Overview of Deep
Learning Stack at
NERSC

Wahid Bhimji, Mustafa Mustafa

User Training Jan/2019

~
o, U.S. DEPARTMENT OF : A
D Officeof e ‘m|

5 ENERGY Science

~

U.S. DEPARTMENT OF H - A
Office of P10

ENERGY Science 2

Deep Learning Stack on HPC

Technologies
Deep Learning

Frameworks f PYT b RcH Caffe

TensorFlow

Multi Node libraries

Single Node libraries

Hardware

Software Frameworks

e Different frameworks popularity has evolved rapidly
® Percentage of ML Papers that mention a particular framework:

Percent of ML papers that mention...

fheano L}
—o— ®nsorflow *
—&— keras

caffe
12 =&~ forch

Source: https://twitter.com/karpathy/status/9722958651875123207lang=en

e C(Caffe and Theano most popular 3-4 years ago
® Then Google released TensorFlow which now dominates
e PyTorch is recently rising rapidly in popularity

=
SN U.S. DEPARTMENT OF 1 A
Officeof e ‘m|

ENERGY Science E'"ERKE/—';LB

https://twitter.com/karpathy/status/972295865187512320?lang=en

Framework overview (IMHO)

~

* TensorFlow: "
— Reasonably easy to use directly within python (not as
easy as with Keras)
— Very nice tools for development like TensorBoard
— Active development for features (e.g. dynamic graphs)
and performance (e.g. for CPU/KNL) and ease (e.g.
estimators)
e Keras:
— High-level framework sits on top of tensorflow (or
theano) (and now part of TensorFlow).
— Very easy to create standard and even advanced deep

networks with a lot of templates/ examples

Office of
Science

Pytorch and Caffe (IMHO)

* PyTorch pytbrcH
— Relatively recent python adaption of ‘torch’ framework -
heavily contributed to by FaceBook
— More pythonic than tensorflow/keras

— Dynamic graphs from the start - very flexible
* Popular with (some) ML researchers

— Experimental, some undocumented quirks
* Version 1.0 coming soon! rcl is out already.

e Caffe cCaffe

— Optimised performance (still best for certain networks on
CPUs)
— Relatively difficult to develop new architectures

Office of
Science

TensorFlow (and Keras) @NERSC m

http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/using-tensorflow-at-nersc/
* Easiest is to use default anaconda python:
module load python

python
>>> import tensorflow as tf
* Active work by intel to optimize for CPU:
— Available in anaconda. Modules on Cori:
module avail tensorflow #[list options]
module load tensorflow/intel-1.12.0-py36
e (Can also tune variables for performance (e.g. see intel blog)
— E.g Inter-op and Intra-op

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science ggm/_;ﬁ

=
A
rrrrrrr ‘"'l

Ty
CEBD
£ 5 \2
2 @ 5
2 %
S i

http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/using-tensorflow-at-nersc/
https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/

TensorBoard | @

* Easy, customisable, visualization of training in progress

* At NERSC run TensorBoard on login node; point to logs

made by jobs on compute node (chose an unused port)
cori@5 > tensorboard --logdir=path/to/logs --port 9998

* Use a ssh tunnel from your laptop to connect then open
localhost:9998 in your browser (note: others will also be
able to see your experiments if they connect to that port)

YourLaptop > ssh -L 9998:1ocalhost:9998 cori.nersc.gov

Figures:
Isaac
Henrion

111111111

PyTorch @NERSC

https://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/pytorch/

* Again easiest is to use default anaconda python:
module load python

python
>>> import torch

* Note however the anaconda version isn’t built with the
pvtorch MPI (for multi-node) - so we provide a build
module load pytorch-mpi/ve.4.1

* And again we are looped into intel optimizations:
module load pytorch/v1.0.0-intel

~
U.S. DEPARTMENT OF H A
Officeof ‘m|

ENERGY Science

DT
&5)
4 %)
E &
d (i7))z
2 %
S i

BERKELEY LAB

https://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/pytorch/
https://pytorch.org/tutorials/intermediate/dist_tuto.html

