
Poster	Print	Size:	
This	poster	template	is	48”	high	by	
36”	wide.	It	can	be	used	to	print	any	
poster	with	a	4:3	aspect	raAo.	

Placeholders:	
The	various	elements	included	in	
this	poster	are	ones	we	oCen	see	in	
medical,	research,	and	scienAfic	
posters.	Feel	free	to	edit,	move,		
add,	and	delete	items,	or	change	
the	layout	to	suit	your	needs.	
Always	check	with	your	conference	
organizer	for	specific	requirements.	

Image	Quality:	
You	can	place	digital	photos	or	logo	
art	in	your	poster	file	by	selecAng	
the	Insert,	Picture	command,	or	by	
using	standard	copy	&	paste.	For	
best	results,	all	graphic	elements	
should	be	at	least	150-200	pixels	
per	inch	in	their	final	printed	size.	
For	instance,	a	1600	x	1200	pixel	
photo	will	usually	look	fine	up	to	
8“-10”	wide	on	your	printed	poster.	
To	preview	the	print	quality	of	
images,	select	a	magnificaAon	of	
100%	when	previewing	your	poster.	
This	will	give	you	a	good	idea	of	
what	it	will	look	like	in	print.	If	you	
are	laying	out	a	large	poster	and	
using	half-scale	dimensions,	be	sure	
to	preview	your	graphics	at	200%	to	
see	them	at	their	final	printed	size.	
Please	note	that	graphics	from	
websites	(such	as	the	logo	on	your	
hospital's	or	university's	home	
page)	will	only	be	72dpi	and	not	
suitable	for	prinAng.	

	
[This	sidebar	area	does	not	print.]	

Change	Color	Theme:	
This	template	is	designed	to	use	the	
built-in	color	themes	in	the	newer	
versions	of	PowerPoint.	
To	change	the	color	theme,	select	
the	Design	tab,	then	select	the	
Colors	drop-down	list.	
	
	
	
	
	
	
	
	
	
The	default	color	theme	for	this	
template	is	“Office”,	so	you	can	
always	return	to	that	aCer	trying	
some	of	the	alternaAves.	

PrinAng	Your	Poster:	
Once	your	poster	file	is	ready,	visit	
www.genigraphics.com	to	order	a	
high-quality,	affordable	poster	
print.	Every	order	receives	a	free	
design	review	and	we	can	deliver	as	
fast	as	next	business	day	within	the	
US	and	Canada.		
Genigraphics®	has	been	producing	
output	from	PowerPoint®	longer	
than	anyone	in	the	industry;	daAng	
back	to	when	we	helped	MicrosoC®	
design	the	PowerPoint	soCware.		
	
US	and	Canada:		1-800-790-4001	
Email:	info@genigraphics.com	

	
[This	sidebar	area	does	not	print.]	

Memory	Layout		
Proper	use	of	the	high	bandwidth	memory	can	have	
a	major	impact	on	performance.	This	can	either	done	
with	the	memkind	library,	or	numactl,	or	by	using	the	
quadcache	configuraAon	of	the	KNL.	Changing	the	
way	the	matrix	is	allocated	can	also	improve	
performance	when	operaAng	on	blocks	of	memory,	
especially	on	larger	matrix	sizes.	
	

Blocking	OpGmizaGons	
When	the	number	of	tasks	are	mapped	to	the	number	
of	blocks	either	the	size	of	the	block	gets	larger	to	
accommodate	larger	matrix	sizes,	or	the	number	of	
blocks	increases.	In	order	to	avoid	the	overhead	of	too	
many	tasks,	or	the	loss	of	locality	from	oversized	
blocks,	tasks	must	be	mapped	to	mulAple	blocks,	and	if	
possible	mulAple	iteraAons	over	the	same	blocks.	
Figure	6	shows	the	performance	improvement	of	3	
opAmizaAons	for	task	dependencies;	combining	
mulAple	blocks	per	tasks	(block),	combining	mulAple	
blocks	and	iteraAons	per	task	(block-iter),	and	a	
recursive	cache	oblivious	version	(block-rec)that	
operates	on	mulAple	blocks	and	iteraAons.	
	
