.

Output

A row is output for each unique token that is found. Each output row contains the token (in the
column with the default name "token") and a count of its occurrence in the input (in the column
with the default name "frequency"). The output also contains all columns specified in
ACCUMULATE clause.

Example

Example Input Data

Table 6-5 Example Input Data, table my_docs

id src txt

1 wikipedia the Quick brown fox jumps over the lazy dog

2 sampledoc hello world. again, I say hello world

Text Parser (text_parser) Aster Data proprietary and confidential

102 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example SQL-MapReduce call
SELECT *
 FROM text_parser
 (
 ON my_docs
 TEXT_COLUMN('txt')
 CASE_INSENSITIVE('true')
 PUNCTUATION('\[.,?\!\]')
 ACCUMULATE('id', 'src')
 LIST_POSITIONS('true')
)
ORDER BY id, position
;

Example Output from Text Parser

Table 6-6 Example Output from Text Parser

Algorithm
The function reads the full document into the memory buffer and creates a hash table. We
assume that the dictionary for a document will not exceed the available memory on the machine.
This assumption is reasonable, since, a million-word dictionary with an average word length of
ten bytes requires 10 MB of memory.

Error Messages
You will receive error messages under the following conditions:

• ERROR: If input parameters are now properly specified (wrong
datatype or values outside allowed range)

• ERROR: If the datatype of the text_column parameter is not of type
character varying.

id src token frequency position

1 wikipedia the 2 0,6

1 wikipedia quick 1 1

1 wikipedia brown 1 2

1 wikipedia fox 1 3

1 wikipedia jumps 1 4

1 wikipedia over 1 5

1 wikipedia lazy 1 7

1 wikipedia dog 1 8

2 sampledoc hello 2 0,5

2 sampledoc world 2 1,6

2 sampledoc again 1 2

2 sampledoc i 1 3

2 sampledoc say 1 4

Aster Data proprietary and confidential Named Entity Recognition (NER)

March 21, 2012 Text Analysis 103

• ERROR: If needed columns are missing from the relation named in the
ON clause.

• ERROR: If any columns in your ACCUMULATE clause have the disallowed
column name "token" or "frequency".

Named Entity Recognition (NER)

Summary
Named entity recognition (NER) is a process of finding instances of specified entities in text. For
example, a simple news named-entity recognizer for the English language might find the person
mentioned (John J. Smith) and the location mentioned (Seattle) in the text “John J. Smith lives in
Seattle”.

Background
SQL is not a convenient way to do this type of searching. For each type of item you want to find,
you would needs to issue an SQL query, or merge together multiple SQL subqueries that are
joined by OR operators. In addition, you would need a mechanism to label extracted fields that
were found.

Usage
We use three SQL-MR functions to extract the multiple entities in text content, train and evaluate
the data models.

• FindNamedEntity: Extracts all the specified name entities from the input document by
statistical models, regular expressions or a dictionary.

• TrainNamedEntityFinder: Trains statistical models with labeled data. The input labeled
data has an XML format.

• EvaluateNamedEntityFinderRow and EvaluateNamedEntityFinderPartition: Evaluates
the statistical models with labeled data. The format for the input labeled data is the same as
is used for training.

The functions support the following embedded entity types: "person", "location", "organization",
"phone", "date", "time", "email" and "money". The types "person", "location", and
"organization" will use the embedded maximum entropy data model, and the types "date",
"time", "email" and "money" will use embedded regular expressions. If the user specifies these
entity names, the default model types and model file names will be invoked. The user could
extract "all" the entities using one function call.

Permissions

You must grant EXECUTE on the functions “FindNamedEntity”, “TrainNamedEntityFinder”,
“EvaluateEntityFinderRow”, and “EvaluateEntityFinderPartition” to the database user who will
run the functions. For information on how SQL-MR security, see “SQL-MapReduce Security”
on page 197 of the Aster Database User’s Guide.

Named Entity Recognition (NER) Aster Data proprietary and confidential

104 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

FindNamedEntity

Syntax of FindNamedEntity
SELECT * FROM FindNamedEntity(
 ON { table_name | view_name | (query) }
 TEXT_COLUMN('text_column_name')
 MODEL('entity_type_name' [':' 'model_type' ':'
 'model_file_name|regular_expression'] [, ...])
 [SHOW_POSITION('position_number')]
 [ENTITY_COLUMN ('column_name')]
 [ACCUMULATE ('column_name [, ...]')]
)

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be scanned. Only one
column is permitted.

MODEL: List of model items. Each item is a triple, of which:

1. The first parameter is the entity type name (eg. PERSON, LOCATION, EMAIL ...) and will
appear in the output.

2. The second parameter is the model type, there are four possible types:

• "max entropy" means it is a maximum entropy language model generated by training;

• "rule" means it is a rule based model, which is a plain text file: one regular expression
per line;

• "dictionary" means it is dictionary based model, which is a plain text file: one word per
line;

• "reg exp" means the entities will be extracted by the following regular expression. Not
like "rule" which use pre-stored regular expressions, "reg exr" use regular expressions
in the SQL-MR statement.

3. The third parameter is the model file name (for "max entropy/rule/dictionary" types) or the
regular expression (for "reg exp" type).

SHOW_POSITION: Optional. Whether to output the position information for each name entity. If
it's set to a position number, the start position, end position and surrounding phrase (e.g., "entity
has gained $500 thousand in its equity") of the entities would be emitted. The default is '0', which
means no position information would be output.

ENTITY_COLUMN: Optional. Name of the column containing entity names. The default is
'entity'.

ACCUMULATE: List of columns you want to return in the output table; note that no output
column name can be the same as the ENTITY_COLUMN.

Input to FindNamedEntity

The input table should contain a text column which contains input text.

Output of FindNamedEntity

The output table contains columns specified in the ACCUMULATE clause, the column for the
entity name, and the columns for the start and end positions and surrounding phrases to the
entity.

Aster Data proprietary and confidential Named Entity Recognition (NER)

March 21, 2012 Text Analysis 105

Example for FindNamedEntity

Table 6-7 Sample input table, mydocs

Example SQL-MR call to FindNamedEntity
SELECT *
FROM FindNamedEntity(
 ON mydocs
 text_column('content')
 model('all')
 accumulate('id', 'src')
 SHOW_POSITION(3)
);

Table 6-8 Example output from FindNamedEntity

Error messages from FindNamedEntity, with explanations
• If the format of model parameter is wrong, the following error message will appear:

SQL-MR function FindNamedEntity failed: Format error for model !

• If the specified model type is not found, the following error message will appear:

SQL-MR function FindNamedEntity failed: No such model type:xxx!

• If the specified model is not found, the following error message will appear:

SQL-MR function FindNamedEntity failed: No such data model:xxx!

• If the specified regular expression is invalid, the following error message will appear:

SQL-MR function FindNamedEntity failed: Fail to compile Regular
expression!

• If the specified maximum entropy is invalid, the following error message will appear:

SQL-MR function FindNamedEntity failed: Fail to read model:xxx!

Id src Content

1 wiki U. S. President Barack Obama has arrived in South Korea, where he is expected to show
solidarity with the country ' s president in demanding North Korea move toward ending its
nuclear weapons programs.

2 wiki Please send me email via john@teradata.com .

id src ENTITY TYPE START END POSITION

1 wiki Barack Obama person 18 30 ... S . President Barack Obama has arrived
in ...

1 wiki U . S . location 0 7 U . S . President Barack Obama ...

1 wiki South Korea location 46 57 ... has arrived in South Korea, where he is ...

1 wiki North Korea location 143 154 ... president in demanding North Korea
move toward ending ...

2 wiki john@teradata.com email 25 42 ... email via john@teradata.com .

Named Entity Recognition (NER) Aster Data proprietary and confidential

106 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

TrainNamedEntityFinder

Syntax of TrainNamedEntityFinder
SELECT *
FROM TrainNamedEntityFinder
 (
 ON {table_name|view_name|query}
 PARTITION BY 1
 TEXT_COLUMN('text_column_name')
 ENTITY_TYPE('entity_type')
 MODEL_FILE('model_name')
 [DOMAIN('host_ip')]
 [DATABASE('database_name')]
 [USERID('db_user')]
 PASSWORD('password')
 [ENCODE('encode')]
 [ITERATOR('iterator')]
 [CUTOFF('cutoff')]
)

Arguments to TrainNamedEntityFinder

TEXT_COLUMN: Required. Name of the column whose contents will be scanned. Only one
column is permitted.

ENTITY_TYPE: The entity type to be trained. The input training corpus should contain the same
tag. For example, PERSON. Only one column is permitted.

MODEL_FILE: The name of the data model file to be generated. The SQL-MR function will
find the data model file in the dictionary fold or in the database.

ITERATOR: Optional. The iterator number for training. This is the training parameter of
openNLP. The default is 100.

CUTOFF: Optional. The cutoff number for training. This is the training parameter of openNLP.
The default is 5.

DOMAIN: Optional. The IP address of the queen node. The default is the queen IP.

DATABASE: Optional. This is the name of the database where the input table is present. The
default is ‘beehive’.

USERID: Optional. The Aster Database user name of the user. The default is ‘beehive’.

PASSWORD: Required. The Aster Database password for the database user.

Input to TrainNamedEntityFinder

The input table should contain an text column which contains training corpus.

Output from TrainNamedEntityFinder

A return value indicates success or failure.

Aster Data proprietary and confidential Named Entity Recognition (NER)

March 21, 2012 Text Analysis 107

Example for TrainNamedEntityFinder

Table 6-9 Sample input table “myTraining”

Example SQL-MR call to TrainNamedEntityFinder
SELECT *
FROM TrainNamedEntityFinder(
 ON myTraining
 PARTITION BY 1
 type('location')
 text_column('content')
 model_file('location.dataset2')
 DOMAIN('153.65.197.90')
 DATABASE('sqlmr_test')
 USERID('db_superuser')
 PASSWORD('db_superuser')
);

Table 6-10 Sample output from TrainNamedEntityFinder

EvaluateNamedEntityFinderRow and
EvaluateNamedEntityFinderPartition
The EvaluateNamedEntityFinder function takes a set of evaluating data and generates the
precision, recall and f-measure value of a given maximum entropy data model.
EvaluateNamedEntityFinder functions do not support regular expression based model and
dictionary based model.

EvaluateNamedEntityFinder includes two SQL-MR functions:

• EvaluateNamedEntityFinderRow that operates as a row function; and

• EvaluateNamedEntityFinderPartition that operates as a partition function.

Syntax of EvaluateNamedEntityFinderPartition
SELECT * FROM EvaluateNamedEntityFinderPartition(
 ON EvaluateNamedEntityFinderRow
 (
 ON {table_name|view_name|(query)}
 TEXT_COLUMN('text_column_name')
 MODEL_FILE('model_data_file')
)
 PARTITION BY 1

Content

<START:location> U. S. <END> has arrived

where he is expected to show solidarity with the country ' s president in demanding
<START:location> North Korea <END>

has indicated he will send an envoy to <START:location>Pyongyang<END>before the end of
the year

Train_result

model created to LocationName.bin

Named Entity Recognition (NER) Aster Data proprietary and confidential

108 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

)

Arguments of EvaluateNamedEntityFinderRow and
EvaluateNamedEntityFinderPartition

TEXT_COLUMN: Required. Name of the column whose contents will be scanned. Only one
column is permitted.

MODEL_FILE: Required. The model data file that will be evaluated. Only one model is
permitted.

Input

The EvaluateNamedEntityFinderRow and EvaluateNamedEntityFinderPartition functions take as
input a table with a text column of input text.

Output

Evaluation results are expressed as precision, Recall and F-measure values.

Example for EvaluateNamedEntityFinder

Table 6-11 Sample input table, “myEvaluation”

Example SQL-MR call
SELECT * FROM EvaluateNamedEntityPartition(
 ON EvaluateNamedEntityRow(
 ON myEvaluation
 model_file('location.dataset2')
 text_column('content')
)
 PARTITION BY 1
)

In this example case, the entity “United States” is not included in the training data, but the entity
“U. S.” is in the training data.

Table 6-12 Example output

Error message from EvaluateNamedEntityFinder, with explanation

If the specified maximum entropy is invalid, the following error message will appear:

SQL-MR function EvaluateNamedEntityFinderRow failed: Illegal Max entropy
model!

id content

1 <START:location> U. S. <END> has arrived

2 the <START:location> United States <END> are trying to coax the North back to six

Precision Recall F-Measure

1 0.5 0.6666666666666

Aster Data proprietary and confidential Sentiment Extraction Functions

March 21, 2012 Text Analysis 109

Sentiment Extraction Functions

Summary
Sentiment extraction is the process of deducing a user's opinion (positive, negative, neutral) from
text-based content. Sentiment extraction is useful for analyzing users’ opinions as found in the
content of call centers, forums, social media, etc.

Usage
The Sentiment Extraction Functions include three SQL-MR functions as follows to extract
sentiments from text content, train a model, and evaluate the results:

• ExtractSentiment: a map function to extract the opinion of each document/sentence

• EvaluateExtractSentiment: evaluate the precision and recall of ExtractSentiment function

• TrainMeClassifier: train a model using a classification method. TrainMeClassifier supports
the maximum entropy classification method.

Permissions

You must grant EXECUTE on the functions “ExtractSentiment”, “EvaluateExtractSentiment”
and “TrainMeClassifier” to the database user who will run the functions. For information on how
SQL-MR security, see “SQL-MapReduce Security” on page 197 of the Aster Database User’s
Guide.

ExtractSentiment

Summary

ExtractSentiment is a map function that extracts the opinion or sentiment from input text. Much
of user generated content includes the author’s feelings and opinions (happy, angry etc.). This
function helps to extract the polarity of the content as positive, negative or neutral.

Background

Sentiment extraction has become more and more important over time, with the increase in user
generated content being produced.

A few different sentiment extraction use cases follow:

• Support Forum - A company has an online forum where users can share knowledge and
ask each other questions about how to use a particular software package. If a forum post
shows the user’s appreciation or involves the sharing of information, there is no need for the
company’s support staff to get involved in the thread. But if the forum post contains a
customer's frustration at an unanswered question or the customer seems angry, then the
support staff should react as soon as possible.

• Mining User Generated Reviews - There is a clothing retailer that wants to get all types of
feedback for the clothing lines and accessories they sell (sizing, quality, price, style, etc.)
The company has an online reviews and comments engine, and they want to get this
feedback through analyzing user’s reviews in the webstore, rather than using a more
traditional questionnaire.

Sentiment Extraction Functions Aster Data proprietary and confidential

110 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

• Online Reputation Management - A large company wishes to protect its brand and
reputation by monitoring negative news, blog entries, reviews and comments on the Internet.

Syntax of ExtractSentiment
SELECT *
FROM ExtractSentiment
(
 ON {table_name|view_name|(query)}
 TEXT_COLUMN('text_column_name')
 [MODEL('model_type[:model_file]')]
 [SUB_MODEL('model_type[:model_file]')]
 [ACCUMULATE ('column [, ...]')]
 [LEVEL ('{DOCUMENT | SENTENCE}')]
 [HIGH_PRIORITY('{ NEGATIVE_RECALL | NEGATIVE_PRECISION | POSITIVE_
RECALL | POSITIVE_PRECISION | NONE}')]
 [FILTER('{POSITIVE | NEGATIVE| ALL}')]
)

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be scanned. Only one
column is permitted.

LEVEL: Optional. The level of analysis to be performed: document or sentence. The default is
'document' level.

MODEL: Optional. MODEL can be specified as model pairs, separated by ':'. If MODEL is not
specified, the opinion word dictionary method will be used. A model pair includes a model type
and a model file in the format: <model_type>[:model_file]. Note that you must install the
model file before calling the SQL-MR function.

Supported models include:

• DICTIONARY - use an opinion word dictionary to extract the sentiment

• MAX_ENTROPY - use the maximum entropy classification method to extract the sentiment

SUB_MODEL: Used to filter the objective sentence if needed. The format is same as the format
for MODEL. Only the MAX_ENTROPY type is supported.

ACCUMULATE: List of columns you want to return in the output table.

HIGH_PRIORITY: Designates the factor that has the highest priority when calculating. This can
be negative recall, negative precision, positive recall or positive precision. E.g. if negative recall
has a high priority, the negative results with the lower confidence level are returned also.

FILTER: Optional. Specifies the results that will be returned The default is 'ALL'. The value can
also be:

• POSITIVE - only results with a positive sentiment are returned

• NEGATIVE - only results with a negative sentiment are returned

• ALL - all results are returned

Input to ExtractSentiment

The input table should contain a text column which contains input text.

Output of ExtractSentiment

The results of the ExtractSentiment function, include:

Aster Data proprietary and confidential Sentiment Extraction Functions

March 21, 2012 Text Analysis 111

• out_content: For document level, NULL will be printed. For sentence level, the sentence
will be printed.

• out_feature: DOCUMENT or SENTENCE

• out_sentiment: POS, NEG or NEU representing positive, negative or neutral

• out_strength: 1, 2 ... a larger number means a stronger sentiment

Example for ExtractSentiment
This example uses two user reviews of Kindle Fire, from Amazon.

Example Input Data

Create a table of Kindle Fire reviews:

CREATE fact table kindleView(
 id int, content varchar(1024), polarity varchar(3)
)
 DISTRIBUTE BY HASH(id);

Insert the user review data into the table:

INSERT INTO kindleView values(
 1, 'I just received my Kindle Fire and I love it. I am still learning
all the features but for me that is part of the fun. I have downloaded
games, books, music and watched videos just like it advertised. I have
read a lot of negative articles about the Kindle Fire and its comparison
to the Nook and the Ipad. I would not trade my Kindle Fire for either of
those.', 'pos');

INSERT INTO kindleView values(
 2, 'I live in Mongolia and bought Kindle Fire. Now it turns out that
"due to my geographical location" I can not purchase/ download a single
application, game, movie... nothing. Nada. The only thing I can do is
download and read books. I am disapointed.', 'neg');

Example 1 SQL-MR call to ExtractSentiment
SELECT *
FROM ExtractSentiment
(
 ON kindleView
 text_column('content')
 model('dictionary')
 level('document')
);

Table 6-13 Example1 output from ExtractSentiment

Example 2 SQL-MR call to ExtractSentiment
SELECT *
FROM ExtractSentiment
(

out_content out_feature out_polarity out_strength

DOCUMENT pos 2

DOCUMENT neg 1

Sentiment Extraction Functions Aster Data proprietary and confidential

112 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 ON kindleView
 text_column('content')
 model('dictionary')
 level('sentence')
 accumulate('id')
);

Table 6-14 Example 2 output from ExtractSentiment

Errors

Error messages from ExtractSentiment, with explanations:

• If the function is assigned a nonexistent model, the following error message will appear:

SQL-MR function EXTRACTSENTIMENT failed: No model file: ..