Deep learning is EASY

~

U.S. DEPARTMENT OF H - A
Office of P10

\ EN ERGY Science 0

Keras: CNN Classification

import numpy as np

from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten %=
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import utils as k_utils

Keras is TF’s official
high-level API

Load MNIST data and add channel

(x_train, y train), (x test, y test) = mnist.load data() _
X_train = np.expand dims(x_train.astype('float32'), axis=—!! O ‘ =t 3 q 5 ‘9 7 8 9

x_test = np.expand dims(x_test.astype('float32'), axis=-1)

normalize data
x_train /= 255
x_test /= 255

convert class vectors to binary class matrices
y_train = k utils.to_categorical(y_train, num_classes)
y_test = k_utils.to_categorical (y_test, num classes)

Example source: modified version of github.com/keras-team/keras/blob/master/examples/mnist cnn.py

~

% U.S. DEPARTMENT OF H A
‘ Office of P10

ENERGY Science E'"ERKE/—';LB

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

Keras: CNN Classification

Layer (type) Output Shape Param #
model = Sequential () ==
model.add (Conv2D (32, kernel size=(3, 3), conv2d_0 (Conv2D) (None, 26, 26, 32) 320

activation='relu',
input shape=[28, 28, 1])) conv2d_1 (Conv2D) (None, 24, 24, 64) 18496

model .add (Conv2D (64, (3, 3), activation='relu'))
model . add (MaxPooling2D (pool_size=(2, 2)))

model . add (Dropout (0.25))

model .add (Flatten())

max_pooling2d_0 (MaxPooling2 (None, 12, 12, 64) 0

dropout_0 (Dropout) (None, 12,12, 64) 0

model .add (Dense (128, activation='relu')) flatten_0 (Flatten) (None, 9216) 0

model . add (Dropout (0.5))

model .add (Dense (num_classes, activation='softmax')) dense_0 (Dense) (None, 128) 1179776
compile model

model .compile (loss='categorical crossentropy', dropout_1 (Dropout) (None, 128) 0

optimizer='Adam',

metrics=["'accuracy'])
check model architecture summary
model . summary ()

dense_1 (Dense) (None, 10) 1290

Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

train model
model.fit(x_ train, y train, batch size=batch size, epochs=epochs,
verbose=1, validation_ data=(x_test, y test))

evaluate model Test loss: 0.0284083929521
score = model.evaluate(x_test, y test, verbose=0)

Test accuracy: 0.9922
print('Test loss:', score[0], 'Test accuracy:', score[l]) /

Py
£l - \2)
L0
R 5
N i g

~

] - A
U.S. DEPARTMENT OF Ofﬂce Of ceeeeee] M

ENERGY omeeo e

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

Keras LHC-CNN in Jupyter

* Restricted to single core on jupyter-dev
— Submit to batch (or interactive queue) for bigger problems
— Can use ipyparallel
https://github.com/sparticlesteve/cori-intml-examples

EEEEEEEEEEEEEE Office of

EN ERGY Science

https://github.com/sparticlesteve/cori-intml-examples
https://github.com/sparticlesteve/cori-intml-examples

CPU Optimizations and
Multi-node training

\“/"""‘@,‘ U.S. DEPARTMENT OF Ofﬂce Of

ENERGY science -

(TensorFlow) MKL Optimizations

500

400

w
o
o

images/sec
N
o
o

100

Python frameworks rely on optimized backends to perform
For CPU like Cori KNL this is Intel Math Kernel Library (MKL)
(e.g. MKL-DNN)

Blog posts on Intel optimisations:

https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture
https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/

https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorfl

ow-with-horovod

KNL - Python 3.6 KNL - Python 3.6

25
TF Version TF Version
. 14 - 14
N 16 20{ NN 1.6
. 18 < . 138
- 19 5 . 19
. 1.10 15 mm 110
. 111 " . 111
2
=10 tg
£
&
0.5
0.0

alexnet googlenet vggll inception3 resnet50 DCGAN

alexnet googlenet vggll inception3 resnet50

https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture
https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/
https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorflow-with-horovod
https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorflow-with-horovod

