Valgrind a
Valgrind4

nd

A ————

[REOSS ~0- ——" : = B Woo-Sun Yang
- ‘[\,lgvembem, 2024' AT =T B User Engagement Group, NERSC

Introduction

e \Valgrind is a suite of tools for debugging, profiling and usage analysis
o Memcheck: memory error and leak detector
Cachegrind: measures the number of instructions for profiling
Callgrind: similar to Cachegrind but records the call history
among functions
Massif: a heap profiler
DHAT: a dynamic heap analysis tool
Helgrind, DRD: pthreads error detectors
And more...
e Works for C, C++ and Fortran
e Tools add their own instrumentation code at runtime
o Make it run slower

O O

O O O O

Rl BERKELEY LAB (@) ENERGY o7

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Introduction

e Valgrind is a suite of tools for debugging, profiling and usage analysis
Today {o Memcheck: memory error and leak detector
(o Cachegrind: measures the number of instructions for profiling
. Callgrind: similar to Cachegrind but records the call history
training? among functions
o Massif: a heap profiler
o DHAT: a dynamic heap analysis tool
‘o Helgrind, DRD: pthreads error detectors
o And more...
e Works for C, C++ and Fortran
e Tools add their own instrumentation code at runtime
o Make it run slower

ngRsc ;

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Office of

r’%i U.S. DEPARTMENT OF
)) ENERGY Science

o Use Valgrind

e Build your code with -g flag

o Memcheck: compile with no optimization (e.g., -00)

e Command to use valgrind:

valgrind [--tool=memcheck] <other valgrind-options>
prog <prog-options]

:*«‘ EEEEEEEEEEEEEE Office of
 NERSC 4 Bl pereeLey LaB @ ENERGY O
oooooooooooooooooooooooooooooooooo -

Memcheck: a Memory Error Detector

e Types of memory errors Memcheck can help find:
o Qut-of-bound access of heap array
o Accessing uninitialized memory
o Incorrect freeing of heap memory (double-freeing heap memory,
mismatched use of malloc/new/new[] VS
freeldeleteldelete[])
o Qverlapping src and dst pointers in memcpy
o Misaligned memory allocation
o Memory leaks
e Memcheck uses 2 extra blocks for bookkeeping state of a memory block
o V (valid-value) bits: Values defined?
o A (valid-address) bits: Accessible?
o Each byte in memory has 8 V bits and a single A bit

m 5

Office of

f‘;“”'“‘&% U.S. DEPARTMENT OF
EN ERGY Science

Memcheck Invocation

valgrind [--tool=memcheck] <other valgrind-options> \
prog <prog-options]
e Can omit --tool=memcheck since this is the default tool
e Some common options for Memcheck:
0 —--leak—-check=<no|summary|yes|full>
m Ifsetto full or yes, each individual leak will be shown in detail
O -—-—-track-origins=<yes|no>
m Check whether to track the origin of uninitialized value
m If originating from a heap block, shows where the block was allocated
O —-suppressions=<filename>

m File from which to read descriptions of errors to suppress

Office of

&l BERKELEY LAB &) ENERGY cneo

Bringing Science Solutions to the World

Memcheck - Finding uninitialized values

e An uninitialized-value use error is reported when your program uses
a value which hasn’t been defined

o Inthe example code, x is not initialized to a value, yet it is used for a

comparison

$ cat -n manuell.c

5 1int x;

6

7 if (x==0xCAFEBABE)

8

9 printf ("x = %d\n", 99);
10 }
11 else
12 {
13 printf ("x = %d\n", 88);
14 }

$ gcc -g -00 -o manuell manuell.c
$ valgrind ./manuell

==1018824== Conditional jump or move depends on

uninitialised wvalue(s)
==1018824== at 0x400525: main (manuell.c:7)
7 Zzi] BERKELEY LAB 2 e