• If the model_type of MODEL is assigned a wrong value, the following error message will
appear:

SQL-MR function EXTRACTSENTIMENT failed: Model_type of MODEL
argument can be either MAX_ENTROPY or DICTIONARY. Found: ...

• If HIGH_PRIORITY is assigned a wrong value, the following error message will appear:

SQL-MR function EXTRACTSENTIMENT failed: HIGH_PRIORITY argument can
be NEGATIVE_RECALL, NEGATIVE_PRECISION, POSITIVE_RECALL, POSITIVE_
PRECISION or NONE. Found: ...

• If FILTER is assigned a wrong value, the following error message will appear:

SQL-MR function EXTRACTSENTIMENT failed: FILTER argument can be
POSITIVE, NEGATIVE or ALL. Found: ...

• If LEVEL is assigned a wrong value, the following error message will appear:

SQL-MR function EXTRACTSENTIMENT failed: LEVEL argument can be
either DOCUMENT or SENTENCE. Found: ...

id out_content out_feature out_
polarity

out_
strength

1 I just received my Kindle Fire and I love it. SENTENCE POS 1

1 I am still learning all the features but for me that is
part of the fun.

SENTENCE POS 1

1 I have downloaded games, books, music and
watched videos just like it advertised.

SENTENCE POS 1

1 I have read a lot of negative articles about the
Kindle Fire and its comparison to the Nook and the
Ipad.

SENTENCE NEG 1

1 I would not trade my Kindle Fire for either of
those.

SENTENCE NEU 0

2 I live in Mongolia and bought Kindle Fire. SENTENCE NEU 0

2 Now it turns out that "due to my geographical
location" I can not purchase/ download a single
application, game, movie... nothing.

SENTENCE NEU 0

2 Nada. SENTENCE NEU 0

2 The only thing I can do is download and read
books.

SENTENCE NEU 0

2 I am disappointed. SENTENCE NEG 1

Aster Data proprietary and confidential Sentiment Extraction Functions

March 21, 2012 Text Analysis 113

EvaluateExtractSentiment

Summary

This partition function is used to evaluate the precision and recall of the ExtractSentiment
function after training a new model or uploading a new sentiment word dictionary.

Background

Sentiment analysis is domain dependent. In other words, a new sentiment classification model or
domain specific sentiment dictionary may be needed for different uses. After uploading the new
model file, you can evaluate the model's efficiency by using this function. For basic information
on precision and recall calculations refer to: http://en.wikipedia.org/wiki/Precision_and_recall

Given the following definitions:

POS_EXPECT = count of expected positive sentiment in test data

NEG_EXPECT = count of expected negative sentiment in test data

NEU_EXPECT = count of expected neutral sentiment in test data

POS_TRUE = count of positive sentiment in predict and its expected is also positive

POS_RETURN = count of positive sentiment in predict, but its expected might be positive,
negative or neutral.

NEG_TRUE = count of negative sentiment in predict and its expected is also negative

NEG_RETURN = count of negative sentiment in predict, but its expected might be positive,
negative or neutral.

The precision and recall are calculated as:

Precision of positive sentiment = POS_TRUE / POS_RETURN

Recall of positive sentiment = POS_TRUE / POS_EXPECT

Precision of negative sentiment = NEG_TRUE / NEG_RETURN

Recall of negative sentiment = NEG_TRUE / NEG_EXPECT

Precision of all sentiment = (POS_TRUE + NEG_TRUE) / (POS_RETURN + NEG_RETURN)

Recall of all sentiment = (POS_TRUE + NEG_TRUE) / (POS_EXPECT +NEG_EXPECT)

If there is neutral test data, the formula can be extended following the above definitions.

Syntax of EvaluateExtractSentiment
SELECT * FROM EvaluateExtractSentiment(
 ON {table_name|view_name|(query)}
 EXPECT_COLUMN('expect_column_name')
 RESULT_COLUMN('result_column_name')
 PARTITION BY 1
)

Arguments

EXPECT_COLUMN: Name of the column with the expected polarity POS, NEG or NEU.

RESULT_COLUMN: Name of the column with the result polarity POS, NEG or NEU.

http://en.wikipedia.org/wiki/Precision_and_recall

Sentiment Extraction Functions Aster Data proprietary and confidential

114 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Input to EvaluateExtractSentiment

The input table should contain a text column which contains input text.

Output of EvaluateExtractSentiment

The results of the EvaluateExtractSentiment analysis, include:

• out_content: For document level, NULL will be printed. For sentence level, the sentence
will be printed.

• out_feature: DOCUMENT or SENTENCE

• out_sentiment: POS, NEG or NEU representing positive, negative or neutral

• out_strength: 1, 2 ... a larger number means a stronger sentiment

Example for EvaluateExtractSentiment
Sample Input for this example would be the trained model output by the function
TrainMeClassifier.

Sample SQL-MR call to EvaluateExtractSentiment
SELECT * FROM EvaluateExtractSentiment(
 ON ExtractSentiment(
 ON pos_train
 text_column('content')
 accumulate('category')
 model('dictionary')
)
 PARTITION BY 1
 expect_column('category')
 result_column('out_polarity')
);

Table 6-15 Sample output from EvaluateExtractSentiment

Error messages from EvaluateExtractSentiment, with explanations

There are no special errors, other than the Invalid Parameter error.

evaluation_result

positive record (total relevant, relevant, total retrieved): 100 69 96

recall and precision: 0.69 0.72

negative record (total relevant, relevant, total retrieved): 100 71 102

recall and precision: 0.71 0.70

positive and negative record (total relevant, relevant, total retrieved): 200
140 198

recall and precision: 0.70 0.71

Aster Data proprietary and confidential Sentiment Extraction Functions

March 21, 2012 Text Analysis 115

TrainMeClassifier

Summary

TrainMeClassifier is a reduce function to train a maximum entropy classifier for sentiment
analysis. The training result will be saved as a file, and then may be installed into Aster
Database. The function has to run using PARTITION by 1.

Background

More information on maximum entropy please refer to the wiki entry at:
http://en.wikipedia.org/wiki/Maximum_entropy_method

Syntax of TrainMeClassifier
SELECT *
FROM TrainMeClassifier
(
 ON {table_name|view_name|(query)}
 PARTITION BY 1
 [TEXT_COLUMN('text_column_name')]
 [CATEGORY_COLUMN('category_column_name')]
 CATEGORIES('category_type [, ...]')
 MODEL_FILE('model_name’)
 [SUB_MODEL('model_type[:model_file]')]
 [DOMAIN('host_ip')]
 [DATABASE('database_name')]
 [USERID('db_user')]
 PASSWORD('password')
)

Arguments

TEXT_COLUMN: Required. The name of the column whose content will be scanned. Only one
column is permitted. If not specified, the default, “content”, will be used.

CATEGORY_COLUMN: Required. The name of the column whose contents is the category types
to be trained. If not specified, the default, “category” will be used.

CATEGORIES: Required. The categories to be trained e.g. pos, neg. The categories are values of
CATEGORY_COLUMN.

MODEL_FILE: Required. The name of the data model file to be generated.

SUB_MODEL: Used to filter the objective sentence, if needed. The format is the same as
MODEL. Only the MAX_ENTROPY type is supported.

DOMAIN: Optional. IP address of the queen node. The default domain is the queen in the current
cluster.

DATABASE: Optional. This is the name of the database where the input table is present. The
default database is beehive.

USERID: Optional. The Aster Database user name of the user. The default userid is beehive.

PASSWORD: Required. The Aster Database password of the database user.

http://en.wikipedia.org/wiki/Maximum_entropy_method

Sentiment Extraction Functions Aster Data proprietary and confidential

116 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Input to TrainMeClassifier

Because TrainMeClassifier is a training program, the content column and category should be
specified. Also the database information is required in order to install the output model.

Output of TrainMeClassifier

The output model with the name “model_name” will be installed in the database.

Example for TrainMeClassifier

Example Input Data

Create a fact table to hold the data to use to train the model:

CREATE FACT TABLE pos_train(
 id int,
 category varchar(10),
 content varchar(15000)
) DISTRIBUTE BY HASH(id);

Insert the data into the table:

INSERT INTO pos_train VALUES(1, 'pos', 'content1');

INSERT INTO pos_train VALUES(1, 'pos', 'content2');

Sample SQL-MR call to TrainMeClassifier
SELECT *
FROM TrainMeClassifier(
 ON (select * from pos_train where mod(id, 2)=0)
 PARTITION BY 1
 text_column('content')
 category_column('category')
 categories('pos','neg')
 model_file('model1.bin')
 DATABASE('***')
 USERID('***')
 PASSWORD('***')
);

Table 6-16 Sample output from TrainMeClassifier

Error messages from TrainMeClassifier, with explanations
• If the model is assigned a nonexistent model, the following error message will appear:

ERROR: SQL-MR function TRAINMECLASSIFIER failed: No model file: ...

• If the model_type of sub_model is not assigned MAX_ENTROPY, the following error
message will appear:

ERROR: SQL-MR function TRAINMECLASSIFIER failed: Model_type of SUB_
MODEL argument only can be MAX_ENTROPY. Found: ...

train_result

Model generated.

Model successfully installed

March 21, 2012 Aster Data proprietary and confidential 111

7

Cluster Analysis

In this section we describe:

• “k-Means” on page 111

• “kmeansplot” on page 115

• “Minhash” on page 117

• “Canopy” on page 122

k-Means

Summary
K-means is one of the simplest unsupervised learning algorithms that solve the well-known
clustering problem. The procedure follows a simple and easy way to classify a given data set
through a certain number of clusters (assume k clusters) fixed a priori. The main idea is to define
k centroids, one for each cluster. This algorithm aims at minimizing an objective function, in this
case a squared error function. The objective function, which is a chosen distance measure
between a data point and the cluster center, is an indicator of the distance of the n data points
from their respective cluster centers.

The algorithm is composed of the following steps:

1. Place k points into the space represented by the objects that are being clustered. These points
represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the k centroids.

4. Repeat steps 2 and 3 until the centroids no longer move. This produces a separation of the
objects into groups from which the metric to be minimized can be calculated.

Although it can be proved that the procedure will always terminate, the k-means algorithm does
not necessarily find the most optimal configuration, corresponding to the global objective
function minimum. The algorithm is also significantly sensitive to the initial randomly selected
cluster centers. The k-means algorithm can be run multiple times to reduce this effect.

Background
The k-means algorithm in map-reduce consists of an iteration (until convergence) of a map and a
reduce step. The map step assigns each point to a cluster. The reduce step takes all the points in
each cluster and calculates the new centroid of the cluster.

k-Means Aster Data proprietary and confidential

112 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• kmeans

• kmeansmap

• kmeansreduce

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax
SELECT *
 FROM kmeans
 (
 ON (SELECT 1)
 PARTITION BY 1
 [DOMAIN('host_ip')]
 [DATABASE('database_name')]
 [USERID('db_user')]
 [PASSWORD('password')]
 INPUTTABLE('input_table_name')
 OUTPUTTABLE('output_table_name')
 NUMBERK(number_of_means)
 [MEANS(starting_clusters)]
 THRESHOLD(threshold)
 MAXITERNUM(max_iterations)
);

Arguments
DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user.

INPUTTABLE: Required. Input table is the table containing the list of features by which we are
clustering the data.

OUTPUTTABLE: Required. Output table is the table where output is stored. The output table
contains the centroids of the clusters.

NUMBERK: Required if means is not present. Specifies the number of clusters to generate from
the data.

MEANS: Required if NUMBERK is not present. Specifies the list of initial seed means
(otherwise, a random choice is made as specified in algorithm description). Must be provided as
strings of underscore delimited (_) double values, e.g.:

Aster Data proprietary and confidential k-Means

March 21, 2012 Cluster Analysis 113

 means('50_50_50_50_50_50_50_50',
 '150_150_150_150_150_150_150_150',
 '250_250_250_250_250_250_250_250',
 '350_350_350_350_350_350_350_350',
 '450_450_450_450_450_450_450_450',
 '550_550_550_550_550_550_550_550',
 '650_650_650_650_650_650_650_650',
 '750_750_750_750_750_750_750_750')

The example argument clause shown above will initialize eight clusters in eight-dimensional
space. The dimensionality of the means MUST match the dimensionality of the data (i.e. each
mean must have n numbers in it, where n is the number of columns minus one).

THRESHOLD: Optional. This is the convergence threshold. When the centroids move by less
than this amount, the algorithm has converged. Default value is 0.0395.

MAXITERNUM: Optional. This is the maximum number of iterations that the algorithm will run
before quitting if the convergence threshold has not been met. Default value is 10.

Input Data

This algorithm clusters n-dimensional numeric data (with n assumed to be the number of
columns in the input data minus the first column, which is assumed to be the userid/itemid). For
example, if the required application is the clustering of points by latitude/longitude on the Earth's
surface, each row would have three columns: the point-id, the latitude, and the longitude.
Clustering would be performed on the latitude and longitude columns. The dimensionality n of
the data is not specified as an argument, but implicitly derived from the data.

Output

The kmeans function outputs a message to the screen informing the user whether the function
converged or not, with some additional information (see example below). The function also
creates a table, whose name you specified in the OUTPUTTABLE argument, where it stores the
centroids. The name of the centroids table is also given in the output to the screen.

Example

Example Input Data

The sample table kmeanssample contains:

• idnum [int]

• point1 [real]

• point2 [real]

• point3 [real]

• point4 [real]

• point5 [real]

Table 7-1 Example Input Data, table kmeanssample

id point1 point2 point3 point4 point5

1 16.21 9.07 6.19 20.93 8.74

2 18.09 14.05 10.86 6.56 11.35

k-Means Aster Data proprietary and confidential

114 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example SQL-M R Call

The following call will attempt to group the above 5-dimensional data points into 3 clusters:

SELECT *
FROM kmeans (
 ON (SELECT 1)
 PARTITION BY 1
 database('beehive')
 userid('beehive')
 password('beehive')
 inputTable('kmeanssample')
 outputTable('kmeanssample_centroid')
 numberK('3')
 threshold('0.01')
 maxIterNum('10')
);

Example Output

from kMeans

Table 7-2 Example Output to Screen from kMeans

You may then do a SELECT from the kmeanssample_centroid table to view the centroids:

select * from kmeanssample_centroid;

shows the results:

3 15.56 16.61 12.30 17.11 20.54

4 13.85 6.94 17.68 14.20 20.96

5 20.19 13.77 -0.85 16.94 2.16

6 -7.86 -8.08 -4.47 -15.09 -7.11

7 -7.17 -7.89 -9.07 -8.26 -11.86

8 -7.87 -6.286 -4.21 -10.03 -14.25

9 -4.71 -10.00 -5.21 -6.31 -2.45

10 2.13 2.99 -13.33 -11.49 -9.35

11 0.96 1.18 -0.35 1.25 -0.31

12 2.72 2.08 0.12 -1.48 1.58

13 -3.70 -0.10 -1.91 0.21 1.12

14 -1.09 -3.09 1.58 -0.77 1.47

15 2.74 -0.05 -1.87 2.58 -1.96

message

Successful!

Algorithm converged.

Iterations: 0.

The final means are stored in the table kmeanssample_centroid, and you can use kmeansplot to
assign the point to its nearest centroid.

Aster Data proprietary and confidential kmeansplot

March 21, 2012 Cluster Analysis 115

Table 7-3 Example Centroid Table from kMeans

Then you may use the kmeansplot function to assign old and/or new data points to the centroids
that were output by the kmeans function. Note that the centroids output may be different for
several runs through the function, because the initial centroids used are picked randomly.

Error Messages
If the dimensionality of the MEANS argument is different from the dimensionality of the input
data, the following error message will appear:

• ERROR: SQL-MapReduce function KMEANS failed: Each mean should be of
dimension [num_dimensions]

kmeansplot

Summary
After using the k-Means function to obtain the centroids (train the model), you may want to use
the model to cluster new data points to these cluster centroids. The kmeansplot function enables
you to do that.

Usage

Permissions

You must grant EXECUTE on the function “kmeansplot” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM kmeansplot (
 ON {input_table | query | view}
 [DOMAIN('host_ip')]
 [DATABASE('db_name')]
 [USERID('user_id')]
 PASSWORD('password')
 CENTROIDSTABLE('centroids_table')
);

clusterid means

0 18.1633 12.2967 5.4 14.81 7.41667

2 -2.385 -2.9246 -3.872 -4.939 -4.312

1 14.705 11.775 14.99 15.655 20.75

kmeansplot Aster Data proprietary and confidential

116 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Arguments

DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default
USERID is “beehive”.

PASSWORD: Required. The Aster database password of the user.

INPUTTABLE: Required. The table containing the new/old data points to be clustered.

CENTROIDSTABLE: Required. The table which contains the centroids trained, from the kmeans
function.

Example

Example Input

Table 7-4 Example Input, table kmeanssample

Table 7-5 Example Centroid Table from kMeans

id point1 point2 point3 point4 point5

1 16.21 9.07 6.19 20.93 8.74

2 18.09 14.05 10.86 6.56 11.35

3 15.56 16.61 12.30 17.11 20.54

4 13.85 6.94 17.68 14.20 20.96

5 20.19 13.77 -0.85 16.94 2.16

6 -7.86 -8.08 -4.47 -15.09 -7.11

7 -7.17 -7.89 -9.07 -8.26 -11.86

8 -7.87 -6.286 -4.21 -10.03 -14.25

9 -4.71 -10.00 -5.21 -6.31 -2.45

10 2.13 2.99 -13.33 -11.49 -9.35

11 0.96 1.18 -0.35 1.25 -0.31

12 2.72 2.08 0.12 -1.48 1.58

13 -3.70 -0.10 -1.91 0.21 1.12

14 -1.09 -3.09 1.58 -0.77 1.47

15 2.74 -0.05 -1.87 2.58 -1.96

clusterid means

0 0.326 0.00399999 -0.486 0.358 0.38

2 16.78 12.088 9.236 15.148 12.75

Aster Data proprietary and confidential Minhash

March 21, 2012 Cluster Analysis 117

Example SQL-MapReduce Call
SELECT *
FROM kmeansplot (
 ON kmeanssample
 database('beehive')
 userid('beehive')
 password('beehive')
 centroidsTable('kmeanssample_centroid')
)
ORDER BY clusterid, id;

Example Output from kmeansplot

Table 7-6 Example Output from kmeansplot

Minhash

Summary
Association analysis, clustering, and the detection of similarity between items using various
metrics are frequently required in data analysis, particularly over large transactional data sets.
Clustering algorithms such as the k-means algorithm and canopy partitioning perform well with
physical data, but grouping items based on transaction history often requires less restrictive

1 -5.096 -5.8532 -7.258 -10.236 -9.004

id clusterid point1 point2 point3 point4 point5

1 0 16.21 9.07 6.19 20.93 8.74

2 0 18.09 14.05 10.86 6.56 11.35

5 0 20.19 13.77 -0.85 16.94 2.16

3 1 15.56 16.61 12.30 17.11 20.54

4 1 13.85 6.94 17.68 14.20 20.96

6 2 -7.86 -8.08 -4.47 -15.09 -7.11

7 2 -7.17 -7.89 -9.07 -8.26 -11.86

8 2 -7.87 -6.286 -4.21 -10.03 -14.25

9 2 -4.71 -10.00 -5.21 -6.31 -2.45

10 2 2.13 2.99 -13.33 -11.49 -9.35

11 2 0.96 1.18 -0.35 1.25 -0.31

12 2 2.72 2.08 0.12 -1.48 1.58

13 2 -3.70 -0.10 -1.91 0.21 1.12

14 2 -1.09 -3.09 1.58 -0.77 1.47

15 2 2.74 -0.05 -1.87 2.58 -1.96

clusterid means

Minhash Aster Data proprietary and confidential

118 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

forms of analysis. Locality-sensitive hashing, commonly known as "minhash", is a particularly
effective way of grouping items together based on a Jaccard metric of similarity.