Multi-node training

w—_— R _R
* Data parallel training - A —— s e S,
/‘.’,’/ ’ A A
for SGD s | |e| 8/ |E TN
£ [B R £ R
— Each node processes “\ B <\ | :
. i N
data independently «4-% BACK

then a global update

E §

— Synchronous;
Asynchronous;hybrid 0., -
: 0250
gradient lag approaches -5
* Challenges to HPC W W
SYNCHRONOUS ASYNCHRONOUS

From

scaling include
Kurth et al.

convergence and 3 E s
. . m_%gi’m m‘gg W arXiv:1708.05256
performant libraries O3 W55
W W
Office of HYBRID

Science

https://arxiv.org/abs/1708.05256

Some experiences of DL at scale

Convergence at scale is an active area of research. Some
current experiences from multiple projects:

* If strong scaling (small node count): decrease per-node batch
size with increasing synchronous node count

* Experiment with increasing learning rate sub-linearly to linearly
with number of workers:
— Warmup period starting at initial learning rate
— Reduce learning rate if learning plateaus

e Advanced Layer-wise adaptive (LARS/LARC) strategies

* Be careful with batch normalization for multi-node performance,
consider Ghost Batch Normalization

* With ‘global shuffle’ of training examples, use of Burst Buffer
can help with I/O at NERSC

Office of

AR, U-S. DEPARTMENT OF

£l)

B :

R 4 ENERG Y science

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888
https://openreview.net/forum?id=rJ4uaX2aW
https://arxiv.org/abs/1808.04728
https://arxiv.org/abs/1808.04728

Performant Multi-Node Libraries

For LHC-CNN:

e |nitial scaling on NERSC Kurth et al. SC17 arXiv:1708.05256
involved a lot of work = oo '
— e.g. with Intel-Caffe and Intel-MLSL o ifkid, A omick s
g- 1500 A Hybrid, 8 groups :
* Default TensorFlow uses gRPC §, |~ =
for communication - non-ideal - v
for Cori high-speed network T W Bo 8o 2w
nodes (66 cores/node
— See e.g. Mathuriya et. al)
(arXiv: 1712.09388) Kurth et al.Concurrency Computat Pract
. . Exper. 2018;e4989
* Fortunately now libraries N
based on MPI with Horovod e
and Cray PE ML Plugin % o
£ 10000
ij" UENERGY ggll:r?CZf : 0 200 400 600 800 1000

#workers

https://arxiv.org/pdf/1712.09388.pdf
https://github.com/uber/horovod
https://pubs.cray.com/content/S-3024/1.0.UP00/cstm-series-urika-cs-ai-and-analytics-applications-guide/port-scripts-to-use-the-cray-programming-environment-machine-learning-plugin
https://arxiv.org/abs/1708.05256
https://doi.org/10.1002/cpe.4989
https://doi.org/10.1002/cpe.4989

Horovod Keras Simple Snippets

* When building model:

from keras import models

import horovod.keras as hvd

model = models.Model(inputs, outputs)
hvd.init()

model.compile(optimizer=hvd.DistributedOptimizer(optimizers.Adam), ...

* When training model:

model.fit(callbacks=[hvd.callbacks.BroadcastGlobalVariablesCallback(@),...

£ER, U.S. DEPARTMENT OF Office of

ENERGY science Emf:jml

~

U.S. DEPARTMENT OF - A
Office of D m|

EN ERGY Science 20 BE/R—KE;‘.AB

Contact us

General help with deep learning modules;

and running DL at NERSC via:
consult@nersc.gov

Collaborations:
ML-Engineers@NERSC

Mustafa Mustafa: mmustafa@Ibl.gov
Steve Farrell: SFarrell@lbl.gov

Questions on this talk: wbhimji@Ibl.gov

Office of
Science

mailto:consult@nersc.gov
mailto:mmustafa@lbl.gov
mailto:SFarrell@lbl.gov
mailto:wbhimji@lbl.gov