5;;‘3’3‘"5%\‘; U.S. DEPARTMENT OF
&) ENERGY scionco

Bringing Science Solutions to the World

Memcheck - Detecting illegal frees

e Incorrect freeing of heap memory

e Code attempting to free the memory block pointed to by p
multiple times in the for-loop

$ cat -n doublefree.c

7 int i;

8 void* p = malloc(177);
9 for (i = 0; 1 < 2; i++)
0

1 free (p);

$ gcc -g -00 -o doubletree
doubletree.c

$ valgrind ./doublefree

==1064682== Invalid free() / delete / delete[] / realloc()

==1064682== at Ox4EO0O80EB: free (in
/usr/lib/valgrind/vgpreload memcheck-amd64-1linux.so)
==1064682== by 0x400580: main (doublefree.c:10)
==1064682== Address 0x523f040 is 0 bytes inside a block of
size 177 free'd
==1064682== at Ox4EO80EB: free (in
/usr/lib/valgrind/vgpreload memcheck-amd64-1linux.so)
==1064682== by 0x400580: main (doublefree.c:10)
==1064682== Block was alloc'd at
==1064682== at 0x4E056A4: malloc (in
/usr/lib/valgrind/vgpreload memcheck-amd64-1linux.so)
==1064682== by 0x400567: main (doublefree.c:8)

8 P GERKELEY LAB U.s. DEPARTMENT OF | Office of

EN ERGY Science

Bringing Science Solutions to the World

Memcheck - Detecting memory leaks

e Memory leak: When a program dynamically allocates a
block of memory but doesn’t free it after its use, the block
cannot be reused, thus reducing available memory

e If a function with a memory leak is called repeatedly,
available memory becomes less and less, reducing
capability of the app

Office of

s;\,‘y'\“‘ﬁ‘ U.S. DEPARTMENT OF
(ENERGY cience

Memory leak types reported by Memcheck (1)

e Valgrind uses the terms “start pointer” and “interior pointer” when
distinguishing different memory leak types
e A start pointer points to the start of the allocated block
e An interior pointer points to the middle of the block
o Started as a start pointer, a pointer has been moved along
o Sometimes an allocated block contains info about the actual
data memory block (e.g., size), followed by the data block

Office of

£ZERD, U-S. DEPARTMENT OF
£)
ENERG Y cience

Memory leak types reported by Memcheck (2)

Still reachable
o A start pointer to the block is found - a memory leak but the block still reachable
o RRR ----- > AAA or RRR ----- > AAA ----- > BBB
= RRR: a well-defined pointer available at program exit
= AAA & BBB: allocated memory blocks
Definitely lost
o No pointer to the block can be found
o RRR--X--> AAA
Indirectly lost
o Ablock is lost because all the blocks that point to it are lost
o RRR --X--> AAA ----- > BBB
Possibly lost

o Blocks pointed to by all interior pointers directly or indirectly (as their correct state can
be dependent on the context in the info part)

o Can optionally activate heuristics by providing a context with
--leak-check-heuristics=(stdstring|length64|newarray|multipleinher
itance|all)

https://developers.redhat.com/blog/2021/04/23/valgrind-memcheck-different-ways-to-lose- vo p

ur-memory (for example codes)

https://developers.redhat.com/blog/2021/04/23/valgrind-memcheck-different-ways-to-lose-your-memory
https://developers.redhat.com/blog/2021/04/23/valgrind-memcheck-different-ways-to-lose-your-memory

Memcheck - Memory leak example (1)

e In the example code, the memory block pointed to by x is not freed
e Also, the code attempts to make out-of-bound memory access

$ cat memoryleak.c

3
4
5
6
7
8

9
10
11

12
13

void f (void)
{
int* x = malloc (10 * sizeof(int));
x[10] = 0; // problem 1: heap block overrun
} // problem 2: memory leak -- x not freed

int main (void)
{

£QO)>;

return 0O;