For example, we can declare two items to be similar because they are frequently placed in the
same shopping basket by customers. Following this approach, we can use minhash to analyze
transaction data and identify clusters of "similar" items frequently bought together in a
transaction. Alternatively, we might analyze the same transaction data and generate clusters of
"similar" users based on the items they bought.

Background
Minhash is a probabilistic clustering method that assigns a pair of users to the same cluster with
probability proportional to the overlap between the set of items that these users have bought (this
relationship between users and items mimics various other transactional models). Each user u
(who is a member of set U) is represented by a set of items that he has bought. The similarity
between two users ui and uj is defined as the overlap between their item sets, given by the
intersection of the item sets divided by the union of the item sets – commonly known as the
"Jaccard coefficient" or "Jaccard metric."

This similarity measure admits a locality-sensitive hashing scheme called minhash, which
calculates one or more IDs for each user as the hash value (s) of a randomly chosen item from a
permutation of the set of items that the user has bought. The probability that two users will be
hashed to the same ID is exactly equal to their Jaccard coefficient S, as long as a class of
universal hashing functions is used. To take this hashing scheme one step further, concatenating
p hash-values (multiple hash values would be generated by hashing a random item from the item
set with multiple hash functions) together as a distinct ID for each user makes the probability that
any two users will agree on this concatenated hash key equivalent to Sp.

If each user is assigned to several ids, the odds of a collision with another id of a similar user
increase. Thus, the minhash algorithm uses several hash functions, hashes a "randomly selected
item" from the item set of each user (in this case the item that produces the minimum hash value
for a particular hash function, hence the name of the algorithm) with each one of them, and
concatenates groups of p hash values together to produce an ID, providing several ids for each
user. Hence the number of key groups (p) must be a divisor of the total number of hash functions.
Collisions between cluster ids lead to effective clustering.

Usage

Permissions

You must grant EXECUTE on the following functions to the database user who will run them:

• minhash

• minhashclean

• minhashmap

• minhashreduce

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax
SELECT *
FROM minhash (
 ON (SELECT 1)

Aster Data proprietary and confidential Minhash

March 21, 2012 Cluster Analysis 119

 PARTITION BY 1
 [DOMAIN('host_ip')]
 [DATABASE('db_name')]
 [USERID('user_id')]
 PASSWORD('password')
 INPUTTABLE('input_table_name')
 OUTPUTTABLE('output_table_name')
 COLUMNNAME('column_to_be_clustered')
 [SEEDTABLE('seed_table_to_use')]
 [SAVESEEDTO('seed_table_to_save')]
 NUMHASHFUNCTIONS('hash_function_number')
 KEYGROUPS('key_group_number')
 [HASH_INPUT_TYPE('bigint'|'integer'|'string'|'hex')]
 [MINCLUSTERSIZE('minimum_cluster_size')]
 [MAXCLUSTERSIZE('maximum_cluster_size')]
);

Arguments

DOMAIN: Optional. IP address of the queen node. Default domain is queen of the current cluster.

DATABASE: Optional. This is the name of the database where the input table is present. Default
database is beehive.

USERID: Optional. The Aster Database user name of the user. Default userid is beehive.

PASSWORD: Required. The Aster Database password of the user.

INPUTTABLE: Required. The name of the input table. Typically it has a 'user' column and an
'items' column.

OUTPUTTABLE: Required. The name of the output table. This table is used to store the results.

COLUMNNAME: Required. The name of the input column whose values you want to hash into
the same cluster.

SEEDTABLE: Optional. The name of the seed table whose seeds will be used for hashing. To
specify this argument, the table must already exist in the database. This table is usually created
from a previous run of the minhash function as specified in the 'SAVESEEDTO' argument.

SAVESEEDTO: Optional. The name of the table where the seeds are to be saved. You can specify
this table name to save the randomly generated seeds from the current minhash run.

NUMHASHFUNCTIONS: Required. The calculation of the Jaccard metric (a measure of
similarity between various items or user ids based upon the list of users or items, respectively,
associated with them in the transaction data) involves hashing the entire list with several hash
functions to calculate the minimum hash value over the list for each function. The number of
hash functions to generate often determines the number of clusters generated as well as the size
of the clusters generated. To find very weak similarities or relationships between various users or
items, a large number of hash functions must be used.

KEYGROUPS: Required. The number of hash functions divided by the number of key groups
must be an integer. A unique cluster id is generated by concatenating KEYGROUPS hashcodes
together. A larger number of keygroups lessens the probability of collisions (hashing into the
same bucket) and stunts the growth of clusters.

HASH_INPUT_TYPE: Optional. The input format for the list of associated items or users to be
hashed. Accepts "bigint", "integer", "hex", and "string" formats.

MINCLUSTERSIZE: Optional. Specifies the minimum number of items or users that may be
considered to constitute a cluster. Default value is 3.

Minhash Aster Data proprietary and confidential

120 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

MAXCLUSTERSIZE: Optional. Specifies the maximum size of the clusters that are under
consideration. Default value is 5.

Example

Example Input Data

Input table minhash_test contains the columns, user [int], items [varchar]

Table 7-7 Example Input Data, table minhash_test

Example SQL-MapReduce call

SELECT *
FROM minhash (
 ON (SELECT 1)
 PARTITION BY 1
 DATABASE('beehive')
 USERID('beehive')
 PASSWORD('beehive')
 INPUTTABLE('minhash_test')
 OUTPUTTABLE('minhashoutput')
 COLUMNNAME('user_id')
 NUMHASHFUNCTIONS('1002')
 KEYGROUPS('3')
 HASH_INPUT_TYPE('integer')
 MINCLUSTERSIZE('3')
 MAXCLUSTERSIZE('5')
);

Example Output from Minhash

The following output is displayed on screen:

user_id items

8 2 3 4

7 1 2 3 6 78

4 1 2 9 10 11

2 1 2 3 8 4 9

11 1 2 3 4 5 6

5 4 7 8 9 15

9 1 5 9 13 15

1 1 2 3 4 5 6

10 1 2 4 5 6

10 1 2 3 4 5 6

6 23 1 2 3 4

3 1 3 4 5 7 6

12 9 10 11 12 13

Aster Data proprietary and confidential Minhash

March 21, 2012 Cluster Analysis 121

Table 7-8 Example Output from Minhash: screen output

The following output is saved in the ‘minhashoutput’ table. Each output row from the example
consists of the clusterid with its space-delimited list of userids (from the left column of the input
table) in the cluster.

Table 7-9 Example Output from Minhash: minhashoutput table

Error Messages
You may encounter these error messages:

• ERROR: “numHashfunctions must be divisible by keyGroups.”

• ERROR: “Please input integer cluster sizes.”

• ERROR: "SQL-MR function MINHASHMAP requires argument clause: SEEDS"

message

Successful.

Table ‘minhashoutput’ created.

clusterid userids

974218441016936782367763 1 10 11 2 6

143384791367401250180074909 1 10 11 8

681021588192622463162908833 1 10 11 3

1001552646572334224993302 12 2 4 5 9

589030277972984340180252 2 6 7 8

13684170216523129206410603 1 10 11 6

10515245366345387738456351 1 10 11

130173924309075045247022973 1 10 11 6 8

26470825310212111260206159 12 4 5 9

25782908913730293866696968 6 7 8

24150985351188592224284381 1 10 11 7

282019198130576283159364554 1 10 11 3 9

33330999977481255356038688 2 6 8

17182392221929742635587268 1 10 11 2 3

3288334061546975642877631 1 10 11 2 8

1626883175838474250742347 1 10 11 3 7

106239203395173444205321496 1 10 11 2 7

1270581351223266662755940 1 10 11 3 6

495150481277196637263480662 1 10 11 6 7

62454809812098654140821087 1 10 11 2

158370363373915364183435051 2 6 7

Canopy Aster Data proprietary and confidential

122 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Canopy

Introduction
Canopy clustering is a very simple, fast, and surprisingly accurate method for grouping objects
into preliminary clusters. Each object is represented as a point in a multidimensional feature
space.

The algorithm uses a fast approximate distance metric and two distance thresholds, T1 > T2, for
processing. The basic algorithm begins with a set of points and identifies each point with one or
more canopies – groups of interrelated, "close", or "similar" points. Any point can belong to
more than one canopy (so long as the distance from the canopy center to the point is < T1), and
thus judicious selection of canopy centers (with none being less than T2 apart from the next) and
the points in a canopy allow for more efficient execution of clustering algorithms, which are
often called within canopies.

Canopy clustering is often used as an initial step in more rigorous clustering techniques, such as
k-means clustering. By starting with an initial partitioning into canopies, the number of more
expensive distance measurements can be significantly reduced by ignoring points outside of the
initial canopies. Also, after the initial step divides points into their respective canopies, the
second step need only perform intra-canopy clustering, which can be parallelized. In other
words, points that do not belong to the same canopy do not have to be considered at the same
time in the clustering process.

Background
The processing is done in three map-reduce steps:

1. Each mapper performs canopy clustering on the points in its input set and outputs its
canopies' centers (these canopies are obviously local to the mapper)

2. The reducer takes all the points in each (local) canopy and calculates centroids to produce
the final canopy centers.

3. The final canopy centers are processed to eliminate centers that are too close to each other
(to eliminate the effects of earlier localization).

A driver is provided that extracts information from the initial canopy generation step and uses it
to make another SQL-MapReduce call that finishes the clustering process.

Installation
See “Installing Aster Database’s Driver-Based Analytical Functions” on page 9.

Driver Usage
java -classpath canopydriver.jar:<classpath to file>
 -database=<database>
 -inputtable=<inputtable>
 -outputtable=<outputtable>
 -t1=<t1>
 -t2=<t2>
 -userid=<userid>
 -password=<password>
 -domain=<domain>

Aster Data proprietary and confidential Canopy

March 21, 2012 Cluster Analysis 123

Arguments
T1: Required. This specifies the maximum distance that any point could be from a canopy center
to be considered part of that canopy.

T2: Required. The minimum distance that two canopy centers must be apart from each other.

Example

Example Input Data

Table 7-10 Example Input Data for Canopy

Example Query

For clarity, we have placed line breaks before each argument below. In actual usage, you would
type all the arguments on a single line.

java
 -classpath canopyDriver.jar:<classpath to file>
 -database=beehive
 -inputtable=canopyinput
 -outputtable=canopyoutput
 -t1=2
 -t2=1
 -userid=beehive
 -password=beehive
 -domain=192.168.75.100

Example Output

These are the canopy centers.

Table 7-11 Example Output from Canopy

userid point1 point2 point3 point4

7 5 4.2 3.1 2

4 4 1.2 2.1 2.3

2 1.7 1.7 2.6 2.49

5 1.2 1.2 3.1 1

1 1.2 1.2 2.1 2

6 1.2 2.1 2.1 2

3 2 6 3.5 2

canopyid point1 point2 point3 point4

2 2 6 3.5 2

4 1.325 1.55 2.475 1.8725

1 4 1.2 2.1 2.3

3 5 4.2 3.1 2

Canopy Aster Data proprietary and confidential

124 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Error Messages
You may encounter the following types of errors when you run the canopy function:

• ERROR: T1 < T2. This is impossible, and will result in empty
clusters.

• ERROR: T1 or T2 cannot be parsed as numbers.

• ERROR: The input format must be userid, and then a n-tuple of
doubles.

March 21, 2012 Aster Data proprietary and confidential 125

8

Naive Bayes

What is Naive Bayes?
This is a set of functions to train a Naive Bayes classification model. The Naive Bayes algorithm
is very simple, yet surprisingly effective. A training data set (for which we know discrete
outcomes and either discrete or continuous input variables) is used to generate the model. The
model is then used to predict the outcome of future observations, based on their input variables.

There are two main components to the Naive Bayes model:

• Bayes' Theorem

Bayes' theorem is a classical law, stating that the probability of observing an outcome given
the data is proportional to the probability of observing the data given the outcome, times the
prior probability of the outcome.

• the “naive” probability model

The naive probability model is the assumption that the input data are independent of one
another, and conditional on the outcome. This is a very strong assumption, and never true in
real life, but it makes computation of all model parameters extremely simple, and violating
the assumption does not hurt the model much.

Naive Bayes Syntax and Semantics
The classifier consists of 2 functions: naiveBayesMap and naiveBayesReduce. They are used to
generate a model from training data.

Permissions
You must grant EXECUTE on the following functions to the database user who will run them:

• naiveBayesReduce

• naiveBayesMap

For information on how SQL-MR security, see “SQL-MapReduce Security” on page 197 of the
Aster Database User’s Guide.

Syntax
CREATE TABLE model_table_name (PARTITION KEY(column_name)) AS
SELECT * FROM naiveBayesReduce(
 ON(

Naive Bayes Examples Aster Data proprietary and confidential

126 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 SELECT * FROM naiveBayesMap(
 ON input_table
 RESPONSE('response_column')
 NUMERICINPUTS('numeric_input_columns')
 CATEGORICALINPUTS('categorical_input_columns')
)
)
 PARTITION BY column_name
);

Arguments
RESPONSE: Required. The name of the column which contains the response variable. It should
be of type varchar, boolean, or integer.

NUMERICINPUTS: At least one of the 'NUMERICINPUTS' and the 'CATEGORICALINPUTS'
arguments should be specified. Any column(s) specified for 'NUMERICINPUTS' must contain
numeric values. The user can either explicitly list the names of the numeric columns which will
be included in the model, e.g., numericinputs('input1','input2', ...), or specify a range of numeric
columns, e.g., numericinputs('[4:33]'), or some combination of the above, e.g.,
numericinputs('input1','[4:21]','[25:53]','input73'). Ranges are specified with the following
syntax: "[<start_column>:<end_column>]", with the column index starting from 0.

CATEGORICALINPUTS: At least one of the 'NUMERICINPUTS' and the
'CATEGORICALINPUTS' arguments should be specified. This argument is similar to the
'NUMERICINPUTS' argument, but the column(s) specified for 'CATEGORICALINPUTS' must
be varchar or integer.

Naive Bayes Examples

Example Input Data

Table 8-1 Example Input, table nb_samples_stolenCars

id year color type origin stolen

1 1 Red Sports Domestic Yes

2 8 Red Sports Domestic No

3 2 Red Sports Domestic Yes

4 9 Yellow Sports Domestic No

5 3 Yellow Sports Imported Yes

6 10 Yellow SUV Imported No

7 4 Yellow SUV Imported Yes

8 11 Yellow SUV Domestic No

9 12 Red SUV Imported No

10 5 Red Sports Imported Yes

Aster Data proprietary and confidential Naive Bayes Examples

March 21, 2012 Naive Bayes 127

Example SQL-MapReduce call
CREATE TABLE nb_stolenCars_model (PARTITION KEY(class)) AS
SELECT * FROM naiveBayesReduce(
 ON(
 SELECT * FROM naiveBayesMap(
 ON nb_samples_stolenCars
 RESPONSE('stolen')
 NUMERICINPUTS('year')
 CATEGORICALINPUTS('[2:4]')
)
)
 PARTITION BY class
);

Example Output of Naive Bayes

Table 8-2 Example Output: nb_stolencars_model

class variable type category cnt sum sumSq totalCnt

Yes color CATEGORICAL red 3 20

Yes color CATEGORICAL yellow 2 20

Yes origin CATEGORICAL domestic 2 20

Yes origin CATEGORICAL imported 3 20

Yes year NUMERIC 5 15 55 20

Yes type CATEGORICAL suv 1 20

Yes type CATEGORICAL sports 4 20

No color CATEGORICAL red 2 20

No color CATEGORICAL yellow 3 20

No origin CATEGORICAL domestic 3 20

No origin CATEGORICAL imported 2 20

No year NUMERIC 5 50 510 20

No type CATEGORICAL suv 3 20

No type CATEGORICAL sports 2 20

Naive Bayes Examples Aster Data proprietary and confidential

128 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

March 21, 2012 Aster Data proprietary and confidential 129

9

Decision Trees

Summary
A suite of functions to create a predictive model based on a combination of the CART algorithm
for training decision trees, and the ensemble learning method of bagging.

Background
Decision trees are a common procedure used in data mining and supervised learning because of
their robustness to many of the problems of real world data, such as missing values, irrelevant
variables, outliers in input variables, and variable scalings. The algorithm is an "off-the-shelf"
procedure, with few parameters to tune.

This function implements an algorithm for decision tree training and prediction based on
Classification and Regression Trees by Breiman, Friedman, Olshen and Stone (1984). The
function supports the following predictive models:

• Regression problems (continuous response variable) are when the predicted outcome from
the data is a real number (e.g. the dollar amount of insurance claims per year, or the GPA
expected for a college student).

• Multiclass Classification (classification tree analysis) where a number of classes is provided
and the model predicts which class the data will belong to.

• Binary classification (binary response variable) where the outcome can be represented as a
binary value (true/false, yes/no, 0/1).

Usage
These functions can be used to create a regression model with which we can predict an outcome
based on a set of input variables. When constructing the tree, splitting of branches stops when
any of the stopping criteria described below is met.

The Decision Tree functions are:

• forest_drive is used to build the predictive model.

