What Is Jupyter?

Interactive open-source web application

Allows you to **create** and **share** documents, “notebooks,” containing:

- Live code
- Equations
- Visualizations
- Narrative text
- Interactive widgets

Things you can use Jupyter notebooks for:

- Data cleaning and data transformation
- Numerical simulation
- Statistical modeling
- Data visualization
- Machine learning
- Workflows and analytics frameworks
Why Does NERSC Care About Jupyter?

Integral part of Big (Data) Science & Superfacility:
LSST-DESC, DESI, ALS, LCLS, Materials Project, NCEM, LUX, LZ, KBase

Generational shift in data science:
UCB’s Data 8 course, entirely in Jupyter
“I’ll send you a copy of my notebook”
Training events adopting notebooks (DL)

Reproducibility and science outreach:
Open source code and open science
Jupyter notebooks alongside publications
Jupyter Usage at NERSC

For comparison, about 3000 users per month connect via ssh
NERSC and Jupyter: 7 Years Together

- JupyterHub as NERSC “science gateway” app
- Deploy hubs via Docker (Spin)
- Jupyter on Cori via JupyterHub
- JupyterLab beta becomes default
- More Cori nodes; CPU, GPU batch
- Jupyter on Perlmutter GPU
- More Cori nodes; expand batch access
- Jupyter on Perlmutter CPU
- Jupyter on Perlmutter CPU
- IPython → Jupyter
- batchspawner
- JupyterLab beta
- jupyterlab-favorites+recents
- jupyterlab-slurm
- jupyter-server-proxy
- JupyterLab 3
- Named servers UI
- NERSC hubs merged
- Cori
- Edison
- Perlmutter
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
OK, How Do I Use Jupyter at NERSC?

Jupyter at NERSC is provided through a JupyterHub deployment we manage:
Redirects you to authenticate if needed
Spawns a notebook server for you somewhere at NERSC
Manages communication between you and your notebook
Keeps track of and manages your notebook process
Can provide helpful additional services

https://jupyter.nersc.gov/

Authenticate
Choose
Go!
How Do I Choose a Notebook Server to Spawn?

Perlmutter Shared CPU:
Notebook on Perlmutter login node
There are like 40 of those nodes!
Can see /cfs, $HOME, etc
Can see Perlmutter $SCRATCH
Same Python env as ssh login
Can submit jobs via `sbatch`

Cori Shared CPU Node:
Notebook on cori{13,14,16,19}
That’s right, just 4 nodes
Can see /cfs, $HOME, etc
Can see Cori $SCRATCH
Same Python env as ssh login
Can submit jobs via `sbatch`

Cori GPU Node Options
Enabled if you have GPU QOS
Notebook on cgpu{01-18}
Runs in a job allocation (4h for shared node)

Perlmutter GPU Node Options
Notebook in job allocations
CPU node or GPU node

Other Perlmutter Options
Notebook in job allocations
CPU node or GPU node

NERSC resources that Jupyter depends on appear to be in maintenance or having issues. This may impact Jupyter. See the NERSC MOTD for further information. Perlmutter status: degraded

Use Cases
- Visualization and analytics that are not memory intensive and can run on just a few cores.
- Visualization, analytics, and machine learning that is compute or memory intensive but can be done on a single node.
- Multi-node analytics jobs, jobs in reservations, custom project changes, and more.

Shared ⇒ Other users are on the same node as you
JupyterLab Interface
JupyterLab Interface: NERSC Goodies

Favorites (NERSC/jupyterlab-favorites)
Bookmark your favorite places on the file system
Prepopulate with $HOME and ${C,P}SCRATCH
Add the current directory by clicking the ★ icon
Recents (NERSC/jupyterlab-recents)
Recent locations you’ve visited on the file system

Open from Path...
Jump to where you want to go on the file system
Kernels: How You Compute with Jupyter

Your Own Jupyter Kernel

Most common Jupyter question:
“How do I take a conda environment and use it from Jupyter?”

Several ways to accomplish this, here’s the easy one.

