
Wahid Bhimji, Prabhat,
Mustafa Mustafa, Steve Farrell

New User Training
June 21 2019

Technologies

Deep Learning

Frameworks

Multi Node libraries

Single Node libraries

Hardware

MLSL

MPI GRPC

Neon, CNTK, MXNet, …

CuDNNMKL-DNN

CPUs (KNL) GPUs FPGAs Accelerators

HorovodCray ML PE
Plugin

Source: https://twitter.com/karpathy/status/972295865187512320?lang=en

● Different frameworks popularity has evolved rapidly
● % of ML Papers that mention a framework (up to Mar 2018)

● Caffe and Theano most popular 3-4 years ago
● Then Google released TensorFlow which now dominates
● PyTorch is recently rising rapidly in popularity
● See also DL power scores (also rates Tensorflow top):

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

https://twitter.com/karpathy/status/972295865187512320?lang=en
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

• TensorFlow:
– Reasonably easy to use directly within python (not as

easy as with Keras)
– Very nice tools for development like TensorBoard
– Active development for features (e.g. dynamic graphs)

and performance (e.g. for CPU/KNL) and ease of use

• Keras:
– High-level framework sits on top of tensorflow (or

theano) (and now part of TensorFlow)
– Very easy to create standard and even advanced deep

networks with a lot of templates/ examples

• PyTorch
– Relatively recent python adaption of ‘torch’ framework -

heavily contributed to by Facebook
– More pythonic than Tensorflow/Keras
– Dynamic graphs from the start - very flexible

• Popular with some ML researchers

– Previously some undocumented quirks but Version 1.0
release added stability and performance

• Caffe
– Optimised performance (still best for certain NN on

CPUs)
– Relatively difficult to develop new architectures
– Caffe2 and PyTorch projects merged

• Easiest is to use default anaconda python:
module load python

python

>>> import tensorflow as tf

• Active work by Intel to optimize for CPU:
– Available in anaconda. Modules on Cori:
module avail tensorflow #Display versions

module load tensorflow

– Loads the default (intel-1.13.1-py36 as of Jun 2019)
• Can also tune variables for performance (e.g. see intel blog)

– E.g Inter-op and Intra-op

https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/

• Easy, customisable, visualization of training in progress
• At NERSC run TensorBoard on login node; point to logs

made by jobs on compute node (chose an unused port)
cori05 > tensorboard --logdir=path/to/logs --port 9998

• Use a ssh tunnel from your laptop to connect then open
localhost:9998 in your browser (note: others will also be
able to see your experiments if they connect to that port)

YourLaptop > ssh -L 9998:localhost:9998 cori.nersc.gov

Figures:
Isaac
Henrion

• Again can use default anaconda python:
module load python

python

>>> import torch

• However the anaconda version isn’t built with the pytorch
MPI (for multi-node) - so we provide a build

• Again we are looped into intel optimizations

• Below has both those optimizations and MPI
module load pytorch/v1.0.0-intel

https://pytorch.org/tutorials/intermediate/dist_tuto.html
https://pytorch.org/tutorials/intermediate/dist_tuto.html

Can use optimized modules by choosing kernels on
jupyter.nersc.gov - e.g. :
- tensorflow-intel(cpu)/1.13.1-py36
- pytorch-v1.1.0

Running on NERSC jupyter hub is normally on a single
shared node (so only for smaller models).

Users can deploy distributed deep learning workloads
to Cori from Jupyter notebooks using IPyParallel.
• Some examples for running multi-node training and

distributed hyper-parameter optimization:
– https://github.com/sparticlesteve/cori-intml-examples

https://jupyter.nersc.gov/
https://github.com/sparticlesteve/cori-intml-examples

10

import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import utils as k_utils

Load MNIST data and add channel
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.expand_dims(x_train.astype('float32'), axis=-1)
x_test = np.expand_dims(x_test.astype('float32'), axis=-1)

normalize data
x_train /= 255
x_test /= 255

num_classes=10

convert class vectors to binary class matrices
y_train = k_utils.to_categorical(y_train, num_classes)
y_test = k_utils.to_categorical(y_test, num_classes)

 Keras is TF’s official
high-level API

Example source: modified version of
github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=[28, 28, 1]))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
compile model
model.compile(loss='categorical_crossentropy',
 optimizer='Adam',
 metrics=['accuracy'])
check model architecture summary
model.summary()
batch_size=128
epochs=5
train model
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
 verbose=1, validation_data=(x_test, y_test))
evaluate model
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0], 'Test accuracy:', score[1])