• forest_predict is used to generate predictions on a new set of data, using the model generated
by forest_drive. Alternatively, you can install a model that has been developed previously,
and allow forest_predict to generate predictions based upon it.

• forest_analyze is used to perform analysis of the structure of the model.

forest_drive Aster Data proprietary and confidential

130 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

This section describes the syntax, as well as the parameter options, data types, and expected
input/output for these functions.

forest_drive
The forest_drive function takes a training set of data and generates a predictive model.

Syntax for forest_drive
SELECT * FROM forest_drive(
 ON (SELECT 1)
 PARTITION BY 1

 [DOMAIN(host:port)]
 DATABASE(database)
 USERID(user_id)
 PASSWORD(password)

 INPUTTABLE(input_table_name)
 OUTPUTTABLE(output_table_name)

 RESPONSE(response_column)
 NUMERICINPUTS(numeric_input_columns)
 CATEGORICALINPUTS(categorical_input_columns)

 [NUMTREES(number_of_trees)]
 [TREESIZE(tree_size)]
 [MINNODESIZE(min_node_size)]
 [VARIANCE(variance)]
 [MAXDEPTH(max_depth)]
 [NUMSURROGATES(num_surrogates)]
)

Arguments for forest_drive
DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user.

INPUTTABLE: Required. The name of the table containing the input data set.

OUTPUTTABLE: Required. The name of the table to store the predictive model generated from
the function.

RESPONSE: Required. The name of the column containing the response variable (i.e., the
quantity we are trying to predict). This must be a numeric value.

NUMERICINPUTS: Either NUMERICINPUTS or CATEGORICALINPUTS is required. The
columns containing the numeric predictor variables. The user can either explicitly list all the

Aster Data proprietary and confidential forest_predict

March 21, 2012 Decision Trees 131

names, e.g., NUMERICINPUTS('input-col-1','input-col-2', ...), or specify a range
of columns, e.g., NUMERICINPUTS('[4:33]'), or some combination of the above, e.g.,
NUMERICINPUTS('input-col-1','[4:21]','[25:53]','input-col-73'). Ranges are
specified with the following syntax: [start_column:end_column] where start_column and
end_column are the starting and ending column count numbers of the range (inclusive). Each
count number is the column’s rank in a left-to-right ranking with “1” as the leftmost column.
Each column referred to in NUMERICINPUTS must contain only numeric values.

CATEGORICALINPUTS: Either NUMERICINPUTS or CATEGORICALINPUTS is required.
The columns containing the categorical predictor variables. Data is input in the same way as in
the NUMERICINPUTS clause. These columns can contain either numeric or varchar values.

NUMTREES: Optional. The number of trees to grow in the forest model. If not specified, the
function will make an estimate and build the minimum number of trees such that the input
dataset receives full coverage.

TREESIZE: Optional. The number of rows each tree uses as its input data set. If not specified, the
function will make an estimate and build a tree using the minimum of (a) the number of rows on
a v-worker, or (b) the number of rows that fit into the v-worker’s memory.

MINNODESIZE: Optional. Decision tree stopping criterion. The minimum size of any particular
node within each decision tree. Default is 1.

VARIANCE: Optional. Decision tree stopping criterion. If the variance within any particular node
dips below this value, the algorithm stops looking for splits in the branch. Default is 0.

MAXDEPTH: Optional. Decision tree stopping criterion. If the tree reaches a depth past this
value, the algorithm stops looking for splits. Decision trees can grow up to (2^(MAXDEPTH+1)
- 1) nodes. Of all the stopping criteria, this has the greatest effect on the performance of the
function. Default is 12.

NUMSURROGATES: Optional. Number of surrogate splits to keep for each node. Surrogate
splits direct an observation to the branch of the tree it should follow if the observation has
missing values for variables that are used in splits. Default is 0.

Input to forest_drive
Input table containing the response variable and predictor variables.

Output from forest_drive
The table specified in the OUTPUTTABLE clause will be written with the decision forest grown
by the function. IMPORTANT! Please note that if a table with this name exists already, that table
will be dropped.

forest_predict
The forest_predict function uses the model built by the forest_drive function to generate
predictions on a response variable for a test set of data.

Syntax of forest_predict
SELECT *
 FROM forest_predict
 (

forest_predict Aster Data proprietary and confidential

132 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 ON {table_name|view_name|(query)}
 [DOMAIN(host:port)]
 DATABASE(database_name)
 USERID(user_id)
 PASSWORD(password)
 MODELFILE(model_file)
 FOREST(model_table)
 NUMERICINPUTS(numeric_inputs)
 CATEGORICALINPUTS(categorical_inputs)
 IDCOL(id_column)
)

Arguments for forest_predict
DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user.

MODELFILE: Either MODELFILE or FOREST must be specified. The name of the file
containing the previously trained model to apply. Note that this model must have been installed
previously using the ACT \install command (See “Installed-function and installed-file
management commands in ACT” on page 89).

FOREST: Either MODELFILE or FOREST must be specified. The name of the table containing
the decision forest generated by the forest_drive function.

NUMERICINPUTS: Either NUMERICINPUTS or CATEGORICALINPUTS must be specified.
The columns containing the numeric predictor variables. The user can either explicitly list all the
names, e.g., NUMERICINPUTS('input-col-1','input-col-2', ...), or specify a range
of columns, e.g., NUMERICINPUTS('[4:33]'), or some combination of the above, e.g.,
NUMERICINPUTS('input-col-1',[4:21],[25:53],'input-col-73'). Ranges are
specified with the following syntax: [start_column:end_column] where start_column and
end_column are the starting and ending column count numbers of the range (inclusive). Each
count number is the column’s rank in a left-to-right ranking with “1” as the leftmost column.
Each column referred to in NUMERICINPUTS must contain only numeric values.

CATEGORICALINPUTS: Either NUMERICINPUTS or CATEGORICALINPUTS must be
specified. The columns containing the categorical predictor variables. Data is input in the same
way as in the NUMERICINPUTS clause. These columns can contain either numeric or varchar
values.

IDCOL: Required. A column containing a unique identifier for each test point in the test set.

Input to forest_predict
The input table should contain an id column (e.g., user_id, transaction_id), so each test point can
be associated with a prediction. It should also contain all columns listed in the
NUMERICINPUTS clause (must be numeric), and all columns listed in the
CATEGORICALINPUTS clause (can either be numeric or varchar).

Aster Data proprietary and confidential forest_predict

March 21, 2012 Decision Trees 133

To upload a model generated outside of your Aster database, use the /install command in
ACT “Installed-function and installed-file management commands in ACT” on page 89. The
model can be a plain text file or a ZIP file. Specify the model file using the MODELFILE
argument when calling the function.

Output from forest_predict
The output table is a set of predictions for each test point.

TEST_ID: The unique identifier of a test point.

PREDICTION: The predicted value of the test point, as generated by the model.

Example
In the following example, we will showcase the use of decision trees to predict the number of
pageviews for Wikipedia articles.

Example Input Data

Table 9-1 Example Input Data, table wikilogs

We will use hour, projectcode, bytes (bytes transmitted) and len_name (length of pagename
field) to try and predict the number of pageviews. We will consider projectcode and hour as
categorical variables, and len_name and bytes as numeric variables.

Example SQL-MapReduce call
SELECT *
 FROM forest_drive
 (
 ON (SELECT 1)
 PARTITION BY 1

 DATABASE('wikilogs')
 USERID('beehive')
 PASSWORD('beehive')

 INPUTTABLE('wikilogs')
 OUTPUTTABLE('wikilogs_forest')

 RESPONSE('pageviews')
 NUMERICINPUTS('bytes','len_name')
 CATEGORICALINPUTS('hour','projectcode')
);

date hour projectcode pagename len_
name

bytes pageviews

2008-11-19 0 af.d Endonezyal%C4%B1 16 7931 1

...

forest_analyze Aster Data proprietary and confidential

134 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

This function call trains a decision tree model as described above, and stores the model in
'wikilogs_forest' table. The wikilogs_forest table has the format:

The tree field contains a JSON serialized representation of the decision tree. This field can be
quite large depending on the tree parameters. Luckily, we don’t have to deal with it directly. The
forest_predict function uses this table to generate predictions for pageviews on new data, given
values for bytes, len_name, hour and projectcode.

CREATE TABLE predictions (PARTITION KEY(test_id)) AS
SELECT *
FROM forest_predict
(ON one_day
 DATABASE('wikilogs')
 USERID('beehive')
 PASSWORD('beehive')
 FOREST('wikilogs_forest')
 NUMERICINPUTS('bytes','len_name')
 CATEGORICALINPUTS('hour','projectcode')
 IDCOL('pagename')
);

Example output from Forest Predict

Table 9-2 Example Output from Forest Predict

The test_id column is the unique identifier for each test point, and the prediction column is the
prediction generated by the decision forest model.

forest_analyze
The forest_analyze function performs analysis of the structure of a forest model.

Usage

Syntax
SELECT * FROM forest_analyze(
 ON {table_name|view_name|(query)}
 [NUM_LEVELS(number_of_levels)]
)

Arguments

NUM_LEVELS: Optional. Number of levels to analyze. Default is 5.

worker_ip task_index tree_num tree

test_id prediction

The_Beatles 26651.7

Giorno_della_Memoria 639.9

... ...

Aster Data proprietary and confidential Best Practices

March 21, 2012 Decision Trees 135

Algorithm
Refer to Classification and Regression Trees by Breiman, Friedman, Olshen and Stone (1984), or
Elements of Statistical Learning by Hastie, Tibshirani and Friedman.

Error Messages
When using this function, you may encounter the following error messages:

• ERROR: Response column is not numeric

• ERROR: Categorical are not of type String or Integer

• ERROR: NumericInputs columns are not numeric

• ERROR: Invalid database parameters (domain, database, userid,
password)

• ERROR: Invalid tree parameters (minNodeSize, variance, maxDepth,
numSurrogates)

Best Practices
Training a decision tree model is a relatively hands-off procedure, but there are several practices
that a user should be aware of for best performance.

• Make sure you use the same set of columns for CATEGORICALINPUTS and
NUMERICINPUTS while both building the model and using the model (for prediction),
otherwise the forest_predict function will fail.

• The forest_drive function computes several parameters that are important for the
performance of the model, but sometimes it makes bad decisions. You can set these
parameters manually to better suit your task:

• NUMTREES - By default, the function builds the number of trees such that the total
number of sampled points is equal to the size of the original input dataset. For example,
if your input dataset contains 1 billion rows, and the function determines that each tree
will be trained on a sample of 1 million rows, the function will decide to train 1,000
trees. Depending on your dataset, you may want more or fewer trees. As a rule of
thumb, a model of 300 decision trees works well for most prediction tasks. If your
dataset is small, you will most likely have to specify a value for NUMTREES. It is best
to specify a number that is a multiple of the number of vworkers in your cluster.

• TREESIZE - Each decision tree is built on a sample of the original dataset. The function
will compute the value of this parameter such that the decision tree algorithm will not
run out of memory. With the TREESIZE parameter, you can specify manually how
many rows each decision tree should contain. Setting this parameter too high can result
in Out of Memory errors.

• You can check progress of the function in the AMC. Log into the AMC and click on the
"Processes" tab. If the function is still running, you should see a function running called
"forest_builder". Click on the process and click on the "View Logs" link. The logs will show
stdout from the function, and will give you an idea of how far along the function is. The
same is true for the forest_predict function. Viewing the logs will help you check progress
and diagnose any potential problems.

• The function does not perform well when given categorical variables with many possible
values (on the order of hundreds). If you have a specific variable that can take on more than
100 values, consider consolidating some of the categories in order to improve the runtime of
the function.

Best Practices Aster Data proprietary and confidential

136 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

• As mentioned in the documentation, the tree field in the output model table can grow to be
very large. If the trees are too large, or there are too many trees in the model, the forest_
predict function can fail, and start outputting NaNs (not a number) as predictions. Check the
forest_predict logs in the AMC to see if this is happening. If this is a problem, try (1)
training fewer decision trees, (2) decreasing the MAXDEPTH parameter in the forest_drive
function, or (3) reducing the cardinality of your categorical input variables.

• Each vworker trains decision trees using a subsample of the data on its partition. If there is
significant data skew, this can produce strange results.

March 21, 2012 Aster Data proprietary and confidential 137

10

Association Analysis

In this section we describe:

• “Basket Generator” on page 137

• “Collaborative Filtering” on page 140

Basket Generator

Summary
This function generates sets (“baskets”) of items. The input is typically a set of purchase
transaction records or web pageview logs. Each basket is a unique combination or permutation of
items. You specify the desired basket size. Combinations and Permutations are returned in
lexicographical order.

The resulting baskets can be used as part of a collaborative filtering algorithm. This is useful for
analyzing purchase behavior of users in-store or on a website. This function can also operate on
activity data (e.g. "users who viewed this page also viewed this page").

Background
Retailers mine transaction data to track purchasing behavior or viewing behavior. A retailer's
goal is to find interesting combinations (called baskets) of items purchased together or shopped
for at the same time. A frequent need is to automatically identify interesting baskets and also
look for trends over time and compare other attributes (e.g. compare stores). Having a general
function that can operate on data structured in the form often present for retails will make
interesting market basket analysis possible.

This general function is intended to help facilitate market-basket analysis by operating on data
that is structured in a form typical of retail transaction history databases.

Usage

Syntax
SELECT *
 FROM basket_generator
 (
 ON { table_name | view_name | (query) }

Basket Generator Aster Data proprietary and confidential

138 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 PARTITION BY expression [, ...]
 [BASKET_SIZE('basket_size_value')]
 BASKET_ITEM('basket_item_column')
 ACCUMULATE('column1 [, column2, ...]')
 [ITEM_SET_MAX('item_set_max_value')]
);

Arguments

PARTITION BY: Required. Must specify the column(s) to partition by. This specifies the sets for
which combinations will generated and summed.

BASKET_ITEM: Required. Name(s) of the input column(s) that contains the items to be collected
into baskets. If more than one input column is specified, every unique combination of input
column values is treated as one item. For example, if a single column is used, this is often the
column containing the SKU that identifies an item that was sold. If you wanted to further break
down the results, you could specify both the SKU column and the month manufactured, color
and/or size columns.

BASKET_SIZE: Required. Integer number of items to be included in a basket. The default is two
items.

ACCUMULATE: Optional. Names of input columns that will be returned as-is in the output. All
input columns not named here are left out of the output. This must be a column that is part of the
ON relation.

COMBINATIONS: Optional; defaults to 'true'. If 'true' the function returns a basket for each
unique combination of items. If 'false' the function returns a basket for each unique permutation
of items. Combinations are returned in lexicographical order. For a combination, the order of the
items doesn't matter (the basket "tomatoes and basil" is considered to be the same basket as
"basil and tomatoes"). For a permutation, every a unique ordering of the items constitutes a
unique basket.

ITEM_SET_MAX: (Type=int) [default=100]. This is the maximum number of items to be
considered in a partition. If the number of items in any partition exceeds ITEM_SET_MAX, no
combinations (or permutations) will be emitted for that partition.

Notes

If the number of combinations (or permutations) exceeds one million, no rows are emitted.

The maximum possible number of combinations or permutations you might generate will depend
on:

• n, the number of distinct items that may appear in a basket (in other words, the cardinality of
the BASKET_ITEM column(s)), and

• r, the BASKET_SIZE.

Number of combinations generated = n_C_r

which we can also express as

Number of permutations generated = n_P_r

which we can also express as

n!
n r–()!

Aster Data proprietary and confidential Basket Generator

March 21, 2012 Association Analysis 139

Output

Returns whatever is specified in ACCUMULATE along with 1 column for each of the "basket_
items" specified.

Examples
Below are two examples of the use of the function to generate market baskets along with other
columns of interest.

Example Input Data

The input data, stored in table transactions, has the following columns:

Example SQL-MapReduce call (1 of 2)
SELECT store_id, sku1, sku2, sku3, count(1)
 FROM basket_generator
 (
 ON transactions
 PARTITION BY store_id, dt, reg_id, tran_no
 BASKET_SIZE(3)
 BASKET_ITEM('sku')
 ACCUMULATE('store_id')
 ITEM_SET_MAX(200)
)
 GROUP BY 1,2,3,4;

Example Output from Basket Generator (1 of 2)

Table 10-1 Example Output from Basket Generator (1 of 2)

Example SQL-MapReduce call (2 of 2)
SELECT store_id, EXTRACT(month FROM dt) AS mnth, sku1, sku2, count(1)
 FROM basket_generator
 (
 ON transactions
 PARTITION BY store_id, dt, reg_id, tran_no
 BASKET_SIZE(2)
 BASKET_ITEM('sku')
 ACCUMULATE('store_id', 'dt')
 ITEM_SET_MAX(200)
)

store_id dt reg_id tran_no sku

store_id sku1 sku2 sku3 cnt

1 83 97 1213 123

2 78 122 7812 88

n!
r! n r–()!

Collaborative Filtering Aster Data proprietary and confidential

140 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 GROUP BY 1,2,3,4;

Example output from Basket Generator (2 of 2)

Table 10-2 Example output from Basket Generator (2 of 2)

Collaborative Filtering

Summary
This function performs collaborative filtering via a series of SQL commands and
SQL-MapReduce functions. You run this function via an internal JDBC wrapper function.

Background
Collaborative filtering is used by analysts to find items or events that are frequently paired with
other items or events. For example, the Amazon.com feature, “People who shopped for this item
also shopped for...” uses a collaborative filtering algorithm. Another use would be “People who
viewed this profile also viewed this profile” on LinkedIn. Aster Database’s collaborative
filtering (cfilter) is a general-purpose tool that can provide answers in many similar use cases.

Usage

Syntax
SELECT *
FROM cfilter
(
 ON (SELECT 1)
 PARTITION BY 1
 [domain('ip_address')]
 [database('db_name')]
 [userid('user_id')]
 [password('password')]
 inputTable('input_table_name')
 outputTable('output_table_name')
 inputColumns('source_column1', 'source_column2',...)
 joinColumns('join_column1', 'join_column2',...)
 [otherColumns('other_column1', 'other_column2',...)]
 [partitionKeyColumn ('partitionKeyColumn1')]
 [maxSet('max_item_set')]
 [dropTable('yes'|'no')]
);

store_id mnth sku1 sku2 cnt

1 2 83 1213 7824

3 4 122 7812 3112

Aster Data proprietary and confidential Collaborative Filtering

March 21, 2012 Association Analysis 141

Arguments

DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Optional. This is the name of the database where the input table is present. Default
database is beehive.

USERID: Optional. The Aster Database user name of the user running this function. The default
USERID is “beehive”.

