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Source: https://twitter.com/karpathy/status/972295865187512320?lang=en

● Different frameworks popularity has evolved rapidly
● % of ML Papers that mention a framework (up to Mar 2018)

● Caffe and Theano most popular 3-4 years ago
● Then Google released TensorFlow which now dominates
● PyTorch is recently rising rapidly in popularity
● See also DL power scores (also rates Tensorflow top): 

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

https://twitter.com/karpathy/status/972295865187512320?lang=en
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a


• TensorFlow:
– Reasonably easy to use directly within python (not as 

easy as with Keras) 
– Very nice tools for development like TensorBoard
– Active development for features (e.g. dynamic graphs) 

and performance (e.g. for CPU/KNL) and ease of use

 

• Keras: 
– High-level framework sits on top of tensorflow (or 

theano) (and now part of TensorFlow)
– Very easy to create standard and even advanced deep 

networks with a lot of templates/ examples



• PyTorch
– Relatively recent python adaption of ‘torch’ framework - 

heavily contributed to by Facebook
– More pythonic than Tensorflow/Keras
– Dynamic graphs from the start - very flexible 

• Popular with some ML researchers

– Previously some undocumented quirks but Version 1.0 
release added stability and performance

• Caffe
– Optimised performance (still best for certain NN on 

CPUs)
– Relatively difficult to develop new architectures
– Caffe2 and PyTorch projects merged 



• Easiest is to use default anaconda python:
module load python 

python

>>> import tensorflow as tf

• Active work by Intel to optimize for CPU:
– Available in anaconda. Modules on Cori:
module avail tensorflow  #Display versions

module load tensorflow   

– Loads the default (intel-1.13.1-py36 as of Jun 2019) 
• Can also tune variables for performance (e.g. see intel blog) 

– E.g Inter-op and Intra-op  

https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/


• Easy, customisable, visualization of training in progress
• At NERSC run TensorBoard on login node; point to logs 

made by jobs on compute node (chose an unused port)
cori05 > tensorboard --logdir=path/to/logs --port 9998

• Use a ssh tunnel from your laptop to connect then open 
localhost:9998 in your browser (note: others will also be 
able to see your experiments if they connect to that port) 

YourLaptop > ssh -L 9998:localhost:9998 cori.nersc.gov

Figures:
Isaac
Henrion



• Again can use default anaconda python:
module load python 

python

>>> import torch

• However the anaconda version isn’t built with the pytorch 
MPI (for multi-node) - so we provide a build

• Again we are looped into intel optimizations

• Below has both those optimizations and MPI
module load pytorch/v1.0.0-intel 

https://pytorch.org/tutorials/intermediate/dist_tuto.html
https://pytorch.org/tutorials/intermediate/dist_tuto.html


Can use optimized modules by choosing kernels on 
jupyter.nersc.gov - e.g. :
- tensorflow-intel(cpu)/1.13.1-py36
- pytorch-v1.1.0

Running on NERSC jupyter hub is normally on a single 
shared node (so only for smaller models). 

Users can deploy distributed deep learning workloads 
to Cori from Jupyter notebooks using IPyParallel. 
• Some examples for running multi-node training and 

distributed hyper-parameter optimization:
– https://github.com/sparticlesteve/cori-intml-examples

https://jupyter.nersc.gov/
https://github.com/sparticlesteve/cori-intml-examples
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import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import utils as k_utils

# Load MNIST data and add channel
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.expand_dims(x_train.astype('float32'), axis=-1)
x_test = np.expand_dims(x_test.astype('float32'), axis=-1)

# normalize data
x_train /= 255
x_test /= 255

num_classes=10

# convert class vectors to binary class matrices
y_train = k_utils.to_categorical(y_train, num_classes)
y_test = k_utils.to_categorical(y_test, num_classes)

       Keras is TF’s official 
high-level API

Example source: modified version of 
github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py


model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=[28, 28, 1]))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# compile model
model.compile(loss='categorical_crossentropy',
              optimizer='Adam',
              metrics=['accuracy'])
# check model architecture summary
model.summary()
batch_size=128
epochs=5
# train model
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
          verbose=1, validation_data=(x_test, y_test))
# evaluate model
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0], 'Test accuracy:', score[1])

Example source: modified version of github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

