

NVIDIA Quantum: cuQuantum and QODA

GPU Supercomputing and Quantum Researching the Quantum Computers of Tomorrow with the Supercomputers of Today

- Develop algorithms at scale of valuable quantum computing • Discover use cases with quantum advantage
- Design and validate future hardware

- lacksquare
- best resource for the task

Develop quantum applications by integrating quantum into leading accelerated applications

Build a platform that is familiar to domain scientists

Unparalleled performance and scientific productivity using the

Supercomputing Scale Quantum Circuit Simulation with cuQuantum

SDK for Quantum Circuit Simulation

- Accelerate Quantum Circuit Simulators on GPUs
- Simulate ideal or noisy qubits
- Enable algorithms research with scale and performance not possible on quantum hardware, or on simulators today

cuQuantum available now

- Integrated into leading quantum computing frameworks Cirq, Qiskit, and Pennylane
- C and Python APIs
- Available today at developer.nvidia.com/cuquantum

cuQuantum **Deployed on Perlmutter now!**

Quantum Computing Application

Quantum Computing Frameworks

QPU

Two Leading Quantum Circuit Simulation Approaches

State vector simul "Gate-based emulation of a quantum

- Maintain full 2ⁿ qubit vector state in
- Update all states every timestep, pr of the states for measurement

Memory capacity & time grow exponentially w/ # of qubits practical limit around 50 qubits on a supercomputer

Can model either ideal or noisy qubits

ation	
computer"	
n memory	
robabilistically sample	r

GPUs are a great fit for either approach

Tensor networks

"Only simulate the states you need"

Uses tensor network contractions to dramatically reduce memory for simulating circuits

Can simulate 100s or 1000s of qubits for many practical quantum circuits

Researching & developing the quantum applications of tomorrow requires powerful simulations today

1000000

100000

10000

uit Depth Circ

100

r 7			
r 7			

512 1024 2048 4096 8192 16384 32768

Fully integrated quantum simulation solution

- State-of-the-art *performance*
- Unmatched simulation *scale*

Reduce the simulation time by *orders of* magnitude

Simulate *thousands* of perfect or noisy qubits

DGX cuQuantum Appliance **Deployed on Perlmutter**

Fully integrated quantum simulation solution

- State-of-the-art *performance*
- Unmatched simulation *scale*

Reduce the simulation time by *orders of* magnitude

Simulate *thousands* of perfect or noisy qubits

DGX cuQuantum Appliance

DGX cuQuantum Appliance Coming in Q4: Qiskit Integration with multi-node, multi-GPU support

Trivially Scale Quantum Algorithms with Industry Leading Performance

Multi-node weak scaling 45 40 a 35 30 Execution 20 15 10 0 32/ S) UR

Qubits/GPUs

2 DGX A100

Record breaking performance 2 DGX A100 vs previous best on 64 node CPU cluster

Time for Quantum Volume Depth 10

cuTensorNet A LIBRARY TO ACCELERATE TENSOR NETWORK BASED QUANTUM CIRCUIT SIMULATION

- The cuTensorNet library initially will provide the following APIs:
 - Given a tensor network definition calculate optimal contraction path subject to memory constraints and parallelization needs:
 - Hyper-optimization is used to find contraction path with lowest total cost (eg, FLOPS or time estimate)
 - Slicing is introduced to create parallelism or reduce maximum intermediate tensor sizes
 - 2. Given a contraction path for a Tensor Network calculate an optimized execution plan
 - Leverages cuTENSOR heuristics
 - 3. Execute the TN contraction
- cuTensorNet depends on the latest cuTENSOR library for executing all pairwise contractions for cuTENSOR

cuTensorNet TENSOR NETWORK PATH OPTIMIZATION PERFORMANCE

Quality of Path

• cuTensorNet achieves SotA pathfinding results dramatically faster, and does better with more complex networks

[1] Gray & Kourtis, Hyper-optimized tensor network contraction, 2021 https://quantum-journal.org/papers/q-2021-03-15-410/pdf/ [2] opt-einsum https://pypi.org/project/opt-einsum/

NVIDIA's Selene DGX SuperPOD based supercomputer

- Using 20 nodes of the Selene Supercomputer with tensor ulletnetwork method simulation
- Solved a 3,375 vertex problem (1,688 qubits) with 97% accuracy
- Solved a 10,000 vertex problem (5,000 qubits) with 93% accuracy

Scaling Simulations to a Supercomputer

210

Previous largest problem, Theta Supercomputer [1]

[1] Danylo Lykov et al, Tensor Network Quantum Simulator With Step-Dependent Parallelization, 2020 https://arxiv.org/pdf/2012.02430.pdf

Vertex Count

10,000

3,375

CLASS Q ColdQuanta

NVIDIA cuQuantum Ecosystem

📀 NVIDIA

- Supports statevector and tensor network methods
- Simulate noisy or perfect qubits
- - Multi-GPU supported today
 - Q4 release will include Qiskit

Summary

cuQuantum available today: https://developer.nvidia.com/cuquantum-sdk

• Integrated in all major quantum circuit simulation frameworks (Cirq, Qiskit, PennyLane...)

 DGX cuQuantum Appliance available on Perlmutter today as well as for download: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuquantum-appliance