PASSWORD: Required. The Aster Database password of the user.

INPUTTABLE: Required. Name of the input table whose data we will filter.

OUTPUTTABLE: Required. Name of the output table into which we will write the final results. If
the output table already exists, then you should also pass the DROPTABLE (‘yes’) argument, to
drop it before writing the new results. Otherwise, an exception will be thrown. The output table
contains the columns listed in the section "Example Output from Collaborative Filter" below.

INPUTCOLUMNS: Required. A list of input columns to collect. The column names are single
quoted and written in the comma-delimited format <'col1', 'col2', ...>.

JOINCOLUMNS: Required. A list of columns to join on. The column names are single quoted
and written in the comma-delimited format <'col1', 'col2', ...>.

OTHERCOLUMNS: Optional. A list of other columns to output. These will pass through the
function unchanged. The column names are single quoted and written in the comma-delimited
format <'col1', 'col2', ...>.

PARTITIONKEY: Optional. Single column used as partition key for the newly created output
table. Default partitionKey is col1_item1.

MAXSET: Optional. Size of the maximum item set to be considered. Default maxItemSet is 100.

DROPTABLE: Optional. When this option is set to true, if the output tablename already exists, it
will be dropped. Default value is false.

Example

Example Input Data

Table 10-3 Example Input Data, table cfilter_test

tranid dt storeid region item sku category

1 '20100715' 1 'west' 'milk' 1 'dairy'

1 '20100715' 1 'west' 'butter' 2 'dairy'

1 '20100715' 1 'west' 'eggs' 3 'dairy'

1 '19990715' 1 'west' 'flour' 4 'baking'

1 '19990715' 1 'west' 'sugar' 5 'baking'

1 19990715 1 west diapers 6 baby

2 20100715 2 east milk 1 dairy

2 20100715 2 east egg whites 7 dairy

Collaborative Filtering Aster Data proprietary and confidential

142 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example SQL-MapReduce Call
SELECT *
FROM cfilter (
 ON (SELECT 1)
 PARTITION BY 1
 database('beehive')
 userid('beehive')
 password('beehive')

 inputTable('cfilter_test')
 outputTable('cfilter_test2')
 inputColumns('item')
 joinColumns('tranid')
);

2 19990715 2 east flour 4 baking

2 19990715 2 east sugar 5 baking

3 20100715 3 east milk 1 dairy

3 20100715 3 east eggs 3 dairy

3 20100715 3 east flour 4 baking

3 20100715 3 east sugar 5 baking

4 20100715 1 south milk 1 dairy

4 20100715 1 south cereal 8 breakfast

3 20100715 2 east beer 9 alcohol

5 20100715 2 east diapers 6 baby

5 20100715 2 east milk 1 dairy

6 20100715 1 east beer 9 alcohol

6 20100715 1 east cereal 8 breakfast

7 20100715 1 south beer 9 alcohol

7 20100715 1 south diapers 6 baby

8 20100715 2 east beer 9 alcohol

9 20100715 2 east diapers 6 baby

10 20100715 3 south milk 1 dairy

11 20100715 3 east milk 1 dairy

11 20100715 3 east orange juice 10 beverages

12 20100715 3 east beer 9 alcohol

12 20100715 3 east red bull 11 beverages

13 20100715 1 south beer 9 alcohol

13 20100715 1 south chips 13 snacks

14 20100715 2 north salsa 12 snacks

14 20100715 2 north chips 13 snacks

14 20100715 2 north beer 9 alcohol

tranid dt storeid region item sku category

Aster Data proprietary and confidential Collaborative Filtering

March 21, 2012 Association Analysis 143

SELECT * FROM cfilter_test2 ORDER BY score DESC;

Example Output from Collaborative Filter

Table 10-4 Example Output from Collaborative Filter

col1_item1 col1_item2 cntb cnt1 cnt2 score

chips salsa 1 2 2 0.25

salsa chips 1 2 2 0.25

beer chips 2 9 2 0.222222222222222

chips beer 2 2 9 0.222222222222222

flour sugar 3 7 7 0.183673469387755

sugar flour 3 7 7 0.183673469387755

sugar milk 3 7 9 0.142857142857143

flour milk 3 7 9 0.142857142857143

milk flour 3 9 7 0.142857142857143

milk sugar 3 9 7 0.142857142857143

beer red bull 1 9 1 0.111111111111111

red bull beer 1 1 9 0.111111111111111

orange juice milk 1 1 9 0.111111111111111

milk orange juice 1 9 1 0.111111111111111

sugar eggs 2 7 6 0.0952380952380952

eggs sugar 2 6 7 0.0952380952380952

flour eggs 2 7 6 0.0952380952380952

eggs flour 2 6 7 0.0952380952380952

diapers milk 2 6 9 0.0740740740740741

eggs milk 2 6 9 0.0740740740740741

milk diapers 2 9 6 0.0740740740740741

milk eggs 2 9 6 0.0740740740740741

cereal milk 1 2 9 0.0555555555555556

beer cereal 1 9 2 0.0555555555555556

salsa beer 1 2 9 0.0555555555555556

beer salsa 1 9 2 0.0555555555555556

cereal beer 1 2 9 0.0555555555555556

milk cereal 1 9 2 0.0555555555555556

egg whites sugar 1 3 7 0.0476190476190476

sugar egg whites 1 7 3 0.0476190476190476

flour egg whites 1 7 3 0.0476190476190476

egg whites flour 1 3 7 0.0476190476190476

milk egg whites 1 9 3 0.037037037037037

Collaborative Filtering Aster Data proprietary and confidential

144 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Error Messages
• ERROR: Function "cfilter" does not exist.

REASON: The cfilter.zip SQLMR function is not installed.

• ERROR: Relation "<name of your output table>" already exists.

REASON: The output table already exists and the dropTable('yes') argument was not
used.

egg whites milk 1 3 9 0.037037037037037

butter eggs 1 5 6 0.0333333333333333

eggs butter 1 6 5 0.0333333333333333

diapers butter 1 6 5 0.0333333333333333

butter diapers 1 5 6 0.0333333333333333

flour butter 1 7 5 0.0285714285714286

butter flour 1 5 7 0.0285714285714286

butter sugar 1 5 7 0.0285714285714286

sugar butter 1 7 5 0.0285714285714286

eggs diapers 1 6 6 0.0277777777777778

diapers eggs 1 6 6 0.0277777777777778

sugar diapers 1 7 6 0.0238095238095238

flour diapers 1 7 6 0.0238095238095238

diapers flour 1 6 7 0.0238095238095238

diapers sugar 1 6 7 0.0238095238095238

butter milk 1 5 9 0.0222222222222222

milk butter 1 9 5 0.0222222222222222

beer diapers 1 9 6 0.0185185185185185

eggs beer 1 6 9 0.0185185185185185

diapers beer 1 6 9 0.0185185185185185

beer eggs 1 9 6 0.0185185185185185

flour beer 1 7 9 0.0158730158730159

beer flour 1 9 7 0.0158730158730159

beer sugar 1 9 7 0.0158730158730159

sugar beer 1 7 9 0.0158730158730159

milk beer 1 9 9 0.0123456790123457

beer milk 1 9 9 0.0123456790123457

col1_item1 col1_item2 cntb cnt1 cnt2 score

March 21, 2012 Aster Data proprietary and confidential 137

10

Graph Analysis

In this section we describe:

• “nTree” on page 137

• “Single Source Shortest Path (SSSP)” on page 142

nTree

Summary
nTree is a hierarchical analysis SQL-MR function which can build and traverse through tree
structures on all worker machines. nTree reads the data only once from the disk and creates the
trees in-memory. Note that this function requires the data to be partition-able and that each
partition can fit in memory. Most of the use-cases we have seen so far can be fit in memory. Each
partition can consist of multiple trees. There is no restriction on the size of the tree. Since the
data is not always clean and may contain cycles, we have different ways of handling the cycles.

There have been numerous examples of cases where graph data needs to be analyzed. That is,
some graph data is stored in tabular form and the data represents a graph of nodes and edges that
need to be processed in a way that standard SQL cannot easily offer. We can think of building a
new general purpose graph process (aka nTree) as analogous to nPath and time-series data. nPath
is a tool used to operate on data where the rows are related to each other but limited in that the
data is only fed in a particular order into a NFA (non-deterministic finite automata).

Background
The following sections walk through various examples of use cases for nTree:

Equity Trading

A large stock buy or sell order is typically broken into a number of child orders in order to fulfill
the trade with a number of counterparties. Each child order can be further broken into child
orders. All transactions are stored in a single stock transaction table, with the parent order linked
to its child orders by means of a parent_id. A "root" order to sell, say, AAPL could result in a
cascade of other AAPL transactions, all of which can trace their ancestry back to the original
order. For example, you could have order_id 1 to sell 100 of AAPL lead to order 2 and 3 for 70
and 30 shares each. Those, in turn, could be further split up. Each row of this transaction table
would include that row's order_id as well as its parent_id. The broker needs to be able to identify
the root order for each transaction. With SQL this would require an unknown number of

nTree Aster Data proprietary and confidential

138 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

self-joins. With Aster Database SQL-MapReduce we can partition the data by ticker symbol and
then by date, and use the nTree function to create a tree from each root order.

Social Networking

Social networks use multiple data sources to identify people and their relationships. For example,
a user-user connection graph defines explicit connections the users have created on the network,
a user-person invitation graph shows a mixture of user-user connections and user-email
connections, and finally, address book data provides a user-email graph. It’s often important for a
social network to clean up its data by detecting when a person has multiple accounts on the
network. In a case like this, you can use nTree to generate a tree for every account. You can then
compare these trees to find trees that are very likely to have the same person as the root-node.

Usage

Syntax
SELECT * FROM NTREE
(
 ON { input_table | view | query }
 PARTITION BY partition_columns
 [ORDER BY ordering_columns]
 ROOT_NODE('expression')
 NODE_ID('expression')
 PARENT_ID('expression')
 MODE('up'|'down')
 ALLOW_CYCLES('true'|'false')
 STARTS_WITH('expression')
 OUTPUT('end'|'all')
 result(aggregate(expression) as alias)
 [LOGGING ('true'|'false')]
);

Arguments

Arguments used for creating the tree:

ROOT_NODE: This is an SQL-boolean Expression which is used to define the root nodes of
the trees. All the tuples which evaluate to true for this SQL-expression are considered root
nodes

NODE_ID: Each row represents a node. The NODE_ID is the unique identifier for the node.
This argument is an SQL expression which uniquely identifies this node in the dataset. Note
that a same node can appear multiple times with different parents.

PARENT_ID: This is an SQL expression which evaluates the value the ID for the parent
node.

ALLOW_CYCLES: If the argument is set to true, we allow cycles in the tree, else we would
throw an exception when there is a cycle in the dataset.

Arguments used for selecting the type of operation to be performed:

MODE: This is the argument used to select the type of traversal from the STARTS_WITH
nodes. It can be either "UP" or "DOWN". If the value is "UP", we start from the STARTS_
WITH node and traverse UP, towards the root node. If the value is "down", we start at the
STARTS_WITH node and traverse DOWN, towards the leaf nodes.

Argument to identify the start node for the push-down operation:

Aster Data proprietary and confidential nTree

March 21, 2012 Graph Analysis 139

STARTS_WITH: This is an SQL-boolean Expression which is used to define the node from
where we start the tree traversal.

Arguments used for managing the function’s output:

OUTPUT: This can take two values: ALL or END. ALL would output one result tuple at
every node along the path traversal. END would output one result tuple when the traversal
reaches the end of path.

LOGGING('true'|'false'): If true, then log messages will be printed.

RESULT: This argument specifies which aggregate operations we can perform while
traversing the tree. The supported aggregate types are: PATH, SUM, LEVEL, MAX, MIN,
IS_CYCLE, AVG, PROPAGATE, as described here:

PATH(expr) would output the path from the STARTS_WITH node to this node.

SUM(expr) would output the sum of "expr" (expression) on all nodes from the
STARTS_WITH node to this node.

LEVEL\(*) would output the number of hops from the STARTS_WITH node to this
node. Note that this is then number of hops form the STARTS_WITH node and NOT
the Root node.

MAX(expr) would output the maximum value encountered so far from the STARTS_
WITH node to this node.

MIN(expr) would output the minimum value encountered so far from the STARTS_
WITH node to this node.

IS_CYCLE\(*) would output the cycle (if any).

AVG(expr) would output the average value so far from the STARTS_WITH node to this
node.

PROPAGATE(expr) would evaluate the expression "expr" on the STARTS_WITH node
and propagate it to all the nodes along the path.

Example 1: Find an employee’s chain of managers

Example Input Data: employee_table

Example 1 SQL-MR Call

Here, we start with employee 400 and follow the graph UP, as specified by the MODE argument:

SELECT *
FROM ntree
(ON employee_table
 PARTITION BY 1
 ROOT_NODE('mgr_id=null')
 NODE_ID('emp_id')
 PARENT_ID('mgr_id')

emp_id emp_name mgr_id salary

100 Don null 10k

200 Pat 100 8k

300 Donna 100 8k

400 Kim 200 6k

500 Fred 400 4k

nTree Aster Data proprietary and confidential

140 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

 MODE('UP')
 ALLOW_CYCLES('true')
 STARTS_WITH('emp_id=400')
 OUTPUT('END')
 result(path(emp_name) as path)
);

Example 1 Output:

Table 10-1 Example Output from nTree

Example 2

Table 10-2 Example 2 Input Data: emp_table_aster, partitioned on department

emp_id path

500 Kim->Pat->Don

department order_column id name salary mgr_id

aster 1 7 Don 20 2

aster 2 2 Pat 30 3

aster 3 3 Donna 60 6

aster 4 9 Kim 50 5

aster 5 4 Fred 40 4

aster 6 5 Mark 70 7

aster 7 6 Rob 10 1

aster 8 5 Mark 10 1

aster 9 1 Dave 10 none

aster 10 1 Dave 10 9

teradata 1 10 Test1 10 12

teradata 2 11 Test2 20 10

teradata 3 12 Test3 30 10

teradata 4 15 Test4 40 12

teradata 5 16 Test5 50 12

teradata 6 18 Test6 60 17

teradata 7 11 Test2 20 15

teradata 8 13 Test7 70 11

teradata 9 14 Test8 80 11

teradata 10 14 Test8 80 12

teradata 11 15 Test4 40 14

teradata 12 16 Test5 50 15

teradata 13 17 Test9 90 16

teradata 14 16 Test5 50 18

Aster Data proprietary and confidential nTree

March 21, 2012 Graph Analysis 141

Example 2 SQL-MR Call
SELECT *
FROM ntree
(ON emp_table_aster
 PARTITION BY department
 ORDER BY order_column
 ROOT_NODE(mgr_id = 'none')
 PARENT_ID(mgr_id)
 NODE_ID(id)
 STARTS_WITH('ROOT')
 MODE('DOWN')
 OUTPUT('ALL')
 RESULT(PATH(name) as path,
 path(id) as path2)
 ALLOW_CYCLES('true')
) order by path, path2;

Example 2 Output

Table 10-3 Example 2 output from nTree

teradata 1 10 Test1 10 none

id path path2

1 Dave 1

5 Dave->Mark 1->5

9 Dave->Mark->Kim 1->5->9

6 Dave->Rob 1->6

3 Dave->Rob->Donna 1->6->3

2 Dave->Rob->Donna->Pat 1->6->3->2

7 Dave->Rob->Donna->Pat->Don 1->6->3->2->7

5 Dave->Rob->Donna->Pat->Don->Mark 1->6->3->2->7->5

9 Dave->Rob->Donna->Pat->Don->Mark->Kim 1->6->3->2->7->5->9

10 Test1 10

11 Test1->Test2 10->11

13 Test1->Test2->Test7 10->11->13

14 Test1->Test2->Test8 10->11->14

15 Test1->Test2->Test8->Test4 10->11->14->15

16 Test1->Test2->Test8->Test4->Test5 10->11->14->15->16

17 Test1->Test2->Test8->Test4->Test5->Test9 10->11->14->15->16->17

18 Test1->Test2->Test8->Test4->Test5->Test9->Test6 10->11->14->15->16->17->18

12 Test1->Test3 10->12

15 Test1->Test3->Test4 10->12->15

11 Test1->Test3->Test4->Test2 10->12->15->11

department order_column id name salary mgr_id

Single Source Shortest Path (SSSP) Aster Data proprietary and confidential

142 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Single Source Shortest Path (SSSP)

Summary
Given a graph with vertices and edges between these vertices, the Single Source Shortest Path
(SSSP) function finds the shortest paths from a given vertex to all the other vertices in the graph.

Installation
See “Installing Aster Database’s Driver-Based Analytical Functions” on page 9.

Usage on the queen
For clarity, we break the command line below at each argument flag. Each value shown in italics
is one that you should replace with the right value your installation:

user@machine:~$ java
 -classpath path_to_SQL-MR_api_jars:path_to_jdbc_driver_jar:path_to_
ssspDriver_jar
 com.asterdata.sqlmr.analytics.path_analysis.sssp.ssspDriver
 -domain=host:port
 -database=database_name
 -userid=user_id
 -password=password
 -inputtable=input_table_name
 -outputtable=output_table_name

13 Test1->Test3->Test4->Test2->Test7 10->12->15->11->13

14 Test1->Test3->Test4->Test2->Test8 10->12->15->11->14

16 Test1->Test3->Test4->Test5 10->12->15->16

17 Test1->Test3->Test4->Test5->Test9 10->12->15->16->17

18 Test1->Test3->Test4->Test5->Test9->Test6 10->12->15->16->17->18

16 Test1->Test3->Test5 10->12->16

17 Test1->Test3->Test5->Test9 10->12->16->17

18 Test1->Test3->Test5->Test9->Test6 10->12->16->17->18

14 Test1->Test3->Test8 10->12->14

15 Test1->Test3->Test8->Test4 10->12->14->15

11 Test1->Test3->Test8->Test4->Test2 10->12->14->15->11

13 Test1->Test3->Test8->Test4->Test2->Test7 10->12->14->15->11->13

16 Test1->Test3->Test8->Test4->Test5 10->12->14->15->16

17 Test1->Test3->Test8->Test4->Test5->Test9 10->12->14->15->16->17

18 Test1->Test3->Test8->Test4->Test5->Test9->Test6 10->12->14->15->16->17->18

id path path2

Aster Data proprietary and confidential Single Source Shortest Path (SSSP)

March 21, 2012 Graph Analysis 143

 -source=source_column
 -destination=destination_column
 -startnode=start_node

Usage on a remote (non-queen) machine
For clarity, we break the command line below at each argument flag. Each value shown in italics
is one that you should replace with the right value your installation:

user@machine:~$ java
 -classpath ssspDriver.jar:path_for_JDBC and nculster-sqlmr jar files
 com.asterdata.sqlmr.analytics.path_analysis.sssp.ssspDriver
 -domain=host:port
 -database=database_name
 -userid=user_id
 -password=password
 -inputtable=input_table_name
 -outputtable=output_table_name
 -source=source_column
 -destination=destination_column
 -startnode=start_node

Arguments
The format of the command-line arguments follows the usual Java style. That is, you pass each
setting as a pair in the form -argument_name=argument_value, and a space separates each
setting from the next. The command-line arguments used to invoke this function are:

DOMAIN: Optional. Has the form, host:port. The host is the Aster Database queen’s IP address
or hostname. To specify an IPv6 address, enclose the host argument in square brackets, for
example: [:: 1]:2406. The port is the port number that the queen is listening on. The default is the
Aster standard port number (2406). For example: DOMAIN(10.51.23.100:2406)

DATABASE: Required. This is the name of the database where the input table is present. For
example: -database=beehive

USERID: Required. The Aster Database user name of the user. For example: -userid=beehive

PASSWORD: Required. The Aster Database password of the user. For example:
-password=beehive

INPUTTABLE: Required. The name of the input table. This is the table containing the list of
edges. The input table should have at least two columns: the source column and the destination
column.