Layer (type)                 Output Shape              Param #   
============================================
conv2d_0 (Conv2D)            (None, 26, 26, 32)        320       
______________________________________________
conv2d_1 (Conv2D)            (None, 24, 24, 64)        18496     
______________________________________________
max_pooling2d_0 (MaxPooling2 (None, 12, 12, 64)        0         
______________________________________________
dropout_0 (Dropout)          (None, 12, 12, 64)        0         
______________________________________________
flatten_0 (Flatten)          (None, 9216)              0         
______________________________________________
dense_0 (Dense)              (None, 128)               1179776   
______________________________________________
dropout_1 (Dropout)          (None, 128)               0         
______________________________________________
dense_1 (Dense)              (None, 10)                1290      
============================================
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Test loss: 0.029 
Test accuracy: 0.99

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
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• Python frameworks rely on optimized backends to perform 
• For CPU like Cori KNL this is Intel Math Kernel Library (MKL) 

(e.g. MKL-DNN) - all recent versions have optimizations 
• Blog posts on Intel optimisations:

https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture

https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/

https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorflow-with-horovod

We track performance 
via benchmarks. More 
details at:
https://docs.nersc.gov/analytics/
machinelearning/benchmarks/

https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture
https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/
https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorflow-with-horovod
https://docs.nersc.gov/analytics/machinelearning/benchmarks/
https://docs.nersc.gov/analytics/machinelearning/benchmarks/


• Data parallel training for 
gradient descent
– Each node processes 

data independently 
then a global update

– Synchronous; 
Asynchronous;hybrid 
gradient lag approaches

• Challenges to HPC scaling 
have included convergence 
and performant libraries

HYBRID

From 
Kurth et al.
SC17
arXiv:1708.05256 

https://arxiv.org/abs/1708.05256


• Initial scaling on NERSC involved a 
lot of work 
– e.g. with Intel-Caffe and Intel-MLSL  

• Default TensorFlow uses gRPC for 
communication - non-ideal for Cori 
high-speed network
– See e.g. Mathuriya et. al 

(arXiv:1712.09388)

• Fortunately now libraries based on 
MPI with Horovod and Cray PE ML 
Plugin

Kurth et al. SC17 arXiv:1708.05256 

Kurth et al.Concurrency Computat Pract 
Exper. 2018;e4989

https://arxiv.org/pdf/1712.09388.pdf
https://github.com/uber/horovod
https://pubs.cray.com/content/S-3024/1.0.UP00/cstm-series-urika-cs-ai-and-analytics-applications-guide/port-scripts-to-use-the-cray-programming-environment-machine-learning-plugin
https://pubs.cray.com/content/S-3024/1.0.UP00/cstm-series-urika-cs-ai-and-analytics-applications-guide/port-scripts-to-use-the-cray-programming-environment-machine-learning-plugin
https://arxiv.org/abs/1708.05256
https://doi.org/10.1002/cpe.4989
https://doi.org/10.1002/cpe.4989


Available in default NERSC tensorflow modules

• When building model: 
from keras import models

import horovod.keras as hvd

model = models.Model(inputs, outputs)

hvd.init()

model.compile(optimizer=hvd.DistributedOptimizer(optimizers.Adam),…

• When training model: 
model.fit(callbacks=[hvd.callbacks.BroadcastGlobalVariablesCallback(0),...



Convergence at scale is an active area of research. Some 
current experiences from multiple projects:
• If strong scaling (small node count): decrease per-node batch 

size with increasing synchronous node count
• Experiment with increasing learning rate sub-linearly to linearly 

with number of workers:
– Warmup period starting at initial learning rate
– Reduce learning rate if learning plateaus

• Advanced Layer-wise adaptive (LARS/LARC) strategies  
• Be careful with batch normalization for multi-node performance, 

consider Ghost Batch Normalization
• With ‘global shuffle’ of training examples, use of Burst Buffer 

can help with I/O at NERSC 

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888
https://openreview.net/forum?id=rJ4uaX2aW
https://arxiv.org/abs/1808.04728
https://arxiv.org/abs/1808.04728
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https://docs.nersc.gov/analytics/machinelearning/overview/

General help with deep learning modules;

and running DL at NERSC open tickets via:
consult@nersc.gov

For collaborations contact ML-Engineers at NERSC:

Mustafa Mustafa: mmustafa@lbl.gov

Steve Farrell: SFarrell@lbl.gov

Wahid Bhimji: wbhimji@lbl.gov

https://docs.nersc.gov/analytics/machinelearning/overview/
mailto:consult@nersc.gov
mailto:mmustafa@lbl.gov
mailto:SFarrell@lbl.gov
mailto:wbhimji@lbl.gov

