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Deep Learning is transforming science

It can enhance various scientific workflows

e Analysis of large, complex datasets
e Accelerating expensive simulations

Adoption is on the rise in the science communities

e Rapid growth in ML+science conferences
e Recognition of Al achievements:
2018 Turing Award; 2018, 2020 Gordon Bell prizes
e HPC centers awarding allocations for Al,
optimizing next-gen systems for Al

The DOE is investing heavily in Al for science

e Funding calls from ASCR (and other funding agencies)
e Popular, enthusiastic Al4Science town hall series, 300 page report
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https://www.anl.gov/ai-for-science-report

Scientific ML: endless possibilities!
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More complex tasks, bigger models, more compute
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https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

Deep Learning parallelization strategies
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https://arxiv.org/abs/1802.09941

Deep Learning parallelization strategies

80 50
ML@NERSC 2020 Survey ML@NERSC 2020 Survey
701 67 (50%) What mode of parallism do you use/need? 41 (45%) What distribution framework do you use?
40 1
60
50 30 ]
£ 39 (29%) £
C c
3 40 o 36 (27%) 3
°_ 30 (23%) Y20
20 20 (15%) 11 (12%)
10
10 .
2(2%) 1(1%) 1(1%)
0 s 0! s m -
o™ pee \is™ \is™ \is™ e NO! ol AN otne
anels o ale \e ale na or0 ? \B
pata P& pon \ode! par ayrid P ral peline ar 1e1P7 a cray

TensorFlow and PyTorch support data and
intra-node pipeline parallelism natively. Horovod is
the leading non-native distribution framework. All
support MPI and/or NCCL backends.

Data parallelism is the most common strategy in
practice, especially for inter-node scaling.
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Data-parallel training considerations

Weak scaling: converge faster by taking fewer, bigger, faster steps

* i.e., more GPUs, larger batch sizes, larger learning rates

Upper: 3 SGD steps w. learning-rate = n
Yo Lower: 1 SGD step w. learning-rate = 3 * n

Caveat: for stability & convergence, requires tuning

« Warm-up+scale learning rate, adaptive optimizers, etc
« See our SC21 “Deep Learning at Scale” tutorial for more tips
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https://docs.google.com/presentation/d/1j_rxcLY6WzVqiDPm-LWnk-UISJiYtRwEHQZZWkZpktI/edit#slide=id.gf80317373c_0_92

Deep Learning on Perlmutter:
Software stack and best practices
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Perlmutter deep learning software stack overview

General strategy:

e Provide functional, performant installations of the most
popular frameworks and libraries
e Enable flexibility for users to customize and deploy their
own solutions MLGNERSC 2020 Survey

100 What frameworks/tools are you using?

91 (63%)

Frameworks:

1F TensorFlow [ Keras O PyTorch

Distributed training libraries:
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e PyTorch distributed N\ea‘“w; e\°‘§ﬁ°‘° B
Productive tools and services:

e Jupyter, Shifter https://docs.nersc.gov/machinelearning/
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https://docs.nersc.gov/machinelearning/

How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:
module load tensorflow/2.9.0
module load pytorch/1.11.0

Check which software versions are available with:

module spider pytorch

You can install your own packages on top to customize:

pilip install --user MY-PACKAGE
Or, clone a conda environment from our modules:

conda create -n my-env --clone /path/to/module/installation
Or, create custom conda environments from scratch:

conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).
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https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments

Containerized DL: using Shifter on Perimutter

NERSC currently supports containers with Perlmutter via Shifter

« Easy, performant: our top500 entry used a container!

To see images currently available:

shifterimg images | grep pytorch
To pull desired docker images onto Perlmutter: SHIFTER
shifterimg pull <dockerhub image tag>

To use interactively:
shifter --module gpu --image=nvcr.io/nvidia/pytorch:22.05-py3
Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:ngc-22.05 vl
srun shifter python my python script.py

:
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https://docs.nersc.gov/development/shifter/gpus/

Best Practices for DL + Shifter on Perlmutter

NVIDIA provides containers optimized for deep learning on GPUs with

» Pytorch or TensorFlow+Horovod
. Optimized drivers, CUDA, NCCL, cuDNN, etc NVIDIA. NGC

« Many different versions available

We also provide images based on NVIDIA's, which have a few useful extras
You can also build your own custom containers (easy to build on top of NVIDIA’s)

Notes

e Customization: from inside the container, do pip install --user MY-PACKAGE
(make sure to set SPYTHONUSERBASE to a custom path for the desired container)

e NVIDIANGC containers use OpenMPI, which requires specific options if you require MPI.
Instructions: https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module

:
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https://docs.nvidia.com/deeplearning/frameworks/
https://github.com/NERSC/nersc-ml-images
https://docs.nersc.gov/machinelearning/tensorflow/#containers
https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module

Guidelines - TensorFlow distributed training

TensorFlow at NERSC docs: 1F
https://docs.nersc.qov/analytics/machinelearning/tensorflow/ “