OUTPUTTABLE: Required. This is the name of the output table where you wish to save the
results. IMPORTANT! Please note that if a table with this name exists already, that table
will be dropped. The output table will contain the columns listed in the section “Output,” below.

SOURCE: Required. The name of the input table column that contains the source vertex.

DESTINATION: Required. The name of the input table column that contains the destination
vertex.

STARTNODE: Required. The node from which the shortest path to all the other vertices should
be computed.

Single Source Shortest Path (SSSP) Aster Data proprietary and confidential

144 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Input
Input table containing the list of edges. Input table should contain at-least two columns, source
column and the destination column

Output
You use the -outputtable argument to specify the destination table for the function’s results.
IMPORTANT! Please note that if a table with this name exists already, that table will be
dropped.

The output table will contain the following columns:

node: Represents a vertex in the graph.

seen: True/false value indicating whether this vertex is reachable from the start vertex.

points_to: List of all the reachable vertices from this vertex.

distance_from_start: Distance from the start node to this vertex. If this vertex is not reachable
from the start node, then this value will be -1.

path_from_start: The shortest path from the start node to this node. If this vertex is not reachable
from the start node, this value will be empty.

Example

Table 10-4 Example Input Data, table graph

source name destination

1 "san carlos" 2

3 "san jose" 6

5 "san francisco" 3

6 "new york" 1

7 "dallas" 5

7 "LA" 2

2 "seattle" 6

6 "las vegas" 8

2 "Mexico" 9

7 "washington" 5

2 "san carlos" 2

8 "san jose" 5

3 "san francisco" 7

3 "new york" 1

8 "dallas" 9

8 "LA" 8

2 "seattle" 3

2 "las vegas" 2

Aster Data proprietary and confidential Single Source Shortest Path (SSSP)

March 21, 2012 Graph Analysis 145

Example Usage
user@machine:~$ java
 -jar ssspDriver.jar
 -startNode=2
 -domain=10.51.23.100
 -database=beehive
 -inputTable=graph
 -outputTable=shortestDistance
 -sourceColumnName=source
 -destinationColumnName=destination
 -userID=beehive
 -password=beehive

The first line invokes Java. Lines two through five include the appropriate Java libraries to run
the driver. Line six is the name of the Java class we want to run. All lines afterward are program
arguments.

Example Output Data from SSSP

Table 10-5 Example Output Data from SSSP

Error Messages
In response to user error, the SSSP operator may print the following error messages:

• ERROR: Please provide all of the following arguments: -domain
-database -inputTable -outputTable -userid -password
-sourceColumnName -destinationColumnName -startNode

REASON: One or more of the following arguments are missing. Arguments can be any of
the following: -domain -database -table -userid -password -sourceColumnName
-destinationColumnName -startNode

REASON: One or more of the arguments provided is not valid.

1 "Mexico" 7

5 "washington" 7

3 "san carlos" 2

9 "san jose" 3

5 "san francisco" 5

Node Seen Points_To Distance_from_start Path_from_start

2 t 2,3,6,9 0 empty

6 t 1,8 1 6

8 t 5,8,9 2 6,8

1 t 2,7 2 6,1

3 t 1,2,6,7 1 3

5 t 3,5,7 3 3,7,5

7 t 2,5 2 3,7

9 t 3 1 9

Single Source Shortest Path (SSSP) Aster Data proprietary and confidential

146 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

March 21, 2012 Aster Data proprietary and confidential 159

12

Data Transformation

In this section we describe:

• “Antiselect” on page 159

• “Pack” on page 163

• “Unpack” on page 165

• “Multicase” on page 160

• “Pivot” on page 167

• “XML Parser” on page 170

• “Apache Log Parser” on page 176

Antiselect

Summary
Antiselect returns all columns except those specified in the exclude clause.

Background
There are cases in which a user wants to retrieve all but a few columns from a table or query. The
syntax rules of SELECT allow you to either specify "*" or list the specific columns you want,
but you cannot list columns to be excluded. With the antiselect function, you can select all
columns except the one(s) in the EXCLUDE argument clause list. This is useful when simply
selecting rows or when doing a join to create a new table.

Usage
This section describes the syntax for using the function, parameter options and data types, and a
description of the expected output.

Syntax
SELECT *
 FROM antiselect
 (
 ON { table_name | view_name | (query) }
 EXCLUDE('column_name' [, ...])

Multicase Aster Data proprietary and confidential

160 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

);

Arguments

EXCLUDE Optional. Specifies list of the columns that will not be returned. The list is specified
as a comma-delimited list of column names, each in single-quotes.

Output

The function emits all columns except those named in the EXCLUDE list.

Example

Example Input Data

Table 12-1 Example Input Data, table sampleTable

Example SQL-MapReduce Call

This example runs on the table sampleTable and excludes the "race" column from its output:

SELECT *
 FROM antiselect
 (
 ON sampleTable
 EXCLUDE('race')
);

Example Output of Antiselect

Table 12-2 Example Output of Antiselect

Multicase

Summary
Multi-case extends the capability of the SQL CASE statement by supporting matches to multiple
criteria in a single row. The function iterates through the input data set only once and emits
matches whenever a match occurs. If multiple matches occur for a given input row, one output
row will be emitted for each match. This differs from the behavior of the SQL CASE statement.

id src age gender race numBuys numSells

1 ebay 62 male white 30 44

2 paypal 29 female asian 33 23

id src age gender numBuys numSells

1 ebay 62 male 30 44

2 paypal 29 female 33 23

Aster Data proprietary and confidential Multicase

March 21, 2012 Data Transformation 161

When SQL CASE finds a match, it emits the result and immediately proceeds to the next row
without searching for more matches in the current row.

Background
The multicase function is useful when you want to have a single row match multiple conditions.
In other words, you should use this function when the conditions in your CASE statement do not
form a mutually exclusive set.

Usage

Syntax

Below is how the multi-case is invoked using a SELECT statement to invoke the
SQL-MapReduce function.

SELECT *
 FROM multi_case
 (
 ON
 (
 SELECT
 *,
 Condition1 AS case1,
 Condition2 AS case2,
 ...,
 ConditionN AS caseN
 FROM {table_name|view_name|(query)}
)
 LABELS
 (
 'case1 AS "label1"',
 'case2 AS "label2"',
 ...,
 'caseN AS "labelN"'
)
)

Arguments

CONDITIONS: Each condition is an SQL predicate that evaluates to true or false.

LABELS: For each case, you must specify a label the function will apply to matches of that case.
Specify this in the LABELS clause in the form, 'case1 AS "label1"'.

Input

Input rows should contain at least one column.

Output

A row is output for each match. All input columns are conveyed as-is to the output, and a
category name column is added.

Multicase Aster Data proprietary and confidential

162 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example

Example Input Data

Table 12-3 Example Input Data, table mydata

Example SQL-MapReduce call
SELECT *
 FROM multi_case
 (
 ON
 (
 SELECT
 *,
 (age < 1) AS case1,
 (age >= 1 AND age <= 2) AS case2,
 (age >= 2 AND age <=12) AS case3,
 (age >=13 AND age <=19) AS case4,
 (age >=16 AND age <=25) AS case5,
 (age >=21 AND age <=40) AS case6,
 (age >=35 AND age <=60) AS case7,
 (age >=60) AS case8
 FROM mydata
)
 LABELS
 (
 'case1 AS "infant"',
 'case2 AS "toddler"',
 'case3 AS "kid"',
 'case4 AS "teenager"',
 'case5 AS "young adult"',
 'case6 AS "adult"',
 'case7 AS "middle aged person"',
 'case8 AS "senior citizen"'
)
)
 ORDER BY userid;

userid name age

100 Henry Cavendish 12

200 Sir William 15

300 Johann August 19

400 Martin Heinrich 20

500 Ralph Arthur 25

600 Marguerite Catherine 35

700 Philip Hauge 40

800 Joseph Louis 28

900 Marie Curie 12

Aster Data proprietary and confidential Pack

March 21, 2012 Data Transformation 163

Example Output from Multicase

Table 12-4 Example Output from Multicase

Pack

Summary
The Pack function takes a number of input columns and transforms them into a single packed
column. The packed column is composed of a number of virtual columns, with each virtual
column representing an input column. In the packed column, a COLUMN_DELIMITER string
separates each virtual column value from the next. By default, each virtual column value is
labeled with its column name, but you can turn off this labeling.

Aster Database also provides an Unpack function to explode a single packed column into a
number of columns. See “Unpack” on page 165.

Usage

Syntax
SELECT *
 FROM pack
 (
 ON {table_name|view_name|(query)}
 [COLUMN_NAMES('column1' [, ...])]
 [COLUMN_DELIMITER('delimiter_value')]
 [INCLUDE_COLUMN_NAME('true'|'false')]
 PACKED_COLUMN_NAME('packed_column_name')
);

UserID Name Age Category

100 Henry Cavendish 12 kid

200 Sir William 15 teenager

300 Johann August 19 teenager

300 Johann August 19 young adult

400 Martin Heinrich 20 young adult

500 Ralph Arthur 25 young adult

500 Ralph Arthur 25 adult

600 Marguerite Catherine 35 adult

600 Marguerite Catherine 35 middle aged person

700 Philip Hauge 40 adult

700 Philip Hauge 40 middle aged person

800 Joseph Louis 28 adult

900 Marie Curie 12 kid

Pack Aster Data proprietary and confidential

164 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Arguments

ON: Required. Table, view, or query that provides the data to be packed.

COLUMN_NAMES: Optional. Names of the input columns to be packed. Format these as a
comma-delimited list with each name in single-quotes. The name of each input column that you
pack becomes its virtual column name. Columns that are present in the input but not listed in
COLUMN_NAMES are passed through to the output as regular columns. If you do not include a
COLUMN_NAMES clause, all input columns are packed, and no columns are passed through
as-is.

COLUMN_DELIMITER: Optional. Character string that will be used to delimit each packed data
value (and virtual column name if present) from the next. If the column delimiter is a pipe
character (i.e. '|'), you need to double escape it (i.e. '\\|'). The default is a comma (",").
Note that this can be more than a single character but cannot be a regular expression (as is
allowed in the Aster Database unpack function).

INCLUDE_COLUMN_NAME: Optional. A true or false value that specifies whether or not to
pre-pend each packed value with its virtual column name. The default is true.

PACKED_COLUMN_NAME: Required. Name of the output column that will hold the packed
data.

Output

The packed data column (this holds the virtual columns), as well as any input columns (in as-is,
unpacked condition) that you did not name in COLUMN_NAMES. The packed data column is of
type varchar.

Example:

Example Input Data

Table 12-5 Example Input Data, table to_be_packed

Example SQL-MapReduce call
SELECT *
 FROM pack
 (
 ON to_be_packed
 COLUMN_DELIMITER(',')
 PACKED_COLUMN_NAME('packed_data')
 INCLUDE_COLUMN_NAME('true')
 COLUMN_NAMES('src', 'age', 'gender', 'race', 'numBuys', 'numSells')
);

Important! Each time you pack a table, make a note of the datatypes of all its packed columns.
You will need to know these types later, if you wish to unpack them.

id src age gender race numBuys numSells

1 ebay 62 male white 30 44

2 paypal 29 female asian 33 23

Aster Data proprietary and confidential Unpack

March 21, 2012 Data Transformation 165

In the example query above, note that we did not include the “id” column in the COLUMN_
NAMES list, even though it was one of the input columns. This has the effect of passing the id
column to the output in its original, unpacked condition.

Example Output from Pack

Table 12-6 Example Output from Pack

Unpack

Summary
The Unpack function takes data from a single packed column and expands it to multiple
columns. Each packed column is composed of a number of virtual columns. In the packed
column, a COLUMN_DELIMITER string separates each virtual column from the next.

This function is complementary to Aster Database’s Pack function, but can be used on any
packed column that represents its packed columns in a reasonably regular way. See “Pack” on
page 163.

Usage

Syntax
SELECT *
 FROM unpack
 (
 ON { table_name | view_name | (query) }
 DATA_COLUMN('data_column')
 COLUMN_NAMES('column1' [, 'column2', ...])
 COLUMN_TYPES('datatype' [, 'datatype', ...])
 [COLUMN_DELIMITER('delimiter_value')]
 [DATA_PATTERN('data_pattern_regular_expression')]
 [DATA_GROUP('group_number')]
 [IGNORE_BAD_ROWS({'true'|'false'})]
);

Arguments

DATA_COLUMN: Required. Name of the input column that contains the packed data to be
unpacked.

COLUMN_NAMES: Required. Names to be given to the output columns, specified as a
comma-delimited list. These are the columns that will be unpacked. You must list them in the
order in which the virtual columns appear in your DATA_COLUMN.

COLUMN_TYPES: Required. The datatypes of the unpacked output columns, in the same order
as the COLUMN_NAMES.

packed_data id

src:ebay,age:62,gender:male,race:white,numBuys:30,numSells:44 1

src:paypal,age:29,gender:female,race:asian,numBuys:33,numSells:23 2

Unpack Aster Data proprietary and confidential

166 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

COLUMN_DELIMITER: Optional. The string that separates each virtual column from the next in
the packed data. Note that if you choose a pipe delimiter (i.e. '|'), you need to double escape it
(i.e. '\\|'). The default column delimiter is a comma (",").

DATA_PATTERN: Optional. This is a regular expression that tells the Unpack function which
part the packed data is the actual data value. When unpacking a virtual row of data, the virtual
row consists of one unit of data for each virtual column, with each unit delimited from the next
by a COLUMN_DELIMITER. Within each unit, in addition to the actual data value, there is often
other information such as the virtual column name. The DATA_PATTERN allows Unpack to find
the data value.

In the DATA_PATTERN, you write regular expressions to identify the various regular parts of a
virtual unit of data, and you use parentheses to surround the regular expression that matches the
actual data value. The rest of each unit of data will be ignored.

For example, let’s assume we have packed data with two virtual columns, one for the age and
one for the gender of a person. One example row of our packed data might look like this:

 age:34,sex:male

To unpack this example, we would need to specify a COLUMN_DELIMITER of ‘,’ and a DATA_
PATTERN of ".*:(.*)". In the DATA_PATTERN, the first three characters, ".*:", are a
standard regular expression (the "." is the wildcard that matches any character, and the "*"
indicates the wildcard can be matched zero or more times) that matches both "age:" and
"sex:", while the rest of the expression, "(.*)" is another regular expression that matches "34"
and "male", with the parentheses instructing the unpack function to interpret these as the actual
data values in the virtual column.

The Unpack function’s default DATA_PATTERN is "(.*)", which causes Unpack to recognize as
data the entirety of each unit of data in the virtual row (for example the whole string between
one COLUMN_DELIMITER and the next). Sticking with our first example, if we were to unpack
using for the default data pattern of "(.*)", we’d get poor results because the Unpack function
would return "age:34" as a data value and "sex:male" as the next data value.

Optionally, you can use multiple pairs of parentheses in your DATA_PATTERN to mark multiple
data groups within the DATA_PATTERN, and then specify a DATA_GROUP number to indicate
which data group is the actual data value.

DATA_GROUP: Optional. An integer counter value that specifies which data group in your
DATA_PATTERN represents the actual data value in the virtual column. Recall from the
preceding section that you use parentheses in your DATA_PATTERN to mark data groups in the
pattern, and, by default, the Unpack function takes the last data group in each pattern to be the
actual data value (other data groups are assumed to be virtual column names or unwanted data).
If you want to use a data group other than the last one as your actual data value, then you must
specify a DATA_GROUP value.

For example, let’s assume our DATA_PATTERN is:

 ([a-zA-Z]*):(.*)

In this case, if we set DATA_GROUP to “1”, then the string that matches ([a-zA-Z]*) will be
unpacked as the actual data value. If we set DATA_GROUP to “2”, then the string that matches
(.*) will be unpacked as the actual data value.

IGNORE_BAD_ROWS: Optional. A true or false value that specifies whether the function will
fail upon encountering a row with bad data (if 'false'), or ignore the bad row and proceed to the
next row (if 'true'). Default is 'false'.

Aster Data proprietary and confidential Pivot

March 21, 2012 Data Transformation 167

Output

Output columns include the virtual columns you listed in COLUMN_NAMES, plus the other
columns of the input table.

Example

Example Input Data

Table 12-7 Example Input Data, table unpack_data

Example SQL-MapReduce call
SELECT *
 FROM unpack
 (
 ON unpack_data
 DATA_COLUMN('packed_data')
 COLUMN_NAMES('age','gender','race','numBuys','numSells')
 COLUMN_TYPES('integer','varchar','varchar','integer','integer')
 COLUMN_DELIMITER(',')
 DATA_PATTERN('(.*)')
 DATA_GROUP(1)
 IGNORE_BAD_ROWS('true')
)
ORDER BY id;

Example Output from Unpack

Table 12-8 Example Output from Unpack

Pivot

Summary
The pivot function is used to pivot data stored in rows into columns.

