Introduction to porting Python to GPU with JAX.

NERSC Data Day 2022

Nestor Demeure¹
¹ National Energy Research Scientific Computing Center, Berkeley CA, United-states
I am a **NESAP Postdoctoral Researcher at NERSC** with a focus on high performance computing, numerical accuracy and artificial intelligence.

I specialize in helping teams of researchers make use of high performance computing environments.

I am currently working to help port the [TOAST software framework](https://www.tomato-intel.com) to the new Perlmutter supercomputer and, in particular, port it to graphic processors (GPU).
Up to x16 speed-up from optimized C++ to JAX!

Cumulative runtime in seconds.
Porting a Python code to GPU

Pros and cons of the current approaches
Using off-the-shelf kernels

Call a library providing off-the-shelf kernels:

- **Numpy ➔ Cupy**
- **Scipy ➔ Cupy**
- **Pandas ➔ RAPIDS CuDF**
- **Scikit-learn ➔ RAPIDS CuML**

- Very easy to use,
- perfect if you find what you need,
- cannot write your own kernel,
- performance loss:
 - allocating intermediate values,
 - more data transfers to the GPU.
Using a deep-learning library

Use a deep-learning library:

- **Pytorch**
- **Tensorflow**
- **JAX**

- Great for deep-learning,
- easy to use and well documented,
- support for most numerical building blocks,
- *usually*, a large overhead:
 - gradient computation,
 - intermediate values.
Writing a kernel in a low-level language

Write a kernel in **CUDA** / **OpenCL** / **HIP** / **SYCL** / etc and link it in Python.

You can use **PyOpenCL** or **PyCuda** to link your kernel.

- Perfect control of performance,
- cannot reuse numerical building blocks (PRNG, FFT, linear algebra),
- requires a lot of expertise:
 - to write code that is *actually* performant,
 - to write *correct* code,
 - to *compile and link* the result into Python.
Write a kernel in Python using:

- **Numba**,
 - limited Numpy support,
 - low-level CUDA-like syntax,
- **Taichi**
 - focus on graphics,
 - requires implementing most of the operations you need from scratch.

- Full Python codebase,
- can still be very low-level,
- very limited building blocks.
Can we have good GPU performance, portability and productivity?
Introducing JAX

High-level introduction to JAX
JAX is a Python library to write code that can run in parallel on:

- CPU,
- GPU (Nvidia and AMD),
- TPU,
- etc.

Developed by Google as a building block for deep-learning frameworks. Seeing wider use in numerical applications including:

- Molecular dynamics,
- computational fluid dynamics,
- ocean simulation.
What does JAX look like?

It has a Numpy-like interface:

```python
from jax import random
from jax import numpy as jnp

key = random.PRNGKey(0)
x = random.normal(key, shape=(3000, 3000), dtype=jnp.float32)
y = jnp.dot(x, x.T)  # runs on GPU if available
```
How does JAX work?

Calls a *just-in-time compiler* when you execute your function with a *new problem size*:
JAX’s limitations

- Compilation happens just-in-time, at runtime, easily amortized on a long running computation
- Input sizes must be known to the tracer, padding, masking and recompiling for various sizes
- Loops and tests are limited inside JIT sections, JAX provides replacement functions
- No side effects and no in-place modifications, one gets used to it, it actually helps with correctness
- Focus on GPU optimizations rather than CPU. There is growing attention to the problem
How do we use it?
Using JAX

Writing JAX code
Numpy-like syntax

If you know Numpy you are 90% of the way there.

```python
import jax.numpy as jnp

x = jnp.ones(shape=(1000,1000))
y = 2 * jnp.zeros(1000)

z = jnp.dot(x, jnp.cos(y))
y2 = jnp.linalg.solve(x, z)
```
JAX arrays are **immutable** but, you can use shadowing and `.at[] functions`:

```python
# arr += 1
arr = arr + 1

# arr[index] = 1
# WARNING: this produces a new array
arr = arr.at[index].set(1)

# arr[index] += 1
# NOTE: this operation is atomic
arr = arr.at[index].add(1)
```
JAX will be \textit{slow} unless you \texttt{compile} your code:

```python
from jax import jit

def f(x):
    print("Tracing right now!")
    return x*2

f_jitted = jit(f)
y = f_jitted(x)
```

- Recompile when the \texttt{static inputs} (including problem size) are changed,
- inputs can be built-in types, arrays, lists, dictionaries, struct, etc.
Numbers, booleans and user defined struct can be marked as static:

```python
from jax import jit

def f(x, should_double):
    return (x*2) if should_double else x

# specify static inputs
f_jitted = jit(f, static_argnames=["should_double"])
```