TensorFlow
For distributed training, we recommend using Horovod .
e Easy to use and launch with SLURM Y Y
e Can use MPIl and NCCL as appropriate ° °
e Horovod examples: e

https://qithub.com/horovod/horovod/tree/master/examples

TensorFlow has some nice built-in profiling capabilities
e TF profilerin TF 2: htips://www.tensorflow.org/quide/profiler
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https://docs.nersc.gov/analytics/machinelearning/tensorflow/
https://github.com/horovod/horovod/tree/master/examples
https://www.tensorflow.org/guide/profiler

Guidelines - PyTorch distributed training

PyTorch at NERSC docs:
https://docs.nersc.qov/analytics/machinelearning/pytorch/ Q PyTorch

For distributed training, use PyTorch’s DistributedDataParallel
e Simple model wrapper, native to Pytorch
e Works on CPU and GPU
e Highly optimized for distributed GPU training
e Docs:
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Distributed backends
e On Perlmutter, use the NCCL backend for optimized GPU
communication
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https://docs.nersc.gov/analytics/machinelearning/pytorch/
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

General guidelines for deep learning at NERSC

NERSC documentation:
Use our provided modules/containers if appropriate

e They have the recommended builds and libraries tested for functionality and performance

e We can track usage which informs our software support strategy
For developing and testing your ML workflows
e Use interactive QOS or Jupyter for on-demand compute resources
e Visualize your models and results with TensorBoard or Weights & Biases
For performance tuning
e Check cpu/gpu utilization to indicate bottlenecks (e.g. with top, nvidia-smi)
e Data pipeline is the most common source of bottlenecks
o Use framework-recommended APls/formats for data loading
o Use multi-threaded data loaders and stage data if possible
e Profile your code, e.g. with Nvidia Nsight Systems or TensorBoard Profiler
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https://docs.nersc.gov/analytics/machinelearning/overview/

Deep Learning on Perlmutter:
Workflow tools
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Jupyter for deep learning

JupyterHub service provides a rich,
interactive notebook ecosystem on Cori °
e Very popular service with hundreds of users ‘A @ [
e Afavorite way for users to develop ML code jupyter
Users can run their deep learning workloads N\ A =—
e on dedicated Perimutter GPU nodes — o9
e using our pre-installed DL software kernels
e using their own custom kernels

@ Notebook Shared CPU Node Shared GPU Node Exclusive GPU Node  Exclusive Large Memory Node Configurable GPU Configurable DGX

e [ = =
e | &8 « = = = =

Resources Use a node shared with other users' notebooks but Use your own node within a job allocation using defaults. Use multiple compute nodes with s
Python 3 pytorch-1.9.0 tensorflow- outside the batch queues.
26.0 ”
Use Cases Visualization and analytics that are not memory Visualization, analytics, machine learning that is compute or memory Multi-node analytics jobs, jobs in reservations, custom
i ive and can run on just a few cores. intensive but can be done on a single node. project charging, and more.
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https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels

TensorBoard at NERSC

TensorBoard is the most popular tool for visualizing
and monitoring DL experiments, widely adopted by
TensorFlow and PyTorch communities.

We recommend running TensorBoard in Jupyter
using nersc-tensorboard helper module.

import nersc tensorboard helper
$load ext tensorboard

$tensorboard --logdir YOURLOGDIR --port O

then get an address to your TensorBoard GUI.:

nersc tensorboard helper.tb address()

[ show data download links Q Filter tags (regular expressions supported)
Ignore outliers in chart scaling

Tooltip sorting method: default v
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https://docs.nersc.gov/analytics/machinelearning/tensorboard/
https://github.com/NERSC/nersc-tensorboard-helper

Hyper-parameter optimization (HPO) solutions

Model selection/tuning are critical for getting the most out of deep learning
e Many methods and libraries exist for tuning your model hyper-parameters
e Usually very computationally expensive because you need to train many models
=> Good for large HPC resources

ML@NERSC 2020 Survey
40 Which hyperparameter optimization

Users can use whatever tools work best for them 3|32 ibraries are you using? (if any)
e Ask us for help if needed!
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Outreach & additional resources
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Training events

The Deep Learning for Science School at Berkeley Lab (https://dl4sci-school.lbl.gov/)
e Comprehensive program with lectures, demos, hands-on sessions, posters
e You can view the full 2019 material (videos, slides, code) online:
https://sites.qoogle.com/Ibl.gov/dI4sci2019
e 2020 webinar series — recorded talks:
https://dl4sci-school.lbl.gov/agenda
The Deep Learning at Scale Tutorial
e Jointly organized with NVIDIA (& Cray in previous years)
e Presented at SC18-21, ECP Annual 2019, ISC19
e Detailed lectures + hands-on material:
o Distributed training, profiling & optimization on Perimutter
o Basis for today’s hands-on exercises
e See the full SC21 material here

NERSC Data Seminar Series:
https://qithub.com/NERSC/data-seminars
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https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc21-dl-tutorial
https://github.com/NERSC/data-seminars

Conclusions

Deep learning for science is here and growing
e Powerful capabilities
e Enthusiastic community
e Increasing HPC workloads

Perlmutter has a productive, performant software stack for deep learning
e Optimized frameworks and solutions for small to large scale DL workloads
e Support for productive workflows (Jupyter, HPO)

Join the
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https://www.nersc.gov/users/NUG/nersc-users-slack/
https://forms.gle/1CJ9x2ndXTfjsYfx9
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