Running Containers at NERSC with Shifter

Shane Canon
NERSC Early User Training Day 2019
June 21, 2019
Outline

• Quick Intro to Containers
• Role of Shifter
• Walk through of using Docker and Shifter
Intro to Containers and Shifter
Docker Basics

- Build images that captures applications requirements.
- Manually commit or use a recipe file.
- Push an image to DockerCloud, a hosted registry, or a private Docker Registry.
- Share Images
- Use Docker Engine to pull images down and execute a container from the image.
What’s in an Image

- **Directory tree**
 - Base Linux OS
 - Libraries, binaries, tools, scripts, etc
 - User code
 - Data

- **Run-time Settings**
 - Environment variables
 - Working Directory
 - Default execution and parameters

- **Other things (not relevant to Shifter)**
 - Network-related (e.g. ports)
 - Run User
Why not just run Docker

• Security: Docker currently uses an all or nothing security model. Users would effectively have system privileges

 > docker run -it -v /:/mnt --rm busybox

• System Architecture: Docker assumes local disk
• Integration: Docker doesn’t play nice with batch systems.
• System Requirements: Docker typically requires very modern kernel
• Complexity: Running real Docker would add new layers of complexity
Shifter

- NERSC R&D effort, in collaboration with Cray, to support Docker Application images
- “Docker-like” functionality on the Cray and HPC Linux clusters
- Addresses security issues in a robust way
- Efficient job-start & Native application performance
Why Users will like Containers and Shifter

- Develop an application on your desk top and run it on Cori
- Enables you to solve your dependency problems yourself
- Run the (Linux) OS of your choice and the software versions you need
- Improves application performance in many cases
- Improve reproducibility
- Improve sharing (through sites like Dockerhub)
Containers and Science

• **Reproducibility**
 – Everything you need to redo a scientific analysis
 – Image manifest contains all information about environment
 • Scripts, portable input files can be managed with version controller for greater control

• **Portability**
 – Runs on every system

• **Reduction of Effort**
 – Compile takes 10 hours? Just do it once and share it with everyone
 – System doesn’t have the right library version? Yum install or apt-get it yourself in the container
Shifter in Action
FROM ubuntu:14.04
MAINTAINER Shane Canon scanon@lbl.gov
Update packages and install dependencies
RUN apt-get update && \
 apt-get install -y build-essential

Copy in the application
ADD . /myapp
Build it
RUN cd /myapp && \
 make && make install
#!/bin/bash

#SBATCH -N 16 -t 20
#SBATCH --image=scanon/myapp:1.1

module load shifter
export TMPDIR=/mnt
srun -n 16 shifter /myapp/app
Shifter and MPI

• Shifter has a “built-in” approach for supporting MPI applications in containers.
• Build Applications using ABI compatibility.
• Shifter automatically maps in appropriate libraries at run time.
• No rebuild required, but may not work for all cases.
• Can provide native MPI performance.
This example makes use of an Ubuntu-based NERSC base image
that already has MPI built and installed.
#
FROM nersc/ubuntu-mpi:14.04

ADD helloworld.c /app/

RUN cd /app && mpicc helloworld.c -o /app/hello

ENV PATH=/usr/bin:/bin:/app:/usr/local/bin

> shifterimg pull scanon/myapp:1.1
> salloc -n 128 --image=scanon/myapp:1.1 -C haswell
srun -n 128 shifter /myapp/app
Shifter accelerates Python Apps

![Bar chart showing comparison between Cori P1 and Edison for different configurations in Pynamic v1.3, 4800 MPI ranks. The configurations include scratch, project, data warp, common, tmpfs, and shifter. The chart indicates the median startup plus import and visit time in seconds.]
Shifter behavior versus Docker

- Processes run as your user id (not root).
- Images are mounted read-only (so you modify files in the image).
- Home directories and global file systems are automatically mounted.
- Some handling of special Dockerfile directives isn’t yet supported
Other things of Note

• Shifter supports volume mounts that allow you to map a directory (e.g. $SCRATCH) into another location in your image.

• Shifter supports per-Node write-able scratch spaces that work well for apps that want a local disk.

• NERSC runs a private registry (registry.services.nersc.gov) that can be used to store private images that you can’t put in DockerHub.
Shifter versus Spin

Shifter
- Runs processes as the user
- Runs on the HPC systems

Best for:
- Simulation or analysis runs
- Need to run at scale
- Need to read/write a lot of data

Spin
- Runs with stock Docker and Rancher
- Runs on dedicated hardware

Best for:
- Running services or processes that need to run “indefinitely”
- Services that need to be externally accessible
Measuring the Composition of the Universe

• **CMB – S4**
 – Ambitious collection of telescopes to measure the remnants of the Big Bang with unprecedented precision

• **Simulated 50,000 instances of telescope using 600,000 cores on Cori KNL nodes.**

• **Why Shifter?**
 – Python wrapped code needs to start at scale
Where can you learn more

• **NERSC Docs Website**
 – docs.nersc.gov
 – Running Jobs Containers Overview
 – https://docs.nersc.gov/development/shifter/overview/

• **Previous Training**
 – https://github.com/nersc/Shifter-Tutorial

• **Docker Resources (Numerous)**
 – https://docs.docker.com/get-started/
Questions