}

$ gcec -g -00 -o memoryleak memoryleak.c

Office of

1 2 f‘[{;éﬁﬁ: U.S. DEPARTMENT OF
G ENERGY science

&Rl BERKELEY LAB

Bringing Science Solutions to the World

Memcheck - Memory leak example

$ valgrind --leak-check=full ./memoryleak

==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==
==1127011==

= |

Invalid write of size 4
at 0x400534: f (memoryleak.c:6)
by 0x400545: main (memoryleak.c:11)
Address 0x523f068 is 0 bytes after a block of size 40 alloc'd
at 0x4E056A4: malloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-linux.so)
by 0x400527: f (memoryleak.c:5)
by 0x400545: main (memoryleak.c:11)

HEAP SUMMARY:
in use at exit: 40 bytes in 1 blocks
total heap usage: 1 allocs, 0 frees, 40 bytes allocated

40 bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x4E056A4: malloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-linux.so)
by 0x400527: £ (memoryleak.c:5)
by 0x400545: main (memoryleak.c:11)

LEAK SUMMARY:
definitely lost: 40 bytes in 1 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

For lists of detected and suppressed errors, rerun with: -s
ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

13 il BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Office of

EN ERGY Science

Simple MPI code to run with Valgrind

$ cat -n memoryleak mpi.c

4 void f (void)
S
6 int* x = malloc (25000 * sizeof (int));
7 x[25000] = O; // problem 1: heap block overrun
8 1} // problem 2: memory leak - x not freed
9
10 int main(int argc, char **argv)
11 {
12 int nproc, me;
13 MPI Init (&argc, &argv);
16 £0);
5 Bl cevweLey e @ ENERSY ST

Bringing Science Solutions to the World

Running MPI codes with Valgrind

Direct Valgrind output to a separate file for each MPI task,
using --log-file=. .. flag
Use %p for PID or $g{some env var}

o %gq{SLURM PROCID} for MPI rank

$ srun -n 8 valgrind --leak-check=yes
--log-file=mc_%q{SLURM JOB ID}.%q{SLURM PROCID}.out ./a.out

$ 1s -1

- rTwW——————— 1 elvis elvis 5481 Jun 23 08:56 mc 27100535.0.out
-rw——————-— 1 elvis elvis 5481 Jun 23 08:56 mc 27100535.1.out
—rw——————-— 1 elvis elvis 5481 Jun 23 08:56 mc 27100535.2.out

Memcheck’'s MPI wrappers (for checking validity of MPI

function args) not working W|th Cray MPI - tested with 3.23.0

2l BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Office of

\V EN ERGY Science

Suppressing errors (1)

e Memcheck occasionally produces false positives or errors
In the system library codes that you cannot change

e (Can suppress them to focus on your own code

e Use --gen-suppressions=all to see what can be
suppressed and create a suppression file for such errors

e Then use the suppression file with the
--suppressions=<filename> flag

e Valgrind uses the default suppression file
SPREFIX/1lib/valgrind/default. supp

Suppressing errors (2)

$ srun -n 1 valgrind --leak-check=full $ srun -n 8 valgrind --leak-check=full

-—-gen-suppressions=all --log-file=errors --suppressions=my.supp

./memoryleak_mpi --log-file=ml.%q{SLURM JOB ID}.%q{SLURM PROCID}.
out ./memoryleak mpi

$ grep -v -e ’'~==’ errors > my.supp
$ vi my.supp # Edit by hand $ cat ml.32034480.0.0ut

$ cat my.supp ==544049== LEAK SUMMARY:

{

| Name | ==544049== EFERROR SUMMARY: 18 errors from 6 contexts

mysupp3 (suppressed: 7 from 1)

Memcheck: Cond | <tool>:<suppression type> |

fun:add entry

fun:darshan get exe and mounts Calling
context

fun:main

“fun”: function
“...”. frame-level wildcard
(zero or more frames)