	
	

Fig	1.	Shows	the	performance	of	the	
different	approaches	on	KNL	

Advanced	Programming	Model	Constructs	Using	Tasking	
on	the	Latest	NERSC	(Knights	Landing)	Hardware	

Jeremy	Kemp1,	Alice	Koniges2,	Yun	(Helen)	He2,	and	Barbara	Chapman3	
University	of	Houston,	Houston,	TX1	

NERSC,	Lawrence	Berkeley	NaAonal	Laboratory,	Berkeley,	CA2	

Stony	Brook	University,	Stony	Brook,	NY3	

1.  hqp://colfaxresearch.com/knl-numa/		
2.  Heller,	Thomas,	Hartmut	Kaiser,	and	Klaus	Iglberger.	"ApplicaAon	of	the	ParalleX	execuAon	model	to	stencil-based	problems."	Computer	Science-Research	and	Development	28.2-3	(2013):	253-261.	
3.  hqp://www.exmatex.org/comd.html	
4.  hqp://www.nersc.gov/users/computaAonal-systems/cori/	
5.  hqps://www.nersc.gov/users/computaAonal-systems/cori/applicaAon-porAng-and-performance/knl-white-boxes/	

		
	

References	

ApplicaGon	Kernels	

Performance	Overview	
The	parallel	for	loop	is	the	default	approach	to	
parallelism	in	OpenMP.	These	two	charts	provide	an	
overview	of	tasking	performance	relaAve	to	this,	and	
how	much	benefit	there	is	from	addiAonal	
opAmizaAons,	which	easily	surpass	the	performance	
of	worksharing.	
	

Jacobi		
Jacobi	has	very	liqle	cache	reuse,	as	it	only	writes	a	given	element	once	per	iteraAon.	As	a	result,	dividing	up	
the	matrix	into	blocks	has	no	benefit,	so	the	block	combinaAon	opAmizaAons	don’t	apply.	
	
IteraAon	combining	is	possible,	but	more	complex,	due	to	overlapping	read/writes	between	neighbors.	For	the	
Jacobi	iteraAon	opAmizaAon,	the	second	matrix	is	removed,	and	replaced	by	3	threadlocal	scratch	rows	and	4	
synchronizaAon	rows	per	chunk	of	rows.	Each	task	performs	an	iteraAon	for	3	rows	wriAng	the	results	into	the	
scratch	rows,	and	then	wriAng	the	second	iteraAon	back	to	the	original	matrix.	

Applying	OpGmizaGons	

Locality	is	important,	and	difficult	to	do	with	OpenMP	tasks;	the	consistent	poor	performance	of	tasks	(without	
task	dependencies)	shows	how	much	overhead	is	introduced	and	how	much	locality	is	given	up.	On	the	other	
hand,	unopAmized	task	dependencies	demonstrate	how	much	can	be	gained	by	removing	unnecessary	
synchronizaAon.	The	opAmizaAons	on	the	task	dependencies	can	then	improve	the	locality	and	achieve	much	
beqer	performance	than	the	parallel	for	loops.		
	
There	are	two	major	differences	when	programming	for	KNL	over	Haswell;	KNL	has	very	liqle	cache	per	thread	
relaAve	to	Haswell,	and	using	MCDRAM	properly	can	drasAcally	improve	performance.	The	Jacobi	results	
illustrate	both	of	these	points	very	well.	The	fastest	version	on	Haswell	performs	the	worst	on	KNL	due	to	the	
cache	size,	and	the	versions	that	move	through	memory	sequenAally	perform	much	beqer.	
	
	Future	work	includes	further	applicaAons	of	the	opAmizaAons	explored	with	LU	to	Jacobi,	CoMD,	and	other	
applicaAons.	