The function takes as input a table of data to be pivoted, and it automatically constructs the
output schema based on the arguments passed to the function. NULL values are handled
automatically by the function, as shown in the examples below.

id src packed_data

1 ebay 62,male,white,30,44

2 paypal 29,female,asian,33,23

3 Bad_data THISISINVALIDDATA

age gender race numBuys numSells id src

62 male white 30 44 1 ebay

29 female asian 33 23 2 paypal

Pivot Aster Data proprietary and confidential

168 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Usage

Permissions

You must grant EXECUTE on the function “pivot” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * FROM pivot(
 ON { table_name | view_name | (query) }
 PARTITION BY 'col1'[, 'col2', ...]
 [ORDER BY order_by_columns]
 PARTITIONS('col1'[, 'col2', ...])
 ROWS('number_of_rows')
 PIVOT_KEYS('key1', 'key2'[, ...])
 PIVOT_COLUMN('pivot_column_name')
 METRICS('metric_col1', 'metric_col2'[, ...])
);

Arguments

PARTITIONS: Required. This should be the same as the columns after the 'PARTITION BY'
clause, but can be in different order.

ROWS: Either the 'ROWS' argument or the 'PIVOT_KEY' and the 'PIVOT_COLUMN'
arguments need to be specified. The 'ROWS' argument specifies the maximum number of rows
in all of the partitions. If the number of rows in a partition is smaller than this argument, then
NULLs will be added; while if it is larger, the rest of the rows are omitted. See example 1 below
for detail.

PIVOT_KEYS & PIVOT_COLUMN: If the 'rows' argument is not specified, these two arguments
must be specified together. All rows containing a value in the 'pivot_column' that is not specified
as a pivot key will be ignored. If the partition does not contain a value for a particular pivot key,
the function will emit NULL. Note that if you specify these two arguments, you must order the
input rows lexicographically along the 'pivot_column'. If the pivot column contains numeric
types, then a cast to varchar is required for the function to work properly. See example 2 below
for detail.

METRICS: Required. The columns that contain the values you want to pivot.

Example 1
Suppose a table is made up of the columns member_id, wk, metricA and metricB. A user wants
to generate a new table that has columns member_id, metricA0, metricB0, metricA1, metricB1,
metricA2, metricB2, based on scanning a specific set of 3 weeks from the original table. Getting
the data transformed in this way might be convenient for various analyses. The user can either
specify the maximum number of rows to be pivoted in a certain partition, or specify particular
rows to be pivoted by providing some 'pivot keys'. Constructing this table using standard SQL
would require multiple self-joins using outer joins, and would be inefficient.

Example 1 shows usage of the function when the 'rows' argument clause is specified.

Aster Data proprietary and confidential Pivot

March 21, 2012 Data Transformation 169

Example 1 Input Data

Table 12-9 Example 1 Input Data, table sample_table

Example 1 SQL-MapReduce Call
SELECT * FROM pivot(
 ON pivot_sample_table
 PARTITION BY member_id
 ORDER BY week

 PARTITIONS('member_id')
 ROWS(3)
 METRICS('value1', 'value2')
)
ORDER BY member_id;

Example 1 Output from Pivot

Table 12-10 Example 1 Output from Pivot

Notice that the number of rows in partition 'member_id = 2' is 2, so the third set of values for this
partition are NULLs, as is shown in the output table. Also, for the notation value1_i, the 'value1'
part corresponds to the column name in the input table, while the 'i' part corresponds to the order
of rows in a partition. The 'ORDER BY' clause is not required, and if not supplied, the order of
values is not assured. NULLs are added at the end.

Example 2
In this example, we specify the 'pivot_keys' to include as columns. We also need to specify the
'pivot_column' where the pivot keys exist, and must order the input rows lexicographically along
the 'pivot_column'. The input data will be the “sample_table”, just as in Example 1.

Example 2 Input Data

Table 12-11 Example 2 Input data, table sample_table

member_id week value1 value2

1 1 100 1000

1 2 103 1030

1 3 107 1070

2 1 202 2020

2 3 205 2050

member_id value1_0 value2_0 value1_1 value2_1 value1_2 value2_2

1 100 1000 103 1030 107 1070

2 202 2020 205 2050

member_id week value

1 1 100

XML Parser Aster Data proprietary and confidential

170 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example 2 SQL-MapReduce call
SELECT * FROM pivot(
 ON pivot_sample_table
 PARTITION BY member_id
 ORDER BY week::varchar
 PARTITIONS('member_id')
 PIVOT_KEYS('2','3')
 PIVOT_COLUMN('week')
 METRICS('value1', 'value2')
)
ORDER BY member_id;

Example 2 Output from pivot

Table 12-12 Example 2 Output from pivot

In this case, the PIVOT_KEYS are '2' and '3', so the rows where 'week = 1' are not included. And
for pivot key '2', member 2 does not have any data for the row where 'week = 2', so NULLs are
added in the output table. Note how the notation is constructed: for example, for the notation
value1_i, the 'value1' part still refers to the column name in the input table, while the 'i' part
refers to the pivot_keys.

XML Parser

Summary
The XMLParser function is a general tool to extract the element name, attribute value, and text
from XML documents.

The inputs to the XMLParser function are the XML data, the parameter that constrains the
information that can be extracted, and the parameter to define the result schema. The output of
XMLParser function is a flattened table.

The schema of the output table should be defined using a meaningful structure. Any parent/child
relationships in the source XML data should be maintained. Sometimes, additional information
outside the parent/child relationship may also be extracted. The additional information would
appear as sibling tags of the parent tags.

1 2 103

1 3 107

2 1 202

2 3 205

member_id value1_2 value2_2 value1_3 value2_3

1 103 1030 107 1070

2 205 2050

member_id week value

Aster Data proprietary and confidential XML Parser

March 21, 2012 Data Transformation 171

Background
XML data is semi-structured, and some parts of its content may be flattened. You can use the
XML Parser SQL-MR function to extract the information from an XML document and import it
into a relational table in Aster Database, so that it can be queried by SQL. Not all kinds of XML
data are a good fit for extraction into table. Therefore, it is necessary to supply parameters to the
SQL-MR function that can constrain the structures of the tags that will be parsed.

This function is not meant to be a general tool for XML/Relational importing and exporting.
Instead, it is a tool that enables you to extract information formatted as XML and flatten it into a
relation table.

A classic use case for the XML Parser function is as follows: Suppose we have a large number of
XML files containing weather sensor information. We want to extract the timestamp, location,
temperature, humidity, and similar data into a weather table to find any abnormal data.

Usage

Permissions

You must grant EXECUTE on the function “XMLParser” to the database user who will run the
function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT * FROM XMLParser(
 ON { table_name | view_name | (query) }
 TEXT_COLUMN('text_column_name')
 NODES('node_pair_string [,...]')
 [SIBLING('sibling_node_string')]
 [DELIMITER('delimiter_string')]
 [SIBLING_DELIMITER('delimiter_string')]
 [MAX_ITEM_NUMBER('max_item_number')]
 [ANCESTOR('nodes_path')]
 [OUTPUTCOLUMN_NODEID('column_name')]
 [OUTPUTCOLUMN_PARENT_NODE_NAME('column_name')]
 [ACCUMULATE('column [, ...]')]
);

Arguments

TEXT_COLUMN: Required. Name of the column whose contents will be scanned as an XML
document. Only one column is permitted.

NODES: A list of the parent/children node pair from which data will be extracted. Each node pair
should includes one parent node name and at least one child node name. If there are multiple
children node names, the string of children should follow the format '{node_name[,...]}'.
The string containing the node name should follow the format '<node_
name[:<attributes>]>'. Each node can have zero, one or multiple attributes. The string of
attributes should be an attribute or '{attribute[, ...]}'. The result set will include this
value in the "parent_node”, and children columns. If an attribute name is indicated, the attribute
will be included as a column name in the output.

SIBLING: Optional. A list of nodes which are the siblings of one of the parent nodes indicated in
the 'NODES' argument. The string of node names should follow the format '<node_

XML Parser Aster Data proprietary and confidential

172 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

name[:<attributes>]>'. Each node can have zero, one or multiple attributes. The string of
attributes should be a attribute or '{attribute[, ...]}'. The values from the sibling nodes
will be included in every output row and each sibling node name will be included as a column
name in the output. If an attribute name is indicated, the attribute will be included as a column
name in the output.

DELIMITER: Optional. The delimiter used to separate multiple children values having the same
child name of one parent node in the XML document. If not defined, the default value ',' will be
used.

MAX_ITEM_NUMBER: Optional. The maximum number of items with the same node name to
be returned. These items are siblings in the document. This should be a positive integer equal to
or less than 10. If not defined, '10' will be used as the default value.

ANCESTOR: Optional. The path of ancestor nodes of all the parent nodes indicated in the
'NODES' argument. The ancestor path string should follow the format '<ancestor[/...]>'.
The first ancestor is the root ancestor of other ancestors in the ancestor path and all the parent
nodes indicated in the 'NODES' argument. The string for ancestors should follow the format
'<node_name[:<attributes>]>'. Each node can have zero, one or multiple attributes. The
string of attributes should be an attribute or '{attribute[, ...]}'. If not defined, the root of
the XML document will be de default value.

OUTPUTCOLUMN_NODEID: Optional. Name of the column in the result schema that contains
the id of the each node extracted. If not defined, 'out_nodeid' will be the default value.

OUTPUTCOLUMN_PARENT_NODE_NAME: Optional. Name of the column in the result
schema that contains the tag name of the parent node extracted. If not defined, 'out_parent_node'
will be the default value.

ACCUMULATE: Optional. A list of columns you want to return in the output table. Note that no
output column name can be the same as the column name indicated in the 'OUTPUTCOLUMN_
NODEID' or 'OUTPUTCOLUMN_PARENT_NODE_NAME' argument. By default, if
ACCUMULATE is not selected, all input columns are returned.

Output Schema

A row is output for each node in the XML document having a name indicated as a parent node in
the 'NODES' argument, and for each of the descendants of the ancestor path indicated in the
'ANCESTOR' argument.

The output table contains the following columns:

• node ID

• parent node name

• parent attributes if specified

• siblings if specified

• siblings attributes if specified,

• children nodes

• children attributes if specified

• ancestor attributes if specified

The output also contains all columns specified in the ACCUMULATE clause.

The column name of the children and siblings is the node name indicated in the NODES
argument. The column name of the attributes follows the format 'node name:attribute
name'.

Aster Data proprietary and confidential XML Parser

March 21, 2012 Data Transformation 173

Examples

Example Input Data

Table 12-13 Example Input Data, table xml_inputs

Xid xmlDocument

1 <bookstore>

<owner> "billy" <owner/>

<book category="WEB">

<title lang="en">XQuery Kick Start</title>

<author>James McGovern</author>

<author>Per Bothner</author>

<year edtion="1">2003</year>

<year edtion="2">2005</year>

<price>

<member>49.99</member>

<public>60.00</public>

</price>

<reference>

<title>A</title>

</reference>

<position value="1" locate="east"/>

</book>

<book category="CHILDREN">

<author>Wenny Wang</author>

<price>

<member>99.99</member>

<public>108.00</public>

</price>

</book>

</bookstore>

XML Parser Aster Data proprietary and confidential

174 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Example 1 SQL-MapReduce Call
SELECT * FROM XMLParser(
 ON xml_inputs
 TEXT_COLUMN('xmlDocument')
 NODES ('price/member’)
 SIBLING ('author')
 SIBLING_DELIMITER(';')
 ACCUMULATE('Xid')
)

Example 1 Output from XML Parser

Table 12-14 Example 1 Output from XMLParser

Example 2 SQL-MapReduce Call
SELECT * FROM XMLParser(
 ON xml_inputs
 TEXT_COLUMN('xmlDocument')
 NODES ('temperature/read:type','storage/{used, total}')
 SIBLING ('settopid:{type, length}','accountid')
 ANCESTOR('setTopRpt')
 OUTPUTCOLUMN_NODEID('unique_node_id')
 MAX_ITEM_NUMBER(1)

2 <setTopRpt
xsi:noNamespaceSchemaLocation="Set%20Top%2020Report%2
0.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
>

<settopid type="string" length="5">ST789</settopid>

<accountid type="string">8728</accountid>

<zipcode type="string">94025</zipcode>

<reportstamp
type="dateTime">2009-10-03T12:52:06</reportstamp>

<temperature>

<read type="bigDecimal">46</read>

</temperature>

<storage>

<used type="bigDecimal">98</used>

<used type="bigDecimal">199</used>

<used type="bigDecimal">247</used>

<total type="bigDecimal">300</total>

</storage>

<feed>

<feedstamp
type="dateTime">2009-10-03T12:52:06</feedstamp>

</feed>

</setTopRpt>

xid out_
node_id

out_parent_
node

author member

1 1 price James McGovern; Per Bothner 49.99

1 2 price Wenny Wang 99.99

Xid xmlDocument

Aster Data proprietary and confidential XML Parser

March 21, 2012 Data Transformation 175

)

Example 2 Output from XML Parser

Table 12-15 Example 1 Output from XMLParser

Errors
The function will read the full XML document into the memory buffer. One assumption is that a
document won't exceed the memory of machine.

Error Messaging

You will receive error messages under the following conditions:

• If needed columns are missing from the relation named in the ON clause.

ERROR: SQL-MR function XMLPARSER failed: Input column should be
contained in Input table/query.

• If any columns in your ACCUMULATE clause have the disallowed column name.

ERROR: SQL-MR function XMLPARSER failed: Same node name in the
nodes, sibling, or ancestor parameters.

• If the format of the string NODES, SIBLING, or ANCESTOR is incorrect.

ERROR: SQL-MR function XMLPARSER failed:
com.asterdata.ncluster.sqlmr.IllegalUsageException: The format of
'node' parameter is incorrect. The correct format should be
'parent/children'

• If the SIBLING_DELIMITER argument was specified without a SIBLING argument.

ERROR: SQL-MR function XMLPARSER failed: No SIBLING_DELIMITER if
SIBLING is not specified.

• If the value of MAX_ITEM_NUMBER is not a positive integer less than 10.

ERROR: The maxItemNumber should be a positive integer less than 10.

• If two output columns name are the same.

ERROR: SQL-MR function XMLPARSER failed: Same node name in the
nodes, sibling, or ancestor parameters.

• If the XML Document is empty.

[Fatal Error] :1:1: Premature end of file.The function will read the
full document into the memory buffer and create a hash table. \

unique__
node_id

out_
parent_
node

settopid settopid:
type

settopid:
length

accountid read read:type used total

1 temperature ST789 string 5 8728 46 bigDecimal

2 storage ST789 string 5 8728 98 300

Apache Log Parser Aster Data proprietary and confidential

176 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Apache Log Parser

Summary
This function parses Apache log file content according to NCSA extended/combined log format,
and extracts multiple columns of structural information, including search engines and search
terms.

Background
The apache_log_parser function can parse Apache log files, assuming the log files are loaded
into a table and the content is conforming to the NCSA extended/combined log format:

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

Please see http://httpd.apache.org/docs/current/mod/mod_log_config.html for more details.
Please note that the function assumes one line of the Apache log file is loaded to one row in the
table.

Usage

Permissions

You must grant EXECUTE on the function “apache_log_parser” to the database user who will
run the function. For information on how SQL-MR security, see “SQL-MapReduce Security” on
page 197 of the Aster Database User’s Guide.

Syntax
SELECT *
FROM apache_log_parser
 (ON {table_name|view_name|(query)}
 LOG_COLUMN('log_column_name')
 [EXCLUDE_FILES('.file_suffix[, ...]')]
 [RETURN_SEARCH_INFO('true'|'false')]
)

Arguments

LOG_COLUMN: Required. Name of the column whose contents will be parsed. Only one
column is permitted.

EXCLUDE_FILES: Optional. Comma separated file suffixes to exclude. The default is '.png,
.xml, .js'.

RETURN_SEARCH_INFO: Optional. A true or false value that specifies whether to return search
information. If 'true', the search engine and the search terms, if existing, are extracted. The
default is 'false'.

Output Schema

The function emits a row for the log content of each row it parses. Each output row contains:

• datestamp: the timestamp when the HTTP request is made

http://httpd.apache.org/docs/current/mod/mod_log_config.html
http://httpd.apache.org/docs/current/mod/mod_log_config.html
"http://httpd.apache.org/docs/current/mod/mod_log_config.html"
http://httpd.apache.org/docs/current/mod/mod_log_config.html

http://httpd.apache.org/docs/current/mod/mod_log_config.html

Aster Data proprietary and confidential Apache Log Parser

March 21, 2012 Data Transformation 177

• ip_address: the remote host that made the HTTP request

• page: the landing page

• referrer: the referring URL from which the visitor has arrived

The following columns are extracted only if RETURN_SEARCH_INFO = true:

• search_engine: 1 stands for Google, 2 denotes Bing, 3 means Yahoo, and 0 if there is no
search engine referral.

• search_terms: the search terms entered by the search engine user, which led to landing on
the page

Example

Example Input Data

Table 12-16 Example Input Data, table web_log_data

Example SQL-MapReduce Call
SELECT * FROM apache_log_parser(
 ON web_log_data
 LOG_COLUMN('log_data')
 EXCLUDE_FILES('.png, .xml, .js, .css')
 RETURN_SEARCH_INFO('true'))
ORDER BY datestamp, page;

Example Output from Apache Log Parser

Table 12-17 Example Output from Apache Log Parser

id log_data

1 75.36.209.106 - - [20/May/2008:15:43:57 -0400] "GET / HTTP/1.1" 200 15251
"http://www.google.com/search?hl=en&q=%22Aster+Data+Systems%22" "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1; SV1; YPC 3.2.0; .NET CLR 1.1.4322; .NET
CLR 2.0.50727; MS-RTC LM 8)"

2 98.210.132.218 - - [27/Mar/2011:11:45:47 -0700] "GET /about/management.php
HTTP/1.1" 200 10048 "http://www.
bing.com/search?q=aster+data&form=QBLH&qs=n&sk=&sc=8-10" "Mozilla/4.0
(compatible; MSIE 7.0; Windows NT 5.1; . NET CLR 1.1.4322; .NET CLR 2.0.50727;
.NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)"

3 llf520029.crawl.yahoo.net - - [29/May/2008:23:15:15 -0400] "GET
/resources/images/support HTTP/1.0" 301 187 "" "Mozilla/5.0 (compatible; Yahoo!
Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"

4 159.41.1.23 - - [06/Jul/2010:07:19:45 -0400] "GET /public/js/common.js HTTP/1.1" 200
16711 "http://www.wooloo. org/wonjoo" "Mozilla/5.0 (Windows; U; Windows NT 5.1;
it; rv:1.9.2.3) Gecko/20100401 Firefox/3.6.3"

datestamp ip_address page referrer search_
engine

search_terms

2008-05-20
15:43:57.0

75.36.209.106 / http://www.google.com/searc
h?hl=en&q=%22Aster+Data+
Systems%22

1 "Aster Data
Systems"

Apache Log Parser Aster Data proprietary and confidential

178 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

Errors

Error Messaging
You may see the following error messages:

• Requires input rows to have a column of specified name: <log_column_name>

• Requires the specified log column <log_column_name> to be of NativeType String.

