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Introduction
• Turbulence modeling: fundamental task in science


• No analytical theory to predict the evolution


• Computational prohibitive to simulate

Rayleigh-Bénard convection1

1. Visualization and simulation by: Erwin P. van der Poel & Rodolfo Ostilla Mónico.
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Related Work
• Turbulence Modeling [Ling et al. 2016, Raissi et al. 2017, Fang et 

al. 2018, Kim and Lee 2019, Mohan et al. 2019, Wu et al. 2019]

• no external force, spatial modeling

• require boundary condition inputs

• Fluid Animation [Tompson et al. 2017, Chu and Thuerey, 
2017, Xie et al. 2018, Thuerey et al. 2019]

• emphasize simulation realism 

• lack physical interpretation

• Video Prediction [Wang et al. 2015, Finn et al. 2016, Xue et al. 2016]

• complex noisy data 

• unknown physical processes 



Governing Equations
• Navier-Stokes equations: describe the motion of viscous fluids

▿ ⋅ w = 0continuity
∂w
∂t

+ (w ⋅ ▿ )w = −
1
ρ0

▿ p + ν ▿2 w + fmomentum

∂T
∂t

+ (w ⋅ ▿ )T = κ ▿2 Tenergy

w = (u, v)velocity pressure p
temperatureT density ρ0 force f

• Variables



• RANS-LES Coupling

w̄(x, t) = G2(w*) =
1
T

t

∑
s=t−T

G2(s)w*(x, s)

w*(x, t) = G1(w) = ∑
ξ

G1(x |ξ)w(ξ, t)

Hybrid Learning Framework

• Large Eddie Simulation (LES)

w̃(x, t) = ∫ G(x |ξ)w(ξ, t)dξ

w(x, t) = w̃(x, t) + w′ (x, t)

• Reynolds Averaging (RANS)
w(x, t) = w̄(x, t) + w′ (x, t)

w̄(x, t) =
1
T ∫

t

t−T
G(s)w(x, s)ds

w = w̄ + w̃
w*

+ w′ 

Spatial Filter

Temporal Filter



Turbulent-Flow Net

w = w̄ + w̃ + w′ 

• Multi-scale spectral decomposition with spatial and temporal filters

• Unifying CFD techniques (RANS-LES coupling) and deep generative 

models 

• Each encoder-decoder can be viewed as a U-net without duplicate 

layers and middle layer. 



Data Description

• RBC simulation with Prandtl number 0.71 and Reynolds number 
2.5 x e8


• ~10k sequences, spatial resolution 64x64, time length 90 


• 60 time step ahead prediction, results averaged over three runs



• TF-Net consistently outperforms baselines on prediction 
RMSE 

Prediction Performance 

• Faster than Lattice Boltzmann method (LBM) by 2X



Turbulent Kinetic Energy

• TF-net predictions are closest to the target w.r.t. kinetic energy

Under review as a conference paper at ICLR 2020

Figure 4: Root mean square errors of differ-
ent models’ predictions at varying forecast-
ing horizon

Figure 5: Mean absolute divergence of dif-
ferent models’ predictions at varying fore-
casting horizon

Figure 6: Turbulence kinetic energy of all models’ predictions at the leftmost square field in the
original rectangular field with respect to the target.

poorly when tested outside of the training domain. Neither Dropout nor regularization techniques
can improve its performance. Also, the warping scheme of the Emmanuel de Bezenac (2018) relies
on the simplified linear assumption, which was too limiting for our non-linear problem.

Figure 7: The Energy Spectrum of
TF-Net, U-net and ResNet on the
leftmost square sub-region.

Figure 5 shows the averages of absolute divergence over
all pixels at each prediction step. TF-Net has lower di-
vergence than other models even without additional di-
vergence free constraint for varying prediction step. It is
worth mentioning that there is a subtle trade-off between
RMSE and divergence. Even though explicitly constrain-
ing model with the divergence-free regularizer can reduce
the divergence of the model predictions, it also has the
side effect of smoothing out the small scale eddies, which
results in a larger RMSE.

Figure 6 displays the turbulence kinetic energy fields of
all models’ predictions at the leftmost square field in the
original rectangular field. Figure 7 shows the energy
spectrum of our model and two best baseline at the left-
most square sub-field. We also convert square predicted
images back to the big rectangular ones and calculate
the Energy Spectrum on the entire domain, which can be
found in Figure 10 in the appendix. While the turbulence
kinetic energy of TF-Net, U-net and ResNet appear
to be similar in Figure 6, however, from the energy spectrum in Figure 7 and Figure 10, we can
see that TF-Net predictions are in fact much closer to the target. Extra divergence free constraint
does not affect the energy spectrum of predictions. Thus, unlike other models, TF-Net is able to
generate predictions that are physically consistent with the ground truth.

Figure 8 shows the ground truth and the predicted u velocity fields from all models from time
step 0 to 60. We also provide videos of predictions by TF-Net and several best baselines in
https://www.youtube.com/watch?v=sLuVGIuEE9A and https://www.youtube.
com/watch?v=VMeYHID5LL8, respectively. We see that the predictions by our TF-Net model
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• Video forward predictions methods (e.g. Unet, ConvLSTM) 
cannot capture physical properties



Prediction Visualization
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ResNet
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Ablation Study
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