Conclusions	

OpGmizing	the	LU	Kernel	

LU	decomposiGon	
The	iniAal	matrix	is	divided	into	a	2D	matrix	of	blocks	to	
improve	cache	usage,	and	enable	parallelizaAon.	There	
are	4	disAnct	operaAons	divided	into	3	phases.		
	
The	worksharing	(parallel	for)	version	divides	these	
into	3	phases	for	each	iteraAon,	with	a	barrier	between	
each	phase.	
	
The	tasking	version	has	a	similar	structure	to	the	
parallel	for	version,	spawning	tasks	inside	of	loops	and	
then	synchronizing	on	taskwait	instead	of	barriers.		
	
The	task	dependency	version	removes	the	
synchronizaAon	between	phases	as	well	as	between	
iteraAons,	as	Illustrated	by	diagram	1.	
	
LU	has	no	communicaAon	or	synchronizaAon	between	
blocks.	The	task	dependencies	simply	control	access	to	
the	matrix	so	only	one	thread	at	a	Ame	is	wriAng	to	it.	
	

Hardware	

Jacobi	Solver	
As	diagram	2	shows,	each	element	of	the	matrix	
depends	on	each	of	its	neighbors.	As	a	result,	
overwriAng	an	element	will	change	the	result	of	its	
neighbor,	so	a	second	matrix	is	typically	wriqen	to,	
and	then	swapped	with	the	original	matrix	at	the	end	
of	every	iteraAon.		
	
Each	version	of	Jacobi	divides	up	the	2D	matrix	into	
groups	of	whole	rows	instead	of	blocks.	This	reduces	
false	sharing	and	enables	very	sequenAal	access	of	
memory.		
	
Similar	to	LU,	the	tasking	version	is	similar	to	the	
parallel	for	version,	and	the	task	dependency	version	
removes	the	synchronizaAon	between	iteraAons.	

CoMD	
Data	in	CoMD	consists	of	atoms	in	3	dimensional	space,	where	each	atom	has	a	posiAon,	
velocity,	energy,	and	force.	The	3D	space	is	divided	into	boxes,	and	each	atom	is	placed	
into	a	box.	Each	iteraAon	is	a	Amestep	where	each	of	the	aqributes	is	recalculated	for	each	
atom,	and	then	atom	is	moved	to	its	corresponding	box,	if	it	leC	its	previous	box.	
	
The	majority	of	the	compute	Ame	is	spent	calculaAng	force	between	parAcles,	where	the	
tasking	version	has	one	task	for	calculaAng	forces	between	atoms	in	a	pair	of	boxes.	The	
worksharing	and	task	dependency	versions	both	divide	up	the	work	by	boxes,	calculaAng	
the	interacAons	with	all	of	its	neighbors.	
	

	
	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	
	
	
	
	
	
	 					

	
	
	 	
	

	 Cells	not	affecting	current	
cell	

	 Neighboring	Cells	
	 Current	cell	to	be	updated	
	 Buffer	Cells	

	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	

Jacobi	and	using	OpenMP	Tasks	to	Parallelize	Jacobi	Code	

OpenMP	Tasks	for	a	Single	Iteration	

	
Task1	
					.	
					.	
					.	
Task4	

.	.	.	

Old	Matrix	 New	Matrix	

Swap	Old	and	New	Matrix	after	each	Iteration	

.	.	.	

Cellnext	=0.2*(Cellnow	+	Σ	Neighbours)	

							Input																Output	

KNL	(From	the	CARL	NERSC	KNL	testbed)	has	64	cores,	each	with	4	
hardware	threads.	Two	cores	are	grouped	in	to	pairs	as	a	Ale	and	
share	1	MB	of	L2	cache.	There	is	no	L3	cache,	but	there	is	16	GB	of	
high	bandwidth	memory	that	can	be	configured	as	cache	or	
allocated	manually	in	different	modes.		
	
The	results	on	this	poster	use	the	quadflat	and	quadcache	
configuraAons.	The	cache	configuraAon	turns	the	MCDRAM	into	
cache	that	is	no	longer	programmable,	while	the	quadflat	
configuraAon	enables	the	use	of	memkind	or	numactl	to	more	
finely	control	how	memory	is	used.	

