Towards Physics-Informed Deep Learning for Turbulent Flow Prediction

Rui Wang UCSD

Karthik Kashinath NERSC

Mustafa Mustafa NERSC

Adrian Albert NERSC

Rose Yu UCSD

Towards Physics-informed Deep Learning for Turbulent Flow Prediction

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, Rose Yu. To appear in ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2020

Introduction

- Turbulence modeling: fundamental task in science
- No analytical theory to predict the evolution
- Computational prohibitive to simulate

Rayleigh-Bénard convection¹

1. Visualization and simulation by: Erwin P. van der Poel & Rodolfo Ostilla Mónico.

Related Work

- Turbulence Modeling [Ling et al. 2016, Raissi et al. 2017, Fang et al. 2018, Kim and Lee 2019, Mohan et al. 2019, Wu et al. 2019]
 - no external force, spatial modeling
 - require boundary condition inputs
- Fluid Animation [Tompson et al. 2017, Chu and Thuerey, 2017, Xie et al. 2018, Thuerey et al. 2019]
 - emphasize simulation realism
 - lack physical interpretation
- Video Prediction [Wang et al. 2015, Finn et al. 2016, Xue et al. 2016]
 - complex noisy data
 - unknown physical processes

Governing Equations

• Navier-Stokes equations: describe the motion of viscous fluids

• Variables velocity $\mathbf{w} = (u, v)$ pressure ptemperature T density ρ_0 force f

continuity
$$\nabla \cdot \mathbf{w} = 0$$

momentum $\frac{\partial \mathbf{w}}{\partial t} + (\mathbf{w} \cdot \nabla)\mathbf{w} = -\frac{1}{\rho_0} \nabla p + \nu \nabla^2 \mathbf{w} + f$
energy $\frac{\partial T}{\partial t} + (\mathbf{w} \cdot \nabla)T = \kappa \nabla^2 T$

Hybrid Learning Framework

- Reynolds Averaging (RANS) $\mathbf{w}(\mathbf{x}, t) = \mathbf{\bar{w}}(\mathbf{x}, t) + \mathbf{w}'(\mathbf{x}, t)$ $\mathbf{\bar{w}}(\mathbf{x}, t) = \frac{1}{T} \int_{t-T}^{t} G(s) \mathbf{w}(\mathbf{x}, s) ds$
- Large Eddie Simulation (LES) $\mathbf{w}(\mathbf{x}, t) = \tilde{\mathbf{w}}(\mathbf{x}, t) + \mathbf{w}'(\mathbf{x}, t)$ $\tilde{\mathbf{w}}(\mathbf{x}, t) = \int G(\mathbf{x} \mid \xi) \mathbf{w}(\xi, t) d\xi$
- RANS-LES Coupling Spatial Filter

$$\mathbf{w}^*(\mathbf{x}, \mathbf{t}) = G_1(\mathbf{w}) = \sum_{\xi} G_1(\mathbf{x} \mid \xi) \mathbf{w}(\xi, t)$$

$$\bar{\mathbf{w}}(\mathbf{x}, \mathbf{t}) = G_2(\mathbf{w}^*) = \frac{1}{T} \sum_{s=t-T}^{t} G_2(s) \mathbf{w}^*(\mathbf{x}, s)$$

Turbulent-Flow Net

- Multi-scale spectral decomposition with **spatial** and **temporal** filters
- Unifying CFD techniques (RANS-LES coupling) and deep generative models
- Each encoder-decoder can be viewed as a U-net without duplicate layers and middle layer.

Data Description

- RBC simulation with Prandtl number 0.71 and Reynolds number 2.5 x e8
- ~10k sequences, spatial resolution 64x64, time length 90
- 60 time step ahead prediction, results averaged over three runs

Prediction Performance

- TF-Net consistently outperforms baselines on prediction RMSE
- Faster than Lattice Boltzmann method (LBM) by 2X

Turbulent Kinetic Energy

- TF-net predictions are closest to the target w.r.t. kinetic energy
- Video forward predictions methods (e.g. Unet, ConvLSTM) cannot capture physical properties

Prediction Visualization

Ablation Study

T+1