$ module load python
$ conda create -n myenv python=3.9
$ source activate myenv
(myenv) $ conda install ipykernel <other-packages>...
(myenv) $ python -m ipykernel install --user --name myenv-jupyter

Point your browser to jupyter.nersc.gov.
(You may need to restart your notebook server via control panel).
Kernel “myenv-jupyter” should be present in the kernel list.
The kernelspec File

```
(myenv) rthomas@cori01:~> cat \\
   $HOME/.local/share/jupyter/kernels/myenv-jupyter/kernel.json
{
   "argv": [
      "/global/homes/r/rthomas/.conda/envs/myenv/bin/python",
      "-m",
      "ipykernel_launcher",
      "-f",
      "{connection_file}"
   ],
   "display_name": "myenv-jupyter",
   "language": "python"
}
```
Additional Customization

```json
{
    "argv": [
        "/global/homes/r/rthomas/.conda/envs/myenv/bin/python",
        "-m",
        "ipykernel_launcher",
        "-f",
        "{connection_file}"
    ],
    "display_name": "myenv-jupyter",
    "language": "python",
    "env": {
        "PATH": ...
    },
    "LD_LIBRARY_PATH": ...
}
```
Additional Customization

```json
{
    "argv": [
        "/global/homes/r/rthomas/jupyter-helper.sh",
        "-f",
        "{connection_file}\"
    ],
    "display_name": "myenv-jupyter2",
    "language": "python",
}
```

Meanwhile, in jupyter-helper.sh:

```
#!/bin/bash
export SOMETHING=123
module load foo
exec python -m ipykernel "$@"
```

The helper script is the most flexible approach for NERSC users since it easily enables use of modules, environment variables, etc.
A Shifter Kernelspec

```json
{
    "argv": [
        "shifter",
        "--image=continuumio/anaconda3:latest",
        "/opt/conda/bin/python",
        "-m",
        "ipykernel_launcher",
        "-f",
        "{"connection_file}"  
    ],
    "display_name": "my-shifter-kernel",
    "language": "python"
}
```
Debugging Jupyter Stuff

(myenv) rthomas@cori01:~> cat ~/.jupyter-cori.log

[I 2018-03-19 16:00:08.175 SingleUserNotebookApp manager:40] [nb_conda_kernels] enabled, 5 kernels found
[I 2018-03-19 16:00:08.248 SingleUserNotebookApp extension:54] JupyterLab application directory is /global/common/cori/software/python/3.6-anaconda-4.4/share/jupyter/lab
[I 2018-03-19 16:00:09.123 SingleUserNotebookApp handlers:73] [nb_anacondacloud] enabled
[I 2018-03-19 16:00:09.129 SingleUserNotebookApp handlers:292] [nb_conda] enabled
[I 2018-03-19 16:00:09.181 SingleUserNotebookApp __init__:35] ✓ nbpresent HTML export ENABLED
[W 2018-03-19 16:00:09.181 SingleUserNotebookApp __init__:43] ✗ nbpresent PDF export DISABLED: No module named 'nbbrowserpdf'
[I 2018-03-19 16:00:09.186 SingleUserNotebookApp singleuser:365] Starting jupyterhub-singleuser server version 0.8.0.rc1
[I 2018-03-19 16:00:09.194 SingleUserNotebookApp notebookapp:1445] 0 active kernels
[I 2018-03-19 16:00:09.194 SingleUserNotebookApp notebookapp:1445] The Jupyter Notebook is running at:
[I 2018-03-19 16:00:09.194 SingleUserNotebookApp notebookapp:1445] http://0.0.0.0:56901/user/rthomas/
[I 2018-03-19 16:00:09.194 SingleUserNotebookApp notebookapp:1446] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[I 2018-03-19 16:00:09.236 SingleUserNotebookApp log:122] 302 GET /user/rthomas/ → /user/rthomas/tree/global/homes/r/rthomas? (::ffff:10.42.245.15) 0.39ms
Jupyter at NERSC

- Go to https://jupyter.nersc.gov to use Jupyter at NERSC
- Use a kernel-spec to use a conda environment in your notebook
- You can customize those kernelspec files in many ways
- We work on making Jupyter work and work better for you

Always looking for:
New ways to empower Jupyter users
Feedback, advice, and even help:
https://help.nersc.gov/
rcthomas@lbl.gov
Thank You and Welcome to NERSC!