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Who am I?

I am a NESAP Postdoctoral Researcher at NERSC with a focus on high 
performance computing, numerical accuracy and artificial intelligence.

I specialize in helping teams of researchers make use of high performance 
computing environments.

I am currently working to help port the TOAST software framework to the new 
Perlmutter supercomputer and, in particular, port it to graphic processors (GPU).
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https://github.com/hpc4cmb/toast


Up to x16 speed-up from optimized C++ to JAX!
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Porting a Python code to GPU
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Pros and cons of the current approaches



Using off-the-shelf kernels

Call a library providing off-the-shelf kernels:

■ Numpy ➡ Cupy
■ Scipy ➡ Cupy
■ Pandas ➡ RAPIDS CuDF
■ Scikit-learn ➡ RAPIDS CuML

■ Very easy to use,
■ perfect if you find what you need,
■ cannot write your own kernel,
■ performance loss:
➖ allocating intermediate values,
➖ more data transfers to the GPU.
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https://numpy.org/
https://docs.cupy.dev/en/stable/reference/routines.html
https://scipy.org/
https://docs.cupy.dev/en/stable/reference/scipy.html
https://pandas.pydata.org/
https://docs.rapids.ai/api/cudf/stable/
https://scikit-learn.org/stable/
https://docs.rapids.ai/api/cuml/stable/


Using a deep-learning library

Use a deep-learning library:

■ Pytorch
■ Tensorflow
■ JAX

■ Great for deep-learning,
■ easy to use and well documented,
■ support for most numerical building blocks,
■ usually, a large overhead:
➖ gradient computation,
➖ intermediate values.
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https://pytorch.org/
https://www.tensorflow.org/
https://jax.readthedocs.io/en/latest/


Writing a kernel in a low-level language

Write a kernel in CUDA / OpenCL / HIP / SYCL / etc and link it in Python.

You can use PyOpenCL or PyCuda to link your kernel.

■ Perfect control of performance,
■ cannot reuse numerical building blocks (PRNG, FFT, linear algebra),
■ requires a lot of expertise:
➖ to write code that is actually performant,
➖ to write correct code,
➖ to compile and link the result into Python.
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https://documen.tician.de/pyopencl/
https://documen.tician.de/pycuda/


Writing a kernel in Python

Write a kernel in Python using:

■ Numba,
➖ limited Numpy support,
➖ low-level CUDA-like syntax,

■ Taichi
➖ focus on graphics,
➖ requires implementing most of the operations you need from scratch.

■ Full Python codebase,
■ can still be very low-level,
■ very limited building blocks.
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https://numba.readthedocs.io/en/stable/cuda/index.html
https://www.taichi-lang.org/


Can we have good GPU 
performance, portability and 

productivity?
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Introducing JAX
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High-level introduction to JAX



What is JAX?

JAX is a Python library to write code that can run in parallel on:

■ CPU, 
■ GPU (Nvidia and AMD),
■ TPU,
■ etc.

Developed by Google as a building block for deep-learning frameworks. Seeing 
wider use in numerical applications including:

■ Molecular dynamics, 
■ computational fluid dynamics,
■ ocean simulation. 11

https://github.com/google/jax
https://github.com/google/jax/issues/2012
https://github.com/google/jax-md
https://github.com/google/jax-cfd
https://arxiv.org/abs/2203.13760
https://veros.readthedocs.io/en/latest/


What does JAX look like?

It has a Numpy-like interface:
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from jax import random
from jax import numpy as jnp

key = random.PRNGKey( 0)
x = random.normal(key, shape=( 3000, 3000), dtype=jnp.float32)
y = jnp.dot(x, x.T) # runs on GPU if available



How does JAX work?

Calls a just-in-time compiler when you execute your function with a new 
problem size:

13



JAX’s limitations

■ Compilation happens just-in-time, at runtime,
easily amortized on a long running computation

■ input sizes must be known to the tracer,
padding, masking and recompiling for various sizes

■ loops and tests are limited inside JIT sections,
JAX provides replacement functions

■ no side effects and no in-place modifications,
one gets used to it, it actually helps with correctness

■ focus on GPU optimizations rather than CPU.
there is growing attention to the problem
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How do we use it?
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Using JAX
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Writing JAX code



Numpy-like syntax

If you know Numpy you are 90% of the way there.
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import jax.numpy as jnp

x = jnp.ones(shape=( 1000,1000))
y = 2 * jnp.zeros(1000)

z = jnp.dot(x, jnp.cos(y))
y2 = jnp.linalg.solve(x, z)



Mutability

JAX arrays are immutable but, you can use shadowing and .at[] functions:
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# arr += 1
arr = arr + 1

# arr[index] = 1
# WARNING: this produces a new array
arr = arr.at[index].set( 1)

# arr[index] += 1
# NOTE: this operation is atomic
arr = arr.at[index].add( 1)

https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.ndarray.at.html#jax.numpy.ndarray.at


Just-in-time compilation

JAX will be slow unless you compile your code:
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from jax import jit

def f(x):
   print(“Tracing right now!”)
   return x*2

f_jitted = jit(f)
y = f_jitted(x)

■ Recompile when the static inputs (including problem size) are changed,
■ inputs can be built-in types, arrays, lists, dictionaries, struct, etc.

https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit


Just-in-time compilation: static values

Numbers, booleans and user defined struct can be marked as static:
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from jax import jit

def f(x, should_double):
   return (x*2) if should_double else x

# specify static inputs
f_jitted = jit(f, static_argnames=[”should_double”])

■ Useful to help optimizer and workaround limitations in tests and loops,
■ value needs to be hashable (does not apply to lists and arrays),
■ will trigger recompilation if the value is changed.



