- OpenFOAM: Computational Eluid Dynamics

1. Flow analysis of Motor Bike
and Car.

2. Gauss Siedel Solver used for
solving AXx = b.

3. Transform (L+ D + U)=x = b
=> (L+D)*x =b—U=x. Figure: Motor Bike CFD*

*Source: Openfoam tutorial

Gauss Siedel iteration : (L + D) * x"eW =p - U * x°ld

TATA CONSULTANCY SERVICES

The OpenFOAM®(Open Field Operation and Manipulation) CFD Toolbox
is a free, open source CFD software package which has a large user base

across most areas of engineering and science, from both commercial and
academic organizations.

Application domain: Computational Fluid Dynamics
Execution mode: Symmetric MPI, Cluster

The following tools were used in the analysis and optimization cycles:

- Intel vTune Analyzer, Intel Trace Analyzer and Collector, idb debugger, Intel compiler
parallelization reports

TATA CONSULTANCY SERVICES

- What I learned:

- Effective load distribution Xeon & Xeon Phi in symmetric mode give better performance. This is due to difference in CPU
frequency between Xeon:Xeon Phi and total number of cores present in both of them

- Reduction in neighboring communication in unstructured mesh between Xeon & Xeon Phi gives better performance
- IO penalty is high on Xeon Phi as compare to Xeon
- System tuning like Huge Page = 2MB, compiler flags gives signification improvements.

- What I recommend: Effective use of tools to diagnose performance problems.

- Most effective optimization: Vectorization Intrinsics

- Changes to get efficient vectorization and avoid compiler overhead due to VGATHER & VSCATTER instructions
- Unrolling

- Prefetching

- Explored decomposition algorithm change for weighted decomposition support

= Surprises: Oversubscription works better in native Xeon Phi mode when IO is turned off.

Compelling Performance :
- Haswell optimized : 164 s
- Haswell + Xeon Phi optimized : 119s

Runtime(secs) of Motorbike Case, 4.2M Workload

(lower is better)

600

Time in secs
o o (=] (=]
o o (=] o

[=]
o

(=]

530

~1.3X Speedup

337

Baseline Optimized
2 Socket Intel® Xeon® processor E5-2697v3 (Native) - 28 Cores

M Intel® Xeon Phi™ coprocessor 7120A (Native) - 60 Cores

2 Socket Intel® Xeon® processor E5-2697v3 + Intel® Xeon Phi™
coprocessor 7120A (Symmetric) - 24 + 60 Cores

AT CONSULTANCY SERVICEDS

(164/119 = 1.38 X)

- Competitive performance:

- There are no published
numbers for GPU's for
OpenFOAM benchmark
application.

. Results:

- 1.38 X Speedup due to
Xeon Phi addition w.r.t
Xeon optimized result

~ Issues with GaussSeideiSmootherLoop

for (register label celli=B; celli<nCells; ce111++)\\\\\\\\\\

{ . .
T T | Outer loop is not parall_ellzable
fStart = fEnd; because of dependencies
fEnd = ownStartPtrcelli + 1];

// Get the accumulated neighbour side Low trlp Count, on average ~4,
psii = bPrimePtricelli]; /' not good for vectorization

// Accumulate the owner product side

for (register label facei=fStart; facei<fEnd; facei++) Indirect Referencing .

{ o)
11 = upperptr[facei,@uptr[fa@/7) - Inefficient use of cacheline

} - Scatter/Gather overhead

// Finish psi for this cell
psii /= diagPtr[celli]; > Overhead of scalar “DIV”

operation inside loop

§i for this cell
cei<fEnd; facei++)

// Distribute the neighbour side using
for (register label facei=fStart;

{
(Ptr[uPtr[facell

}

= lowerPtr[facei]*psii; Unaligned data structures
throughout the application

psiPtrcelli] = psii;

Identify vector assembly overnhea

for (facei=fStart; facei<fEnd; facei++)

[

o

psii -= upperPtr[facel]*p51Ptr[uPtr[face1]], |
fvgather‘dpdq (/or~14 %zmml4,8), %k4, %zmml5 i’TL FLTARILI TacET 1Y ‘l’
vgatherdpdq (%ri13,%zmml11,8), %k1l, %zmml6]
vgatherdpsl (%rl3,%zmml0,4), %k3, %zmml4 By default : vectorized
vgather‘d?sl (%rlz,%zmm0,4),.%k%, %zmmll and unrolled by 4
.. (Multiple gathers, due to indirect reference,
unrolling and peel & remainder loops
\. g D ps) J These issues

The FOR loop overhead is high as it has only a
small trip count in most of the cases.

‘
Compiler performing reduction operation
seems costlier as visible in assembly.

