~~
ﬁh‘ﬂ

BERKELEY
LAB

NERSC

o o = A T o |
nal El ,ﬁRgseaisch Scientific Computing Center, Berkeley CA, Urﬂted-sté’(*




| am a NESAP Postdoctoral Researcher at NERSC with a focus on high
performance computing, numerical accuracy and artificial intelligence.

| specialize in helping teams of researchers make use of high performance
computing environments.

| am currently working to help port the TOAST software framework to the new
Perlmutter supercomputer and, in particular, port it to graphic processors (GPU).


https://github.com/hpc4cmb/toast

”N

rereeer| [0 Up to X16 speed-up from optimized C++ to JAX!

stage_requirements_to_device
finalize L

template_offset_apply_diag_precond

[ OpenMP (4 threads) [ JAX 1 GPU

noise_weight |,
template_offset_add_to_signal

scan_map

pointing_detector | 5

build_noise_weighted
pixels_healpix
stokes_weights_IQU

template_offset_project_signal

0.00s 20.00s 40.00s 60.00s 80.00s
Cumulative runtime in seconds.



Pros and cons of the current approaches




N

/\‘ ) Using off-the-shelf kernels

Call a library providing off-the-shelf kernels:

Numpy = Cupy

Scipy = Cupy

Pandas = RAPIDS CuDF
Scikit-learn = RAPIDS CuML

Very easy to use,
perfect if you find what you need,
cannot write your own kernel,

performance loss:
== allocating intermediate values,
== more data transfers to the GPU.


https://numpy.org/
https://docs.cupy.dev/en/stable/reference/routines.html
https://scipy.org/
https://docs.cupy.dev/en/stable/reference/scipy.html
https://pandas.pydata.org/
https://docs.rapids.ai/api/cudf/stable/
https://scikit-learn.org/stable/
https://docs.rapids.ai/api/cuml/stable/

N

:ﬁm Using a deep-learning library

Use a deep-learning library:

Pytorch
Tensorflow

JAX

Great for deep-learning,
easy to use and well documented,
support for most numerical building blocks,

usually, a large overhead:
== gradient computation,
== intermediate values.


https://pytorch.org/
https://www.tensorflow.org/
https://jax.readthedocs.io/en/latest/

N

:ﬁﬂ Writing a kernel in a low-level language

Write a kernel in CUDA / OpenCL / HIP / SYCL / etc and link it in Python.

You can use PyOpenCL or PyCuda to link your kernel.

Perfect control of performance,
cannot reuse numerical building blocks (PRNG, FFT, linear algebra),

requires a lot of expertise:

== to write code that is actually performant,
== {0 write correct code,

== to compile and link the result into Python.


https://documen.tician.de/pyopencl/
https://documen.tician.de/pycuda/

N

i)‘ﬂ Writing a kernel in Python

Write a kernel in Python using:

m Numba,

== |imited Numpy support,

== |ow-level CUDA-like syntax,
m Jaichi

== focus on graphics,
== requires implementing most of the operations you need from scratch.

Full Python codebase,
can still be very low-level,
very limited building blocks.


https://numba.readthedocs.io/en/stable/cuda/index.html
https://www.taichi-lang.org/

Can we have good GPU
performance, portability and
productivity?



High-level introduction to JAX




N

/\‘ 2 What is JAX?

JAX is a Python library to write code that can run in parallel on:

CPU,

GPU (Nvidia and AMD),
TPU,

etc.

Developed by Google as a building block for deep-learning frameworks. Seeing
wider use in numerical applications including:

m Molecular dynamics,
m computational fluid dynamics,
m ocean simulation. y



https://github.com/google/jax
https://github.com/google/jax/issues/2012
https://github.com/google/jax-md
https://github.com/google/jax-cfd
https://arxiv.org/abs/2203.13760
https://veros.readthedocs.io/en/latest/

”N

m What does JAX look like?

It has a Numpy-like interface:

from jax import random
from jax import numpy as jnp

key = random.PRNGKey ( 0)
x = random.normal (key, shape=( 3000, 3000), dtype=jnp.float32)
Y jnp.dot(x, x.T) # runs on GPU if available

12



i)‘ﬂ How does JAX work?