Just-in-time compilation: donate input

Inputs can be donated:
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from jax import jit

def f(x):
   return 2*x

# specify donated inputs
f_jitted = jit(f, donate_argnums=[0])

■ useful to reduce allocations,
■ does not currently apply to CPU.



Conditionals

In jitted sections, you can only perform tests on static values, instead: 

■ Use where to combine inexpensive computations with a mask,
■ use cond to run expensive computations depending on a boolean.
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import jax

# where
y = jax.numpy.where(is_true, y_true, y_false)

# cond
y = jax.lax.cond(is_true, f_true, f_false, x)

https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.where.html?highlight=where
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.cond.html?highlight=cond


Loops and vectorisation

In jitted sections, loop conditions are restricted to static values and will be unrolled:

■ JAX provides control flow operators including while_loop and fori_loop,
■ JAX let you vectorise your function with vmap, pmap and xmap.

23

from jax.experimental.maps import xmap
from jax import vmap

#for i in range(nb_i):
#   for j in range(nb_j):
#      result[i,j] = f_body(x[i,j,:], y)

f_vmap_j = vmap(f_body, in_axes=(0,None), out_axes=0)
f_vmap_ij = vmap(f_vmap_j, in_axes=(0,None), out_axes=0)

f_xmap_ij = xmap(f_body, in_axes=[['i','j',...],[...]], out_axes=['i','j'])

https://jax.readthedocs.io/en/latest/jax.lax.html#control-flow-operators
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.while_loop.html#jax.lax.while_loop
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.fori_loop.html#jax.lax.fori_loop
https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html#jax.vmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.pmap.html#jax.pmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.experimental.maps.xmap.html?highlight=xmap


Pseudo random number generation

JAX uses its own PRNG tailored for parallelism and reproducibility:
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from jax import random

# initialize PRNG
seed = 1701
key = random.PRNGKey(seed)

# generates random numbers
key, subkey = random.split(key)
x = random.normal(subkey, shape=( 3000, 3000))

https://jax.readthedocs.io/en/latest/jax.random.html


Automatic differentiation
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JAX does automatic differentiation by code transformation:

from jax import grad

# computes the derivative of the function f
df = grad(f)

# gets a result and its derivative
y = f(x)
dx = df(x)

■ Can be applied repeatedly for higher order derivation,
■ overhead similar to analytic solution,
■ no overhead to function that are not differentiated,
■ some operations cannot be differentiated.

https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation
https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#summary


Performance tricks

You can do three things to improve performance significantly:

■ Minimise the number of recompilations,

■ put a maximum of your code inside a jitted section,

■ keep the data on GPU, inside JAX arrays.
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Useful libraries

The Awesome JAX repository has a lot of good references including:

■ MPI4JAX: MPI support for JAX,
■ Chex: testing utilities for JAX,
■ JAXopt: optimizers written in JAX,
■ Einshape: an alternative reshaping syntax,
■ deep learning frameworks built upon JAX:
➖ FLAX: widely used and flexible,
➖ Equinox: focus on simplicity,
➖ etc.
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https://github.com/n2cholas/awesome-jax
https://github.com/mpi4jax/mpi4jax
https://github.com/deepmind/chex
https://github.com/google/jaxopt
https://github.com/deepmind/einshape
https://github.com/google/flax
https://github.com/patrick-kidger/equinox
https://github.com/n2cholas/awesome-jax#libraries


Is it worth it?
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Case study

29

Porting the TOAST codebase to GPU



TOAST

TOAST is a large Python application used to study the cosmic microwave 
background.

It is made of pipelines distributed with MPI and composed of C++ kernels 
parallelized with OpenMP.

Kernels use a wide variety of numerical methods including random number 
generation, linear algebra and fast fourier transforms.

We ported two pipelines to GPU.
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https://github.com/hpc4cmb/toast


Porting the code

Kernels were ported from C++ to Numpy to JAX and validated using unit tests.

Kernels loop on irregular intervals, we introduced a JaxIntervals type to 
automate padding and masking.

Kernels mutate output parameters, we introduced a MutableJaxArray type to 
box JAX arrays.

Data movement is expensive, we move data once at the beginning and end of 
each pipeline call.
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Porting the code (x7 reduction in lines of code)
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Performance per kernel (up to x16 speed-up)
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Perspectives

This was a proof of concept, we can improve and simplify things significantly:

■ Reduce data movement,

■ remove C++ dependencies by porting more kernels,

■ default to JAX arrays and pure functions,

■ redesign pipelines to JIT them into single GPU kernels.
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Overview
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Should you use JAX in your project?



Should you use JAX?
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■ Your code is written in Python,

■ your code can be written with Numpy,

■ your array sizes are not too dynamic,

■ single-thread CPU is an acceptable fallback in the absence of GPU.



JAX’s strengths
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I believe JAX is in a sweet spot for research and complex numerical codes:

■ Focus on the semantic, leaves optimization to the compiler,

■ single code base to deal with CPU and GPUs,

■ immutable design is actually nice for correctness,

■ easy to use numerical building blocks inside kernels.



Thank you!
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ndemeure@lbl.gov 

mailto:ndemeure@lbl.gov


Exercises!
https://cutt.ly/tNf8N7w  
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https://cutt.ly/tNf8N7w