Fig	2.	Shows	the	performance	of	the	
different	approaches	on	Haswell	

Fig	3.	Shows	the	improvement		from	
allocaAng	in	high	bandwidth	memory	via	

numactl.	

Fig	4.	Shows	the	performance	gained	
from	allocaAng	the	matrix	in	columns	of	
blocks	in	place	of	a	single	allocaAon.	

Fig	6.	Shows	the	performance	gained	
from	combining	mulAple	blocks	into	a	
task	and	the	performance	gained	by	

combining	mulAple	blocks	and	iteraAons	
per	task.	

IntroducGon	
Most	shared	memory	programming	in	HPC	is	done	with	highly	synchronous	constructs	such	as	the	“parallel	
for”	in	OpenMP.	With	the	increasing	core	counts	and	non-uniformity	in	emerging	hardware,	a	more	
asynchronous	programming	model	is	needed.		
	
The	goal	of	this	summer	was	to	explore	OpenMP	tasks	on	the	Knights	Landing	(KNL)	hardware	that	will	be	used	
in	Cori	Phase	II	to	demonstrate	the	potenAal	benefits	of	an	asynchronous	programming	model.	This	is	done	
with	two	kernels,	LU	decomposiAon	and	an	iteraAve	Jacob	Kernel,	as	well	as	a	proxy	applicaAon,	CoMD1.		
	
For	each	of	these	applicaAons,	a	tasking	version	without	data	dependencies	was	developed	to	show	the	
performance	cost	of	moving	to	tasks.	Then	a	version	with	task	dependencies	shows	the	improvements	that	can	
be	gained	from	removing	unnecessary	synchronizaAon,	and	finally	several	opAmizaAons	on	the	task	
dependency	version	show	how	much	addiAonal	performance	can	be	gained.	
	
1	unopAmized	tasking	version	provided	by	Riyaz	Haquw	(UCLA)	and	Bronis	deSupinski	(LLNL)	

	

Diagram	1.	Shows	the	dependencies	between	blocks	in	the	LU	
Kernel.	

Diagram	2.	Shows	the	dependencies	between	blocks	in	the	Jacobi	
Kernel.	

Diagram	3.	Shows	the	
division	of	space	into	
boxes	and	the	atoms	
involved	in	a	single	

calculaAon	
	

CoMD	
With	CoMD,	the	iniAal	conversion	of	the	force	funcAon	to	
task	dependencies	improved	performance.	The	all-task-
dep	conversion	of	the	applicaAon	replaced	all	parallelism	
and	synchronizaAon	in	the	applicaAon	with	task	
dependencies,	including	serial	regions	with	data	
dependencies.	Combining	blocks	would	have	been	a	beqer	
first	opAmizaAon,	as	it	would	have	only	reduced	overhead	
where	the	full	conversion	introduced	too	much	overhead	
and	hurt	performance.		
	

Whole	rows	are	too	large	to	fit	in	the	L2	of	the	KNL,	so	the	
cache	reuse	does	not	improve.	Whereas	the	Haswell	
performance	more	than	doubles	due	to	to	the	rows	fixng	
into	the	very	large	L3	cache.	Further	implementaAon	work	
is	needed	on	an	iteraAon	combining	version	that	operates	
on	blocks	that	fit	inside	of	smaller	Caches.	

For	comparison,	Cori	Phase	1	nodes	have	
2	Haswell	processors	with	a	total	of	32	
cores,	2	hyperthreads	per	core.	Each	core	
has	256	KB	of	L2	cache,	and	each	
processor	has	40	MB	of	L3	cache.	
	

Fig	5.	Shows	how	much	the	size	of	data	
(possibly	mulAple	blocks)	that	each	task	

operates	on	varies	for	different	
implementaAons	and	matrix	sizes.	

	

Fig	7.	Shows	the	performance	of	the	different	
versions	of	Jacobi	

Fig	8.	Shows	the	performance	of	the	different	
versions	of	CoMD	