Calls a just-in-time compiler when you execute your function with a new

problem size:

CPU
I : GPU
Tracing e TPU

XLA optimizations

13



N

f\‘m JAX’s limitations

m Compilation happens just-in-time, at runtime,

m input sizes must be known to the tracer,

m loops and tests are limited inside JIT sections,

m no side effects and no in-place modifications,

m focus on GPU optimizations rather than CPU.

14



How do we use it?

15



Writing JAX code




”N

:h‘ﬂ Numpy-like syntax

If you know Numpy you are 90% of the way there.

import jax.numpy as Jjnp

X = jnp.ones (shape=(1000,1000))
y = 2 * jnp.zeros (1000)

z = jnp.dot(x, Jnp.cos(y))
y2 = jnp.linalg.solve(x, z)

17



”N

m Mutability

JAX arrays are immutable but, you can use shadowing and .at[] functions:

# arr += 1

arr = arr + 1

# arr[index] = 1
# WARNING: this produces a new array

arr = arr.at[index].set (1)

# arr[index] += 1
# NOTE: this operation is atomic

arr = arr.at[index].add( 1)

18


https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.ndarray.at.html#jax.numpy.ndarray.at

”N

:h‘ﬂ Just-in-time compilation

JAX will be slow unless you compile your code:

from jax import jit

def f(x):
print (“Tracing right now!"”)
return x*2

f jitted = jit(f)
y = f jitted(x)

m Recompile when the static inputs (including problem size) are changed,

m inputs can be built-in types, arrays, lists, dictionaries, struct, etc. .


https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit

”N

:r_}‘m Just-in-time compilation: static values

Numbers, booleans and user defined struct can be marked as static:

from jax import jit

def f(x, should double):
return (x*2) 1f should double else x

# specify static inputs
f jitted = jit(f, static argnames=["”should double”])

m Useful to help optimizer and workaround limitations in tests and loops,
m value needs to be hashable (does not apply to lists and arrays),
m will trigger recompilation if the value is changed. -



”N

:ﬁﬂ Just-in-time compilation: donate input

Inputs can be donated:

from jax import jit

def f (x):
return 2*x

# specify donated inputs
f jitted = jit(f, donate argnums=[0])

m useful to reduce allocations,
m does not currently apply to CPU.

21



”N

I —— ﬂ Conditionals

In jitted sections, you can only perform tests on static values, instead:

m Use where to combine inexpensive computations with a mask,
m use cond to run expensive computations depending on a boolean.

import jax

# where
y = Jax.numpy.where(is true, y true, y false)

# cond
y = Jax.lax.cond(is true, f true, f false, x)

22


https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.where.html?highlight=where
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.cond.html?highlight=cond

”N

Frecer ﬂ Loops and vectorisation

In jitted sections, loop conditions are restricted to static values and will be unrolled:

m JAX provides control flow operators including while loop and fori_loop,
m  JAX et you vectorise your function with vmap, pmap and xmap.

from jax.experimental .maps import xmap
from jax import vmap

#for i in range(nb 1i):

# for j in range(nb j):

# result[i,j] = £ body(x[i,3,:1, V)

f vmap j = vmap(f body, in axes=(,None), out axes=0)

f vmap ij = vmap(f vmap j, in axes=(,None), out axes=))

f xmap ij = xmap(f body, in axes=[[1','7',...]1,[...]], out axes=['1"',"']"'])
23


https://jax.readthedocs.io/en/latest/jax.lax.html#control-flow-operators
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.while_loop.html#jax.lax.while_loop
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.fori_loop.html#jax.lax.fori_loop
https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html#jax.vmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.pmap.html#jax.pmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.experimental.maps.xmap.html?highlight=xmap

”N

recere ﬂ Pseudo random number generation

JAX uses its own PRNG tailored for parallelism and reproducibility:

from jax import random

# initialize PRNG
seed = 1701
key = random.PRNGKey (seed)

# generates random numbers

key, subkey = random.split (key)
X = random.normal (subkey, shape=( 3000, 3000))