S. DEPARTMENT OF Offlce Of

EN ERGY Science

&Rl BERKELEY LAB

Bringing Science Solutions to the World

Valgrind4hpc

e \Valgrind4hpc is a HPE tool that aggregates duplicate
Valgrind messages across MPI processes
o Avoid duplication of messages and individual output files
o Suppress known errors in HPE software
m SVALGRIND4HPC BASEDIR/share/suppressions/
{known,libmpigh_cray,libpmi,misc}.supp
e The tool works only for
o Memcheck
o Helgrind
o DRD

Office of

i"f;}“\a(? U.S. DEPARTMENT OF
ENERGY Science

Valgrind4hpc - How to run

e Use the commands in a batch session

$ module load valgrind4hpc
$ valgrind4hpc -n 8 --valgrind-args="--leak-check=yes”
./memoryleak mpi

o -n:the number of MPI tasks
o Other srun flags (e.g., —¢ 32) are specified with the

--launcher-args=... (or-1 ...)
o Valgrind arguments such as —--1eak-check=yes are passed with
--valgrind-args=... (Or-v ...)

Bl cevveLev Lae @ ENERGY 20

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

NEF 19

Valgrind4hpc output

$ valgrind4hpc -n 8 —--valgrind-args="
--leak-check=yes” ./memoryleak mpi

RANKS: <0..7>

Invalid write of size 4

at £ (in memoryleak mpi.c:7)

by main (in memoryleak mpi.c:16)
Address is 0 bytes after a block of size 40
alloc'd

at malloc (in vg replace malloc.c:393)

by f (in memoryleak mpi.c:6)

by main (in memoryleak mpi.c:16)

RANKS: <0..7>

40 bytes in 1 blocks are definitely lost
at malloc (in vg replace malloc.c:393)
by f (in memoryleak mpi.c:6)
by main (in memoryleak mpi.c:16)

W

20

RANKS: <0..7>

HEAP SUMMARY:

in use at exit: 40 bytes in 1 blocks

LEAK SUMMARY:

definitely lost: 40 bytes in 1 blocks
indirectly lost: 0 bytes in 0 blocks

possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks

ERROR SUMMARY: 1 errors from 1 contexts

(suppressed 601)

&Rl BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Office of

EN ERGY Science

Heap usage from execution trees (1)

e An execution tree (“xtree”) is made of a set of stack traces, each stack trace is
associated with some resource consumptions or event counts
o Typically to show a graphical or textual representation of the heap usage
e Get output in Callgrind or Massif format and use their tool
(callgrind annotate andms print) to turnitinto an annotated heap usage
profiling result

S module rm darshan

$ srun -n 8 valgrind --xtree-memory=full
-—-xXtree-memory-file=xtmemory.%sq{SLURM PROCID}.kcg
./memoryleak mpi Y

$ callgrind annotate --inclusive=yes 'kC?&Faﬁfmd
--sort=curB:100, curBk:100 xtmemory.0.kcg -ms: Vass|

e Or'valgrinddhpc -n 8 -v "--xtree-memory=full” -o
xtmemory.kcg ./memoryleak mpi’(separate files, xtmemory.kcg.<pid>)

A A2 W, U-S. DEPARTMENT OF Office of
NGF 21 &Rl BERKELE © .
: BringngSﬁE IS_olutKXto%eAWOEi ’)\\ E N E RGY Science

Heap usage from execution trees (2)

195,957
100,000
95,957
95,957
95,109

(100.0%)
(51.03%)
(48.97%)
(48.97%)
(48.54%)

602 (100.0%) 1,911,132 (98.87%) 758

1 (0.17%) 100,000 (5.17%) 1
601 (99.83%) 1,815,312 (93.91%) 762
601 (99.83%) 1,815,292 (93.91%) 761
597 (99.17%) 123,965 (6.41%) 629

curB: current # of Bytes allocated
curBk: current # of Blocks allocated
totB: total allocated Bytes

totBk: total allocated Blocks
totFdB: total Freed Bytes
totFdBk: total Freed Blocks

