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GPU Supercomputing and Quantum

Researching the Quantum Computers of Tomorrow with the Supercomputers of Today

QUANTUM SIMULATION HYBRID QUANTUM-CLASSICAL COMPUTING
CUQUANTUM QODA
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* Develop algorithms at scale of valuable quantum computing * Develop quantum applications by integrating quantum into

leading accelerated applications

» Discover use cases with quantum advantage

, , » Build a platform that is familiar to domain scientists
* Design and validate future hardware

* Unparalleled performance and scientific productivity using the
best resource for the task
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Supercomputing Scale Quantum
Circurt Simulation with / ”,

cuQuantum



cuQuantum
Deployed on Perlmutter now!

* SDK for Quantum Circuit Simulation
* Accelerate Quantum Circuit Simulators on GPUs
- Enable algorithms research with scale and
performance not possible on quantum hardware,
or on simulators today

» cuQuantum available now

* Integrated into leading quantum computing
frameworks Cirqg, Qiskit, and Pennylane

» C and Python APIs

» Available today at
developer.nvidia.com/cuquantum

_ Cirg & Qiskit \7 PENNYLANE
- XACC (7 oruesra @UBO

Quantum Circuit Simulators

QPU
cuStateVec cuTensorNet
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Two Leading Quantum Circuit Simulation Approaches
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State vector simulation Tensor networks
“Gate-based emulation of a quantum computer” “Only simulate the states you need”
Maintain full 2" qubit vector state in memory Uses tensor network contractions to dramatically

reduce memory for simulating circuits

Can simulate 100s or 1000s of qubits for many
practical quantum circuits

Update all states every timestep, probabilistically sample n
of the states for measurement

Memory capacity & time grow exponentially w/ # of qubits -
practical limit around 50 qubits on a supercomputer

Can model either ideal or noisy qubits

GPUs are a great fit for either approach

Tensor Network image from Quimb: https://quimb.readthedocs.io/en/latest/index.html 5 SAnviDIA. I



Researching & developing the quantum applications of tomorrow
requires powerful simulations today
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DGX cuQuantum Appliance

Deployed on Perlmutter

Multi-GPU Speedup of Cirq with cuQuantum on DGX A100

300
Fully integrated quantum simulation solution !
« State-of-the-art performance
 Unmatched simulation scale I
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DGX cuQuantum Appliance

Coming in Q4: Qiskit Integration with multi-node, multi-GPU support

Trivially Scale Quantum Algorithms with Industry Leading Performance
Fully integrated quantum simulation solution

« State-of-the-art performance Multi-node weak scaling Multi-node strong scaling for 32 qubits
* Unmatched simulation scale 45 12
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Quantum Volume, depth=30
m— QAOA
Quantum Phase Estimation

DGX cuQuantum Appliance

Record breaking performance
2 DGX A100 vs previous best on 64 node CPU cluster

64 Node CPU Cluster

cuStateVec cuTensorNet
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culensorNet
A LIBRARY TO ACCELERATE TENSOR NETWORK BASED QUANTUM CIRCUIT SIMULATION

* The cuTensorNet library initially will provide the
following APIs: A B C D E A B C D E
. . . . ( _\ ( _\ (_ \ ( | \
|. Given a tensor network definition calculate n n n n
: : : nI X X nI X X nI nI X X nI X X nl
optimal contraction path subject to memory . N )
constraints and parallelization needs: . 7S 7 p -
S | | ( F=AxB, 2n2 G=CxD, 2n2| E A G=BxC, 2n  F=DxE 2n
» Hyper-optimization is used to find contraction y I ¥ . =
path with lowest total cost (eg, FLOPS or time ) I \ y
estimate) - N
A H=FxG, 2
- Slicing is introduced to create parallelism or reduce I x
Mmaximum intermediate tensor sizes ! y
. : T=AXxH, 2n
2. Given a contraction path for a Tensor Network I
calculate an optimized execution plan
o Naive contraction: T= (A,B) (C,D) (F,G) (H,E) Optimal contraction: T= (D,E) (B,C) (F,G) (A,H)
- Leverages cuTENSOR heuristics Cost: 2n3+6n2 Cost: 6n+2

3. Execute the TN contraction

» cuTensorNet depends on the latest cuTENSOR
library for executing all pairwise contractions for

CUTENSOR

y

Tensor Network image from Quimb: https://quimb.readthedocs.io/en/latest/index.html 9 SAnviDIA. I
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Total Contraction Cost [FLOPs]
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culensorNet

TENSOR NETWORK PATH OPTIMIZATION PERFORMANCE

Quality of Path
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m10 simplified 168 tensors m20 simplified 382 tensors
Cotengra M culensorNet

» cuTensorNet achieves SotA pathfinding results dramatically faster, and does better with more complex
networks

[1] Gray & Kourtis, Hyper-optimized tensor network contraction, 2021 https://quantum-journal.org/papers/q-2021-03-15-410/pdf/
[2] opt-einsum https://pypi.org/project/opt-einsum/
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m20 non-simplified 3316 tensors
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https://quantum-journal.org/papers/q-2021-03-15-410/pdf/
https://pypi.org/project/opt-einsum/

Scaling Simulations to a Supercomputer

Vertex Count
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NVIDIA’s Selene DGX SuperPOD based supercomputer 3,375
» Using 20 nodes of the Selene Supercomputer with tensor

network method simulation
* Solved a 3,375 vertex problem (1,688 qubits) with 97% 519

aCCcuracy 210

] _

» Solved a 10,000 vertex problem (5,000 qubits) with 93% Previous largest Single GPU Supercomputer Supercomputer

accurac problem, Theta 97% Accuracy 97% Accuracy 93% Accuracy

y Supercomputer [1]

[1] Danylo Lykov et al, Tensor Network Quantum Simulator With Step-Dependent Parallelization, 2020
https://arxiv.org/pdf/2012.02430.pdf 11 <SYNVIDIA. I



https://arxiv.org/pdf/2012.02430.pdf

NVIDIA cuQuantum Ecosystem
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Summary

cuQuantum available today: https://developer.nvidia.com/cuguantum-sdk
Supports statevector and tensor network methods
Simulate noisy or perfect qubits
Integrated in all major quantum circuit simulation frameworks (Cirq, Qiskit, PennyLane...)

DGX cuQuantum Appliance available on PerImutter today as well as for download:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuguantum-appliance

Multi-GPU supported today
Q4 release will include Qiskit
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