2011-03-27
11:45:47.0

98.210.132.218 /about/management.php http://www.bing.com/search?
q=aster+data&form=QBLH&
qs=n&sk=&sc=8-10

2 aster data

2008-05-29
23:15:15.0

llf520029.crawl.
yahoo.net

/resources/images/support 1 0

datestamp ip_address page referrer search_
engine

search_terms

March 21, 2012 Aster Data proprietary and confidential 173

13

Aster Database System Utility Functions

The built-in system utility functions are intended to be invoked through AMC Executables.
These functions are automatically installed as part of the Aster Database installation. Note that if
you type \dF in ACT, these out-of-the-box functions will not appear, as they are internal-only
functions. You can, however, use these in your own custom scripts.

Aster Database includes the following system utility functions.

• nc_genericlocalquery

• nc_tablesize

• nc_skew

• nc_recursive

For more infomation on these functions, see “Cluster Utility SQL-MapReduce Functions” on
page 161 of the Aster Database User’s Guide.

 Aster Data proprietary and confidential

174 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

March 21, 2012 Index 175

Index
A
aggregate

creating with nPath, 39
nPath aggregate, 39

analytics
nPath, 39

anchor
nPath, 43

antiselect function, 159
API

nPath, 39
application code

install SQL-MapReduce application code, 7
approx percentile, 54
Approximate Distinct Count, 51, 53
Approximate Percentile, 54
association analysis, 118
Aster support portal, 4
at-least operator, 44
attribution analysis, 25

B
Bayes’ Theorem, 125

C
canopy function, 122
CART algorithm, 129
CASE with multiple conditions, 161
centroid, 111
cfilter, 140
classification functions

Naive Bayes, 125
clickstream analysis

nPath, 39
clickstream example, 47
cluster analysis, 111
cluster analysis functions, 111
clustering

canopy, 122
collaborative filtering function, 140
column, 163

combine many columns into one, 163
split one column into many, 165
transpose columns into rows, 168

combine many columns into one, 163

comma operator in nPath, 44
Correlation (stats correlation), 57
count_approx_distinct, 51, 53
custom code

nPath, 39
customer support, 4

D
data transformation functions, 159
decision trees, 129
DISTINCT

in nPath, 42

E
eigenvector, 76

F
file upload in Aster, 7
finding patterns, 39
forest_analyze, 134
forest_drive, 130
forest_predict, 131
functions

nPath, 39
functions, list of, 1

G
Generalized Linear Model, 69
GLM, 69
graph analysis, 153

Single Source Shortest Path, 153
GROUP BY

in nPath, 42
grouping

canopy, 122
collaborative filtering, 140

H
hash by locality, 118
help, 4
histogram function, 59

176 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

I
install

SQL-MapReduce function, 7

J
Jaccard metric, 118

K
k-Means, 111

kmeansplot supporting function, 115
kmeansplot, 115

L
LAG expression in nPath, 45
Levenshtein distance, 95
lexical tokenizer, 97
LIMIT

in nPath, 42
Linear Regression, 63
list all possible website paths, 13
load

install SQL-MapReduce application code, 7
loading

install SQL-MapReduce application code, 7
locality-sensitive hashing, 118

M
match mode in nPath, 41
Minhash, 118
multicase function, 161
multi-gram, 97

N
Naive Bayes classification function, 125
Named Entity Recognition, 104
nGram, 97
n-gram, 97
nonoverlapping match, 41
non-overlapping match, 41
nPath, 39

anchors, 43
describing patterns in, 42
examples, 47
introduction, 39
LAG expression, 45
MODE for overlap, 41
operators, 43
pattern matching, 44
repeated patterns, 44
SYMBOLS clause, 41
syntax, 40

O
OFFSET

in nPath, 42
operators, 43

comma in nPath, 44
nPath, 43

ORDER BY
in nPath, 42

overlapping match, 41

P
Pack function, 163
pairings, finding with collaborative filtering, 140
partitioning by canopy, 122
path analysis

list all possible website paths, 13
path analysis functions, 13
Path Generator, 13
Path Generator function, 13
Path Starter, 16
Path Summarizer, 19
pattern matching

lag comparison, 45
nPath, 39
repeated pattern, 44
time series, 45

pattern match, overlapping, 41
PCA, 76
pivot function, 168
portal, 4
predicate for an nPath symbol, 41
previous row compared with current, 45
principal component analysis, 76

R
relational analysis, 137, 147
relational analysis functions, 137, 147
repeated pattern matching, 44
row, 168

transpose rows into columns, 168

S
sample code

nPath, 47
SDK

nPath, 39
select all but listed columns, 159
select: antiselect, 159
Sessionization, 22
similarity analysis, 118
Simple Moving Average, 78
Single Source Shortest Path, 153
split into words, 100
split one column into many, 165
split text, 97
SQL aggregate

creating with nPath, 39
SQL-MapReduce

installing a function, 7
SSSP function, 153
statistical analysis functions, 51
stats glm, 69
stats linear reg, 63

March 21, 2012 Index 177

stats smavg, 78
stats vwap, 90
stats wmavg, 82, 83, 85
support, 4
symbol predicate, 41

LAG expression, 45
SYMBOLS clause, 41
system utility functions, 173

T
technical support, 4
telephone number, 4
text

split into words or grams, 97
text analysis, 97

Named Entity Recognition, 104
text analysis functions, 95
text parser, 100
text_parser, 100
time series functions, 13
time series pattern matching, 45
tokenize, 97, 100
tokenize_cnt, 100
traffic analysis, 13

attribution, 25, 39
Path Generator, 13
Path Starter, 16
Path Summarizer, 19

transformation functions, 159
transpose columns into rows, 168

U
unique words, finding, 100
unpack function, 165
upload

install SQL-MapReduce application code, 7
upload file to Aster, 7
upload SQL-MapReduce function, 7
URL, 4
user-defined function

nPath, 39
utilities

nPath, 39
utility functions, 173

V
Volume-Weighted Average Price, 90
vwap, 90

W
website traffic analysis, 13

attribution, 25
finding patterns, 39
Path Generator, 13
Path Starter, 16
Path Summarizer, 19

Weighted Moving Average, 82, 83, 85
WHERE

in nPath, 42
wmavg, 82, 83, 85

178 Aster MapReduce Analytics Foundation User’s Guide, version 4.6.3-ua1 aster data

	Aster MapReduce Analytics Foundation User’s Guide
	Contents
	1 Introduction
	Analytics at Scale: Full Data Set Analysis
	List of Aster Analytical Functions by Type
	Time Series, Path, and Attribution Analysis
	Statistical Analysis
	Text Analysis
	Cluster Analysis
	Naive Bayes
	Decision Trees
	Relational Analysis
	Graph Analysis
	Data Transformation
	Aster Database Utilities

	Contacting Aster Technical Support
	Copyright and Legal Statements

	2 Installing Analytical Functions in Aster Database
	Installation Procedure
	Download the Analytics Foundation Bundle
	Next Step

	Install the Functions
	Next Step

	Set Permissions to Allows Users to Run Functions
	Test the Functions

	Using ACT’s \install Command to Install
	Installing Aster Database’s Driver-Based Analytical Functions
	Required Components
	Install SQL-MapReduce Functions in Aster Database
	Install the JDK on the client machine
	Install the Aster Database JDBC driver on the client machine

	Install the Aster SQL-MapReduce API on the client machine
	Testing Your Installation of a JDBC-Based Analytics Function
	Optional approach: Run it directly on the Aster Database queen
	Typical approach: Run it from your client machine
	Command-Line Arguments for Driver-Based Functions

	3 Time Series, Path, and Attribution Analysis
	Path Generator
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments

	Input Data
	Output
	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Path Generator

	Error Messages

	Path Starter
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Assumptions
	Input Data
	Output

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Path Start

	Path Summarizer
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Assumptions
	Input Data
	Output

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Path Summarizer

	Error Messages

	Sessionization
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Assumptions

	Example
	Example SQL-MapReduce call
	Example Output from Sessionize

	Error Messages

	Attribution
	Background
	Usage
	Permissions
	Syntax
	Simple arguments
	Window arguments
	MODEL1/MODEL2 arguments

	Example Input Data
	Example 1: Event models (with multiple optional event models)
	Example 1 SQL-MR Call
	Example 1 Output from Attribution

	Example 3: Event models (using dynamic weighted distribution model)
	Example 3 SQL-MR Call
	Example 3 Output
	Comments on Example 3

	Example 4: Window models
	Example 4 SQL-MR Call
	Example 4 Output of Attribution
	Comments on Attribution Example 4

	Additional Sample Input Data
	Example 5: A single-window model
	Example 5 SQL-MR Call
	Example 5 Output from Attribution

	Example 6: Not all segment windows are used
	Example 6 SQL-MR Call
	Example 6 Output from Attribution
	Comments on Attribution Example 6

	4 Pattern Matching with nPath
	What is nPath?
	nPath Permissions
	nPath Syntax and Semantics
	ON clause
	PARTITION BY expression
	ORDER BY expression
	MODE clause
	PATTERN clause
	SYMBOLS clause
	RESULT clause: nPath Output
	Working with nPath Output

	Patterns, Symbols, and Operators in nPath
	Patterns
	Symbols
	Operators
	Nesting parentheses
	Anchors

	Pattern Matching in nPath
	Matching Repeated Patterns in nPath
	LAG expressions in symbol predicates
	Notes:
	Lag expression example

	Applying an SQL aggregate to an nPath result
	nPath Examples
	Clickstream Data: An nPath Example
	Lead: An nPath Example
	Rank: An nPath Example
	Complex Path Query: An nPath Example

	5 Statistical Analysis
	Approximate Distinct Count (count_approx_distinct)
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments

	Output
	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output

	Error Messages

	Approximate Percentile (approx percentile)
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments

	Input Data
	Output
	Example
	Example Input Data
	Example SQL-MapReduce call:

	Example Output from Approximate Percentile

	Correlation (stats correlation)
	Summary
	Usage
	Permissions
	Syntax
	Arguments

	Example
	Example Input Data
	Example SQL-MapReduce call

	Example Output from Correlation Reduce
	Error Messages

	Histogram
	Summary
	Usage
	Permissions
	Syntax of the Map Function
	Arguments
	Syntax of the Reduce Function
	Arguments to the Reduce Function

	Output
	Example
	Example Input Data
	Example Query 1: Fixed-size bins
	Output of Example Query 1
	Example Query 2: Custom-sized bins
	Output of Example Query 2

	Algorithm
	Error Messages

	Linear Regression (stats linear reg)
	Summary
	Usage
	Permissions
	Syntax
	Assumptions

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Linear Regression

	Notes
	Error Messages

	Logistic Regression
	Summary
	Usage
	Permissions
	Syntax
	Arguments
	Assumptions
	Input
	Output

	Example
	Example Input Table
	Example SQL-MapReduce call
	Example Output Table

	Error Messages

	Generalized Linear Model (stats glm)
	Summary
	Background
	Usage
	Permissions
	Syntax

	Arguments
	Input
	Output
	Output Columns
	Output Rows

	Examples
	Example SQL-MapReduce call
	Example Output of Stats GLM

	Error Messages

	Principal Component Analysis (PCA)
	Summary
	Background
	Usage
	Syntax
	Arguments

	Input Data
	Output
	Example
	Example SQL-MapReduce call
	Example Output of the PCA Function

	Simple Moving Average (stats smavg)
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Assumptions

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output
	Note

	Error Messages

	Weighted Moving Average (stats wmavg)
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Assumptions

	Example
	Example Input Data
	Example SQL-MapReduce call

	Error Messages

	Exponential Moving Average (stats emavg)
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Assumptions
	Output

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output
	Notes

	Error Messages

	Volume-Weighted Average Price (stats vwap)
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Assumptions

	Example Query 1
	Input Data for Example 1
	Example Query 1
	Example 1 Output from VWAP

	Example Query 2
	Input Data for Example 2
	Example Query 2

	Example 2 Output from VWAP
	Error Messages

	6 Text Analysis
	Levenshtein Distance
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Levenshtein Distance

	nGram
	Summary
	Background
	Description
	Usage
	Permissions
	Syntax
	Arguments
	Output

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example output from nGram

	Text Parser (text_parser)
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Output

	Example
	Example Input Data
	Example SQL-MapReduce call

	Algorithm
	Error Messages

	Named Entity Recognition (NER)
	Summary
	Background
	Usage
	Permissions

	FindNamedEntity
	Syntax of FindNamedEntity
	Arguments
	Input to FindNamedEntity
	Output of FindNamedEntity

	Example for FindNamedEntity
	Example SQL-MR call to FindNamedEntity
	Error messages from FindNamedEntity, with explanations

	TrainNamedEntityFinder
	Syntax of TrainNamedEntityFinder
	Arguments to TrainNamedEntityFinder
	Input to TrainNamedEntityFinder
	Output from TrainNamedEntityFinder

	Example for TrainNamedEntityFinder
	Example SQL-MR call to TrainNamedEntityFinder

	EvaluateNamedEntityFinderRow and EvaluateNamedEntityFinderPartition
	Syntax of EvaluateNamedEntityFinderPartition
	Arguments of EvaluateNamedEntityFinderRow and EvaluateNamedEntityFinderPartition
	Input
	Output

	Example for EvaluateNamedEntityFinder
	Example SQL-MR call
	Error message from EvaluateNamedEntityFinder, with explanation

	Sentiment Extraction Functions
	Summary
	Usage
	Permissions

	ExtractSentiment
	Summary
	Background
	Syntax of ExtractSentiment
	Arguments
	Input to ExtractSentiment
	Output of ExtractSentiment

	Example for ExtractSentiment
	Example Input Data
	Example 1 SQL-MR call to ExtractSentiment
	Example 2 SQL-MR call to ExtractSentiment
	Errors

	EvaluateExtractSentiment
	Summary
	Background
	Syntax of EvaluateExtractSentiment
	Arguments
	Input to EvaluateExtractSentiment
	Output of EvaluateExtractSentiment

	Example for EvaluateExtractSentiment
	Sample SQL-MR call to EvaluateExtractSentiment
	Error messages from EvaluateExtractSentiment, with explanations

	TrainMeClassifier
	Summary
	Background
	Syntax of TrainMeClassifier
	Arguments
	Input to TrainMeClassifier
	Output of TrainMeClassifier

	Example for TrainMeClassifier
	Example Input Data
	Sample SQL-MR call to TrainMeClassifier
	Error messages from TrainMeClassifier, with explanations

	7 Cluster Analysis
	k-Means
	Summary
	Background
	Usage
	Permissions
	Syntax

	Arguments
	Input Data
	Output

	Example
	Example Input Data
	Example SQL-M R Call
	Example Output

	Error Messages

	kmeansplot
	Summary
	Usage
	Permissions
	Syntax
	Arguments

	Example
	Example Input
	Example SQL-MapReduce Call
	Example Output from kmeansplot

	Minhash
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Minhash

	Error Messages

	Canopy
	Introduction
	Background
	Installation
	Driver Usage
	Arguments
	Example
	Example Input Data
	Example Query
	Example Output

	Error Messages

	8 Naive Bayes
	What is Naive Bayes?
	Naive Bayes Syntax and Semantics
	Permissions
	Syntax
	Arguments

	Naive Bayes Examples
	Example Input Data
	Example SQL-MapReduce call
	Example Output of Naive Bayes

	9 Decision Trees
	Summary
	Background
	Usage
	forest_drive
	Syntax for forest_drive
	Arguments for forest_drive
	Input to forest_drive
	Output from forest_drive

	forest_predict
	Syntax of forest_predict
	Arguments for forest_predict
	Input to forest_predict
	Output from forest_predict
	Example
	Example Input Data
	Example SQL-MapReduce call
	Example output from Forest Predict

	forest_analyze
	Usage
	Syntax
	Arguments

	Algorithm
	Error Messages
	Best Practices

	10 Association Analysis
	Basket Generator
	Summary
	Background
	Usage
	Syntax
	Arguments
	Notes
	Output

	Examples
	Example Input Data
	Example SQL-MapReduce call (1 of 2)
	Example Output from Basket Generator (1 of 2)
	Example SQL-MapReduce call (2 of 2)
	Example output from Basket Generator (2 of 2)

	Collaborative Filtering
	Summary
	Background
	Usage
	Syntax
	Arguments

	Example
	Example Input Data
	Example SQL-MapReduce Call
	Example Output from Collaborative Filter

	Error Messages

	10 Graph Analysis
	nTree
	Summary
	Background
	Equity Trading
	Social Networking

	Usage
	Syntax
	Arguments

	Example 1: Find an employee’s chain of managers
	Example Input Data: employee_table
	Example 1 SQL-MR Call
	Example 1 Output:

	Example 2
	Example 2 SQL-MR Call
	Example 2 Output

	Single Source Shortest Path (SSSP)
	Summary
	Installation
	Usage on the queen
	Usage on a remote (non-queen) machine
	Arguments
	Input
	Output
	Example
	Example Usage
	Example Output Data from SSSP

	Error Messages

	12 Data Transformation
	Antiselect
	Summary
	Background
	Usage
	Syntax
	Arguments
	Output

	Example
	Example Input Data
	Example SQL-MapReduce Call
	Example Output of Antiselect

	Multicase
	Summary
	Background
	Usage
	Syntax
	Arguments
	Input
	Output

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Multicase

	Pack
	Summary
	Usage
	Syntax
	Arguments
	Output

	Example:
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Pack

	Unpack
	Summary
	Usage
	Syntax
	Arguments
	Output

	Example
	Example Input Data
	Example SQL-MapReduce call
	Example Output from Unpack

	Pivot
	Summary
	Usage
	Permissions
	Syntax
	Arguments

	Example 1
	Example 1 Input Data
	Example 1 SQL-MapReduce Call
	Example 1 Output from Pivot

	Example 2
	Example 2 Input Data
	Example 2 SQL-MapReduce call
	Example 2 Output from pivot

	XML Parser
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Output Schema

	Examples
	Example Input Data
	Example 1 SQL-MapReduce Call
	Example 1 Output from XML Parser
	Example 2 SQL-MapReduce Call
	Example 2 Output from XML Parser

	Errors
	Error Messaging

	Apache Log Parser
	Summary
	Background
	Usage
	Permissions
	Syntax
	Arguments
	Output Schema

	Example
	Example Input Data
	Example SQL-MapReduce Call
	Example Output from Apache Log Parser

	Errors
	Error Messaging

	13 Aster Database System Utility Functions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