24


https://jax.readthedocs.io/en/latest/jax.random.html

”N

:r_}‘ﬂ Automatic differentiation

JAX does automatic differentiation by code transformation:

from jax import grad

# computes the derivative of the function £
df = grad(f)

# gets a result and its derivative

y = £(x)

dx = df (x)

Can be applied repeatedly for higher order derivation,

overhead similar to analytic solution,

no overhead to function that are not differentiated,

some operations cannot be differentiated. 25



https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation
https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#summary

~~
i)‘ﬂ Performance tricks

You can do three things to improve performance significantly:

m  Minimise the number of recompilations,
m put a maximum of your code inside a jitted section,

m keep the data on GPU, inside JAX arrays.

26



N

/\‘ 2 Useful libraries

The Awesome JAX repository has a /ot of good references including:

MPI4JAX: MPI support for JAX,

Chex: testing utilities for JAX,

JAXopt: optimizers written in JAX,
Einshape: an alternative reshaping syntax,

deep learning frameworks built upon JAX:
==  FLAX: widely used and flexible,

== Equinox: focus on simplicity,

] e_tc:.

27


https://github.com/n2cholas/awesome-jax
https://github.com/mpi4jax/mpi4jax
https://github.com/deepmind/chex
https://github.com/google/jaxopt
https://github.com/deepmind/einshape
https://github.com/google/flax
https://github.com/patrick-kidger/equinox
https://github.com/n2cholas/awesome-jax#libraries

Is it worth it?



Porting the TOAST codebase to GPU




TOAST is a large Python application used to study the cosmic microwave
background.

It is made of pipelines distributed with MPl and composed of C++ kernels
parallelized with OpenMP.

Kernels use a wide variety of numerical methods including random number
generation, linear algebra and fast fourier transforms.

We ported two pipelines to GPU.

30


https://github.com/hpc4cmb/toast

N

:ﬁm Porting the code

Kernels were ported from C++ to Numpy to JAX and validated using unit tests.

Kernels loop on irregular intervals, we introduced a Jaxintervals type to
automate padding and masking.

Kernels mutate output parameters, we introduced a MutableJaxArray type to
box JAX arrays.

Data movement is expensive, we move data once at the beginning and end of
each pipeline call.

31



”N

~~reer| 1] Porting the code (x7 reduction in lines of code)

build_noise_weighted
cov_accum_diag_hits
cov_accum_diag_invnpp
pixels_healpix
pointing_detector

filter_polynomial

filter_poly2D |
scan_map |

stokes_weights_| |

stokes_weights_IQU
template_offset_add_to_signal
template_offset_project_signal

template_offset_apply_diag_precond

50

100
Lines of code

| JAX B C++

150

200



:ﬁ u| Performance per kernel (up to x16 speed-up)

stage_requirements_to_device
finalize L

template_offset_apply_diag_precond

[ OpenMP (4 threads) [ JAX 1 GPU

noise_weight |,
template_offset_add_to_signal

scan_map

pointing_detector | 5

build_noise_weighted
pixels_healpix
stokes_weights_IQU

template_offset_project_signal

0.00s 20.00s 40.00s 60.00s 80.00s
Cumulative runtime in seconds.



N

:ﬁ ﬂ Perspectives

This was a proof of concept, we can improve and simplify things significantly:

m Reduce data movement,
m remove C++ dependencies by porting more kernels,
m default to JAX arrays and pure functions,

m redesign pipelines to JIT them into single GPU kernels.

34



Should you use JAX in your project?




N

f\‘m Should you use JAX?

m Your code is written in Python,
m your code can be written with Numpy,
m your array sizes are not too dynamic,

m single-thread CPU is an acceptable fallback in the absence of GPU.

36



N

:ﬁm JAX’s strengths

| believe JAX is in a sweet spot for research and complex numerical codes:

m Focus on the semantic, leaves optimization to the compiler,
m single code base to deal with CPU and GPUs,
m immutable design is actually nice for correctness,

m easy to use numerical building blocks inside kernels.

37



Thank you!

ndemeure@lbl.gov



mailto:ndemeure@lbl.gov

Exercises!
https://cutt.ly/tNfSN 7w

39


https://cutt.ly/tNf8N7w