22

1,719,355
0

42,727
42,727
28,856

(98.98%)

(2.46%)
(2.46%)
(1.66%)

totFdBk

163
0
95
95
32

(87

(50
(50
(17

.17%)

.80%)
.80%)
.11%)

&Rl BERKELEY LAB

Bringing Science Solutions to the World

PROGRAM TOTALS

file:function

memoryleak mpi.c:main
memoryleak mpi.c:f
UnknownFile???:MPIR Init thread
UnknownFile???:PMPI Init
UnknownFile???:MPIR T env_init

U.S. DEPARTMENT OF Offlce Of

© ENERGY scionce

Heap usage from execution trees (3

curB curBk totB totBk

...<snipped>...

100,000 (51.03%) 1 (0.17%) 100,000 (5.17%) 1 (0.13%)

95,957 (48.97%) 601 (99.83%) 1,811,132 (93.70%) 757 (95.94%)

100,000 (51.03%) 1 (0.17%) 100,000 (5.17%) 1 (0.13%)
0 0 0 0

totFdB totFdBk
void f (void)
. . {
0 0 int* x = malloc (25000 * sizeof(int));
x[25000] = O; // problem 1: heap block overrun
} // problem 2: memory leak -- x not freed

int main(int argc, char **argv)
{
. . int nproc, me;
42,727 (2.46%) 93 (49.73%) MPI Init(&argc, &argv);
MPI Comm_ size (MPI_COMM WORLD, &nproc);
. . MPI_ Comm_rank (MPI_COMM WORLD, &me);
0 0 £();

1,676,628 (96.52%) 70 (37.43%) MPI Finalize();
return O;
}

U.S. DEPARTMENT OF Office of

23 \H BERKELEY LAB ENERGY Science

Bringing Science Solutions to the World

Memory leaks from execution trees

e Similarly for memory leaks:
$ module rm darshan

$ srun -n 8 valgrind --xtree-leak=yes
-—-Xtree-leak-file=xtleak.%$gq{SLURM PROCID}.kcg
./memoryleak mpi

$ callgrind annotate --inclusive=yes
--sort=RB:100,PB:100,IB:100,DB:100 xtleak.0.kcg

e Or'valgrinddhpc -n 8 -v ”"--xtree-leak=yes” -o xtleak.kcg
./memoryleak mpi’

RB: Reachable Bytes

PB: Possibly lost Bytes
IB: Indirectly lost Bytes
DB: Definitely lost Bytes

@l BERKELEY LAB @) ENERGY 2

Bringing Science Solutions to the World

Hands-on

e Multiple Valgrind versions on Perlmutter

© /usr/bin/valgrind: v3.18.1

o Valgrind modules: the latest - valgrind/3.23.0

o Valgrind4hpc's

SVALGRIND4HPC BASEDIR/bin/valgrind:v3.20.0

e Can use any one of these for today’s exercises

o Training materials prepared with /usr/bin/valgrind
e We may retire the Valgrind modules in the future

Office of

Sf,‘}'\“‘? U.S. DEPARTMENT OF
& ENERGY sconce

Hands-on (cont'd)

e Exercise materials:
S git clone https://github.com/NERSC/debugging
S cd debugging/Valgrind/memcheck

e Follow the instructions in README.md for the following codes
o manuell.c: Valgrind exercise
o doublefree.c: Valgrind exercise
o memoryleak.c: Valgrind exercise
o memoryleak mpi.c: exercises on Valgrind, error suppressions, valgrind4hpc
and heap usage/leak with xtree

e Optionally you can try the Fortran codes in the fortran memory
directory, too

Office of

s;\,‘y'\“‘x“ U.S. DEPARTMENT OF
x ENERGY Science

il BERKELEY LAB

lutions to the World