Peel and remainder loops are introducing
overheads since trip count is < 8 for 99% of the
time.)

suggest that
manual
vectorization using
intrinsics might be
beneficia
-

Vtune profiling & ICC compiler

vec-report leads to bottleneck
identification

Baseline 486 By default vectorized

Intrinsic (vectorization) 186

Speedup 2.6 X

Baseline 221 By default non-vectorized
Baseline + #pragma ivdep 412 Enabling vectorization degrades performance
Intrinsic (vectorization) 128

Speedup 1.7 X

Vtune profiling & ICC compilef' vec-report/opt-report used for detailed

analysis

TATA CONSULTANCY SERVICES Note: Time taken from Vtune by aggregating assembly
eExperience certainty

Prefetching using Intrinsics : Vtune Snapshot

Baseline:

So. Cache Usage: Self

L.« Soure e R i Missesl L Ratio) Estimatest L
409

410 // Multiply the field by coefficients and add into the result

411 forAll(faceCells, elemI) 6.446s) 0 1.000 0.000
412 { |

413 result[faceCells[elemI]] -= coeffs[elemI]*scalarReceiveBuf [elemI]; 98,000,000 56.860
414 }

Optimized:

So. Cache Usage: Self

L.« el CPUTIme: Total ™) \isses L1 Hit Ratio Estimated Lat...
414 register const label len = faceCells.size();

415

416 #pragma noprefetch |
417 for (register label elemI=0; elemI<len; elemI++) 0.565s(0 1.000 0.000
418 { |

419 _mm_prefetch({char *)&result[faceCells[elemI+48]], MM HINT T1); 14,350,000 0.987 727.000
420 result[faceCells[eleml]] -= coeffs[elemI]*scalarReceiveBuf [elemI]; 139,300,000 195.071
421 _mm_prefetch((char *)&result[faceCells[elemI+8]], MM HINT T6); 35,700,000 0.993 165.500
422

423 _mm_prefetch((char *)&coeffs[elemI+64], MM HINT T1); 5.541sf§ 10,850,000 0.987 0.000
424 _mm_prefetch((char *)&coeffs[elemI+16], MM HINT T6); 3.901s 3,850,000 0.997 0.000
425

426 _mm_prefetch((char *)&scalarReceiveBuf [elemI+64], MM HINT T1); 4.523sf) 0 1.000 0.000
427 _mm_prefetch({char *)&scalarReceiveBuf [elemI+16], MM HINT T6); 3.845s() 5,250,000 0.996 0.000
428 }

TATA CONSULTANCY SERVICES

Experience certainty.

__Huge Pages improvement via libnugetinisiibrary.

Huge memory pages (2MB) are often necessary for memory allocations on the
coprocessor. With 2IMB pages, TLB misses and page faults may be reduced, and there is
_a lower allocation cost.,

Without huge pages vs huge pages : difference analysis using VTune

Function / Call Stack CPU Time: Differencew CPU Time: rOO5ge CPU Time: rO04ge
> [libOpenFOAM.so] | ss1ssiss | ssississ | |
D func@oxe7325 4912.119s 4912.119s (N
D fvmlinux] < 911.528s] ; 2354.130s (D 1442.602s @
Hardware Metrics
Clockticks: 8,319,150,000,000-9,175,320,000,000 = -856,169,999,999
Instructions Retired: 3,033,800,000,000 - 3,247,510,000,000 =-213,709,999,999
CPI Rate: 2.742 - 2.825 = -0.083
L1 Misses: 56,477,050,000 - 49,516,600,000 = 6,960,450,000
L1 Hit Ratio: 0.956 - 0.966 = -0.010
Estimated Latency Impact: 98.744 -137.408 = -38.664
L1 TLB Miss Ratio: 0.010 - 0.019 = -0.010
L2 TLB Miss Ratio: Not changed, 0.000
L1 TLB Misses per L2 TLB Miss: < _774.667 -422.932 = 351.735 _ 5
Vectorization Intensity: 2.750-2.878 =-0.129

L1 Compute to Data Access Ratio: < 1.768 - 2.145 = -0.3D
L2 Compute to Data Access Ratio: 46.503 - 81.565 = -35.06

Xeon Phi Optimization Break-up in % of Total Improvements (341 secs)

Runtime(secs) of Motorbike Case, 4.2M Workload

(lower is better)

ime in secs

T
=
)
8

N A‘,.

~1.3X Speedup

%

164 189

119

Baseline Optimized
W 2 Socket Intel® Xeon® processor E5-2697v3 (Native) - 28 Cores

m Intel® Xeon Phi™ coprocessor 7120A (Native) - 60 Cores

2 Socket Intel® Xeon® processor E5-2697v3 + Intel® Xeon Phi™
coprocessor 7120A (Symmetric) - 24 + 60 Cores

= Compiler Flags

m Prefetching

W Vectorization

m Huge Pages

B Renumber Mesh

M Scaling with 120 ranks
Loop Unrolling

= Miscellaneous

Optimization gains depend on the order in which

they are applied

T h a n k YO u ! Promise what we deliver.

Deliver what we promise. That's

certaintyss

TATA CONSULTANCY SERVICES 11

Experience certainty.

Functions improved — Vtune counters

Optimized

L1 Misses

L1 Hit Ratio L1 Misses L1 Hit ratio

GaussSeidelSmoother::smooth 6194650000 0.963597 3486700000 0.9705

IduMatrix::Amul 2143750000 0.958503 1422050000 0.979037
IduMatrix::sumA 566300000 0.958976 476700000 0.984022
IduMatrix::sumMagOffDiag 266000000 0.967213 301350000 0.980977
GAMGSolver::agglomerateMatrix 280000000 0.937792 110950000 0.98937
fvc::surfaceSum 154000000 0.966514 70350000 0.975185

processorFvPatchField::updateint

. 616000000 0.92781 91700000 0.978203
erfaceMatrix

processorGAMGlInterfaceField::up

datelnterfaceMatrix 700000000 0.952449 143850000 97778

g

L1 hit ratio has improved throughout, and L1 misses have decreased.

TATA CON