Example source: modified version of github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

Layer (type) Output Shape Param #
==
conv2d_0 (Conv2D) (None, 26, 26, 32) 320
__
conv2d_1 (Conv2D) (None, 24, 24, 64) 18496
__
max_pooling2d_0 (MaxPooling2 (None, 12, 12, 64) 0
__
dropout_0 (Dropout) (None, 12, 12, 64) 0
__
flatten_0 (Flatten) (None, 9216) 0
__
dense_0 (Dense) (None, 128) 1179776
__
dropout_1 (Dropout) (None, 128) 0
__
dense_1 (Dense) (None, 10) 1290
==
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Test loss: 0.029
Test accuracy: 0.99

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

13

• Python frameworks rely on optimized backends to perform
• For CPU like Cori KNL this is Intel Math Kernel Library (MKL)

(e.g. MKL-DNN) - all recent versions have optimizations
• Blog posts on Intel optimisations:

https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture

https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/

https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorflow-with-horovod

We track performance
via benchmarks. More
details at:
https://docs.nersc.gov/analytics/
machinelearning/benchmarks/

https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture
https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor/
https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorflow-with-horovod
https://docs.nersc.gov/analytics/machinelearning/benchmarks/
https://docs.nersc.gov/analytics/machinelearning/benchmarks/

• Data parallel training for
gradient descent
– Each node processes

data independently
then a global update

– Synchronous;
Asynchronous;hybrid
gradient lag approaches

• Challenges to HPC scaling
have included convergence
and performant libraries

HYBRID

From
Kurth et al.
SC17
arXiv:1708.05256

https://arxiv.org/abs/1708.05256

• Initial scaling on NERSC involved a
lot of work
– e.g. with Intel-Caffe and Intel-MLSL

• Default TensorFlow uses gRPC for
communication - non-ideal for Cori
high-speed network
– See e.g. Mathuriya et. al

(arXiv:1712.09388)

• Fortunately now libraries based on
MPI with Horovod and Cray PE ML
Plugin

Kurth et al. SC17 arXiv:1708.05256

Kurth et al.Concurrency Computat Pract
Exper. 2018;e4989

https://arxiv.org/pdf/1712.09388.pdf
https://github.com/uber/horovod
https://pubs.cray.com/content/S-3024/1.0.UP00/cstm-series-urika-cs-ai-and-analytics-applications-guide/port-scripts-to-use-the-cray-programming-environment-machine-learning-plugin
https://pubs.cray.com/content/S-3024/1.0.UP00/cstm-series-urika-cs-ai-and-analytics-applications-guide/port-scripts-to-use-the-cray-programming-environment-machine-learning-plugin
https://arxiv.org/abs/1708.05256
https://doi.org/10.1002/cpe.4989
https://doi.org/10.1002/cpe.4989

Available in default NERSC tensorflow modules

• When building model:
from keras import models

import horovod.keras as hvd

model = models.Model(inputs, outputs)

hvd.init()

model.compile(optimizer=hvd.DistributedOptimizer(optimizers.Adam),…

• When training model:
model.fit(callbacks=[hvd.callbacks.BroadcastGlobalVariablesCallback(0),...

Convergence at scale is an active area of research. Some
current experiences from multiple projects:
• If strong scaling (small node count): decrease per-node batch

size with increasing synchronous node count
• Experiment with increasing learning rate sub-linearly to linearly

with number of workers:
– Warmup period starting at initial learning rate
– Reduce learning rate if learning plateaus

• Advanced Layer-wise adaptive (LARS/LARC) strategies
• Be careful with batch normalization for multi-node performance,

consider Ghost Batch Normalization
• With ‘global shuffle’ of training examples, use of Burst Buffer

can help with I/O at NERSC

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888
https://openreview.net/forum?id=rJ4uaX2aW
https://arxiv.org/abs/1808.04728
https://arxiv.org/abs/1808.04728

19

https://docs.nersc.gov/analytics/machinelearning/overview/

General help with deep learning modules;

and running DL at NERSC open tickets via:
consult@nersc.gov

For collaborations contact ML-Engineers at NERSC:

Mustafa Mustafa: mmustafa@lbl.gov

Steve Farrell: SFarrell@lbl.gov

Wahid Bhimji: wbhimji@lbl.gov

https://docs.nersc.gov/analytics/machinelearning/overview/
mailto:consult@nersc.gov
mailto:mmustafa@lbl.gov
mailto:SFarrell@lbl.gov
mailto:wbhimji@lbl.gov