- Useful to help optimizer and workaround limitations in tests and loops,
- value needs to be hashable (does not apply to lists and arrays),
- will trigger recompilation if the value is changed.
Inputs can be donated:

```python
from jax import jit

def f(x):
    return 2*x

# specify donated inputs
f_jitted = jit(f, donate_argnums=[0])
```

- useful to **reduce allocations**,
- does **not currently apply** to CPU.
In jitted sections, you can only perform tests on static values, instead:

- Use `where` to combine inexpensive computations with a mask,
- use `cond` to run expensive computations depending on a boolean.

```python
import jax

# where
y = jax.numpy.where(is_true, y_true, y_false)

# cond
y = jax.lax.cond(is_true, f_true, f_false, x)
```
Loops and vectorisation

In jitted sections, loop conditions are restricted to static values and will be **unrolled**:

- JAX provides **control flow operators** including `while_loop` and `fori_loop`,
- JAX let you **vectorise** your function with `vmap`, `pmap` and `xmap`.

```python
from jax.experimental.maps import xmap
from jax import vmap

# for i in range(nb_i):
#    for j in range(nb_j):
#        result[i,j] = f_body(x[i,j,:], y)

f_vmap_j = vmap(f_body, in_axes=(0,None), out_axes=0)
f_vmap_ij = vmap(f_vmap_j, in_axes=(0,None), out_axes=0)

f_xmap_ij = xmap(f_body, in_axes=[['i','j'],...], out_axes=['i','j'])
```
JAX uses its own PRNG tailored for parallelism and reproducibility:

```python
from jax import random

# initialize PRNG
seed = 1701
key = random.PRNGKey(seed)

# generates random numbers
key, subkey = random.split(key)
x = random.normal(subkey, shape=(3000, 3000))
```
JAX does **automatic differentiation** by code transformation:

```python
from jax import grad

# computes the derivative of the function f
df = grad(f)

# gets a result and its derivative
y = f(x)
dx = df(x)
```

- Can be applied repeatedly for **higher order derivation**,
- overhead **similar to analytic solution**,
- **no overhead** to function that are not differentiated,
- **some operations** cannot be differentiated.
You can do three things to improve performance significantly:

- Minimise the number of recompilations,
- put a maximum of your code inside a jitted section,
- keep the data on GPU, inside JAX arrays.
The **Awesome JAX** repository has a *lot* of good references including:

- **MPI4JAX**: MPI support for JAX,
- **Chex**: testing utilities for JAX,
- **JAXopt**: optimizers written in JAX,
- **Einshape**: an alternative reshaping syntax,
- deep learning frameworks built upon JAX:
 - **FLAX**: widely used and flexible,
 - **Equinox**: focus on simplicity,
 - etc.
Is it worth it?
Case study

Porting the TOAST codebase to GPU
TOAST is a large Python application used to study the cosmic microwave background.

It is made of pipelines distributed with MPI and composed of **C++ kernels** parallelized with OpenMP.

Kernels use a **wide variety of numerical methods** including random number generation, linear algebra and fast fourier transforms.

We ported **two pipelines to GPU**.
Kernels were ported from C++ to Numpy to JAX and validated using unit tests.

Kernels loop on irregular intervals, we introduced a JaxIntervals type to automate padding and masking.

Kernels mutate output parameters, we introduced a MutableJaxArray type to box JAX arrays.

Data movement is expensive, we move data once at the beginning and end of each pipeline call.
Porting the code (x7 reduction in lines of code)
Performance per kernel (up to x16 speed-up)

- stage_requirements_to_device
- finalize
- template_offset_apply_diag_precond
- noise_weight
- template_offset_add_to_signal
- scan_map
- pointing_detector
- build_noise_weighted
- pixels_healpix
- stokes_weights_IQU
- template_offset_project_signal

Cumulative runtime in seconds.

- OpenMP (4 threads)
- JAX 1 GPU
This was a proof of concept, we can improve and simplify things significantly:

- **Reduce data movement**,
- remove C++ dependencies by **porting more kernels**,
- default to **JAX arrays** and **pure functions**,
- redesign pipelines to JIT them into **single GPU kernels**.
Overview

Should you use JAX in your project?
Should you use JAX?

- Your code is written in **Python**,
- your code can be written with **Numpy**,
- your array sizes are **not too dynamic**,
- single-thread CPU is an **acceptable fallback** in the absence of GPU.
I believe JAX is in a **sweet spot for research and complex numerical codes**:

- Focus on the semantic, leaves optimization to the compiler,
- single code base to deal with CPU and GPUs,
- immutable design is actually *nice* for correctness,
- easy to use numerical building blocks inside kernels.
Thank you!

ndemeure@lbl.gov
Exercises!

https://cutt.ly/tNf8N7w