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Performance Models and Tools
§ Identify performance bottlenecks
§ Motivate software optimizations
§ Determine when we’re done optimizing

• Assess performance relative to machine capabilities
• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures
• Sets realistic expectations on performance for future procurements
• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.

3



Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies 

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effectively latency hiding has resulted in a shift from a latency-limited 
computing regime to a throughput-limited computing regime
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Roofline Model
§ The Roofline Model is a throughput-

oriented performance model…
• Tracks rates not time
• Augmented with Little’s Law

(concurrency = latency*bandwidth) 
• Independent of ISA and architecture

(applies to CPUs, GPUs, Google TPUs1, etc…)

§ Three Components:
• Machine Characterization

(realistic performance potential of the system)
• Application Execution Monitoring
• Theoretical Application Bounds

(how well could my app perform with perfect 
compilers, caches, overlap, …)

51Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline



(DRAM) Roofline
§ One could hope to always attain peak 

performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Consider idealized processor/caches
§ Plot the performance bound using 

Arithmetic Intensity (AI) as the x-axis…
• AI = Flops / Bytes presented to DRAM 
• Attainable Flop/s = min( peak Flop/s,  AI * peak GB/s ) 
• Log-log makes it easy to doodle, extrapolate 

performance along Moore’s Law, etc…
• Kernels with AI less than machine balance are ultimately 

DRAM bound (we’ll refine this later…)
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Roofline Example #1
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate
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Gflop/s ≤ AI * DRAM GB/s

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44



DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Real processors have multiple 

levels of memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ We may measure a bandwidth 
and define an AI for each level
• A given application / kernel / loop nest will thus have 

multiple AI’s and multiple bounds
• A kernel could be DDR-limited…
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Hierarchical Roofline
§ Real processors have multiple 

levels of memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ We may measure a bandwidth 
and define an AI for each level
• A given application / kernel / loop nest will thus have 

multiple AI’s and multiple bounds
• A kernel could be DDR-limited…
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MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 

Hierarchical Roofline
§ Real processors have multiple 

levels of memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ We may measure a bandwidth 
and define an AI for each level
• A given application / kernel / loop nest will thus have 

multiple AI’s and multiple bounds
• A kernel could be DDR-limited…
• or MCDRAM-limited depending on relative 

bandwidths and AI’s
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Hierarchical Roofline
§ Real processors have multiple 

levels of memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ We may measure a bandwidth 
and define an AI for each level
• A given application / kernel / loop nest will thus have 

multiple AI’s and multiple bounds
• A kernel could be DDR-limited…
• or MCDRAM-limited depending on relative 

bandwidths and AI’s
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Data, Instruction, Thread-Level Parallelism…
§ We have assumed one can attain 

peak flops with high locality.
§ In reality, this is premised on 

sufficient…
• Use special instructions (e.g. fused multiply-add)
• Vectorization (16 flops per instruction)
• unrolling, out-of-order execution (hide FPU latency)
• OpenMP across multiple cores

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from memory-bound to 

compute-bound
• n.b. in reality, DRAM bandwidth is often tied to DLP and 

TLP (single core can’t saturate BW w/scalar code)
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Prior Roofline Efforts



Basic Roofline Modeling
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Machine Characterization
Potential of my target system
• How does my system respond to a lack of 

FMA, DLP, ILP, TLP?
• How does my system respond to reduced AI 

(i.e. memory/cache bandwidth)?
• How does my system respond to NUMA, 

strided, or random memory access patterns?
• …

Application Instrumentation
Properties of my app’s execution
• What is my app/kernel’s actual AI?
• How does AI vary with memory level ?
• How well does my app vectorize?
• Does my app use FMA?
• ...



Machine Characterization for Roofline
§ How fast is my system?
§ Challenges:

• Too many systems; new ones each year
• Voluminous documentation on each 
• Real performance often less than 

“Marketing Numbers”
• Compilers can “give up” on big loops

16
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ Empirical Roofline Toolkit (ERT)
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs
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Application Instrumentation Can Be Hard…
✘ Flop Counters can be broken/missing in production processors
✘ Vectorization/Masking can complicate counting Flop’s
✘ Counting Loads and Stores is a poor proxy for DRAM data movement 

as they don’t capture cache reuse
✘ Counting L1 misses is a poor proxy for data movement as they don’t 

account for speculative HW stream prefetching.
✘ DRAM counters (Uncore PMU) might be accurate, but are privileged 

and thus nominally inaccessible in user mode
✘ OS/kernel changes must be approved by vendor (e.g. Cray) and the 

center (e.g. NERSC)
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Initial NERSC Application Roofline Efforts
§ Goal: Characterize applications running on 

NERSC production systems (Cori/KNL,HSW)
§ Limited by available tools/permissions on Cori…

• Used Intel SDE (Pin binary instrumentation + 
emulation) to create software Flop counters

• Used Intel VTune performance tool (NERSC/Cray 
approved) to access uncore counters

§ Produced accurate measurement of Flop’s (HSW) 
and DRAM data movement (HSW and KNL)

§ Used by NESAP (NERSC KNL application 
readiness project) to characterize apps on Cori…
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http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)



Initial Roofline Analysis of NESAP Codes
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Additional Experimentation with LIKWID
§ LIKWID provides easy to use wrappers 

for measuring performance counters…
ü Works on NERSC production systems
ü Minimal overhead (<1%)
ü Scalable in distributed memory
ü Fast, high-level characterization at scale
ü Regions of interest can be manually marked and profiled
✘ No detailed timing breakdown or optimization advice
✘ Limited by quality of underlying performance 

counters (garbage in/garbage out)
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Need a integrated solution…
§ Having to compose VTune, SDE, and graphing tools to generate 

Roofline models worked correctly and benefitted NESAP, but …
✘ forced users to learn/run multiple tools
✘ forced users to instrument routines of interest in their application
✘ forced users to manually parse/compose/graph the output
✘ lacked integration with compiler/debugger/disassembly
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§ LIKWID was much easier to use, faster, and more scalable, but …
✘ forces users to manually instrument routines of interest
✘ forces users to manually parse/compose/graph the output
✘ lacks integration with compiler/debugger/disassembly

§ CRD/NERSC wanted a more integrated solution for Roofline…



Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function

ü Automatically benchmarks target system 
(calculates ceilings)

ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Full AVX-512 integration with mask 

values
ü Full integration with existing Advisor 

capabilities

22

Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..

1Technology Preview, not in official product roadmap so far.
This version will be made available during the hands-on component of this tutorial.



Background: 
Hierarchical Roofline vs.
Cache-Aware Roofline



There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009 
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel
• Performance bound is the minimum of flops and the memory intercepts

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)
• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI
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§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor
• Evaluation version of DRAM-only Roofline (PMU) has also been integrated into Intel Advisor
• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Technology Preview, not in official product roadmap so far.
This version will be made available during the hands-on component of this tutorial.
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Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1 
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by 
lower cache levels

§ Memory/Cache/Locality effects are 
observed as decreased performance

§ Memory/Cache/Locality effects are 
observed as decreased AI

§ Requires static analysis or binary 
instrumentation to measure AI

§ Requires performance counters or 
cache simulator to correctly measure AI



Example: STREAM
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with 

iteration i+delta for any delta. 

§ … leads to a DRAM AI equal to 
the L1 AI



Example: STREAM
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Small Problem)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the 

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than 
the L1 AI



Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Large Problem)

30

Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline
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Questions?


