Overview of Deep Learning Stack at NERSC

Wahid Bhimji, Mustafa Mustafa

User Training Jan/2019
Deep learning Stack
Deep Learning Stack on HPC

Deep Learning Frameworks
- TensorFlow
- Caffe
- PyTorch
- Neon, CNTK, MXNet, ...

Multi Node libraries
- Cray ML PE Plugin
- Horovod
- MLSL
- MPI
- GRPC

Single Node libraries
- MKL-DNN
- CuDNN

Hardware
- CPUs (KNL)
- GPUs
- FPGAs
- Accelerators
Software Frameworks

- Different frameworks popularity has evolved rapidly
- Percentage of ML Papers that mention a particular framework:

 - Caffe and Theano most popular 3-4 years ago
 - Then Google released TensorFlow which now dominates
 - PyTorch is recently rising rapidly in popularity

Source: https://twitter.com/karpathy/status/972295865187512320?lang=en
Framework overview (IMHO)

- **TensorFlow:**
 - Reasonably easy to use directly within python (not as easy as with Keras)
 - Very nice tools for development like TensorBoard
 - Active development for features (e.g. dynamic graphs) and performance (e.g. for CPU/KNL) and ease (e.g. estimators)

- **Keras:**
 - High-level framework sits on top of tensorflow (or theano) (and now part of TensorFlow).
 - Very easy to create standard and even advanced deep networks with a lot of templates/examples
PyTorch

- Relatively recent python adaption of ‘torch’ framework - heavily contributed to by FaceBook
- More pythonic than tensorflow/keras
- Dynamic graphs from the start - very flexible
 - Popular with (some) ML researchers
- Experimental, some undocumented quirks
 - Version 1.0 coming soon! rc1 is out already.

Caffe

- Optimised performance (still best for certain networks on CPUs)
- Relatively difficult to develop new architectures
Easiest is to use default anaconda python:

```python
module load python
python
>>> import tensorflow as tf
```

Active work by intel to optimize for CPU:
- Available in anaconda. Modules on Cori:

```
module avail tensorflow  # [list options]
module load tensorflow/intel-1.12.0-py36
```

Can also tune variables for performance (e.g. see intel blog)
- E.g Inter-op and Intra-op
TensorBoard

- Easy, customisable, visualization of training in progress
- At NERSC run TensorBoard on login node; point to logs made by jobs on compute node (chose an unused port)

 cori05 > tensorboard --logdir=path/to/logs --port 9998

- Use a ssh tunnel from your laptop to connect then open localhost:9998 in your browser (note: others will also be able to see your experiments if they connect to that port)

 YourLaptop > ssh -L 9998:localhost:9998 cori.nersc.gov

Figures: Isaac Henrion
Again easiest is to use default anaconda python:

```python
module load python
python
>>> import torch
```

Note however the anaconda version isn’t built with the **pytorch MPI** (for multi-node) - so we provide a build

```bash
module load pytorch-mpi/v0.4.1
```

And again we are looped into intel optimizations:

```bash
module load pytorch/v1.0.0-intel
```
Deep learning is EASY
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.utils import to_categorical

Load MNIST data and add channel
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.expand_dims(x_train.astype('float32'), axis=-1)
x_test = np.expand_dims(x_test.astype('float32'), axis=-1)

normalize data
x_train /= 255
x_test /= 255

convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)

Example source: modified version of github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
Keras: CNN Classification

```python
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                  activation='relu',
                  input_shape=[28, 28, 1]))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# compile model
model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])
# check model architecture summary
model.summary()

# train model
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))
# evaluate model
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0], 'Test accuracy:', score[1])
```

Layer (type) Output Shape Param #
==
conv2d_0 (Conv2D) (None, 26, 26, 32) 320
conv2d_1 (Conv2D) (None, 24, 24, 64) 18496
max_pooling2d_0 (MaxPooling2 (None, 12, 12, 64) 0
dropout_0 (Dropout) (None, 12, 12, 64) 0
flatten_0 (Flatten) (None, 9216) 0
dense_0 (Dense) (None, 128) 1179776
dropout_1 (Dropout) (None, 128) 0
dense_1 (Dense) (None, 10) 1290

Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Test loss: 0.0284083929521
Test accuracy: 0.9922
Keras LHC-CNN in Jupyter

- Restricted to single core on jupyter-dev
 - Submit to batch (or interactive queue) for bigger problems
 - Can use ipyparallel
 https://github.com/sparticlesteve/cori-intml-examples
CPU Optimizations and Multi-node training
Python frameworks rely on optimized backends to perform
For CPU like Cori KNL this is Intel Math Kernel Library (MKL) (e.g. MKL-DNN)

Blog posts on Intel optimisations:
Multi-node training

- Data parallel training for SGD
 - Each node processes data independently then a global update
 - Synchronous; Asynchronous; hybrid gradient lag approaches

- Challenges to HPC scaling include convergence and performant libraries

From Kurth et al. SC17 [arXiv:1708.05256]
Convergence at scale is an active area of research. Some current experiences from multiple projects:

- If strong scaling (small node count): decrease per-node batch size with increasing synchronous node count.
- Experiment with increasing learning rate sub-linearly to linearly with number of workers:
 - Warmup period starting at initial learning rate
 - Reduce learning rate if learning plateaus.
- Advanced Layer-wise adaptive (LARS/LARC) strategies.
- Be careful with batch normalization for multi-node performance, consider Ghost Batch Normalization.
- With ‘global shuffle’ of training examples, **use of Burst Buffer can help with I/O** at NERSC.
Performant Multi-Node Libraries

- Initial scaling on NERSC involved a lot of work
 - e.g. with Intel-Caffe and Intel-MLSL
- Default TensorFlow uses gRPC for communication - non-ideal for Cori high-speed network
 - See e.g. Mathuriya et. al (arXiv:1712.09388)
- Fortunately now libraries based on MPI with Horovod and Cray PE ML Plugin

For LHC-CNN:
Kurth et al. SC17 [arXiv:1708.05256]

Kurth et al. Concurrency Computat Pract Exper. 2018;e4989
Horovod Keras Simple Snippets

• When building model:

```python
from keras import models
import horovod.keras as hvd
model = models.Model(inputs, outputs)
hvd.init()
model.compile(optimizer=hvd.DistributedOptimizer(optimizers.Adam),...)
```

• When training model:

```python
model.fit(callbacks=[hvd.callbacks.BroadcastGlobalVariablesCallback(0),...])
```
Support
Contact us

General help with deep learning modules; and running DL at NERSC via:

consult@nersc.gov

Collaborations:
ML-Engineers@NERSC
Mustafa Mustafa: mmustafa@lbl.gov
Steve Farrell: SFarrell@lbl.gov

Questions on this talk: wbhimji@lbl.gov