
Nestor Demeure1

1 National Energy Research Scientific Computing Center, Berkeley CA, United-states

Introduction to porting Python to
GPU with JAX.
NERSC Data Day 2022

Who am I?

I am a NESAP Postdoctoral Researcher at NERSC with a focus on high
performance computing, numerical accuracy and artificial intelligence.

I specialize in helping teams of researchers make use of high performance
computing environments.

I am currently working to help port the TOAST software framework to the new
Perlmutter supercomputer and, in particular, port it to graphic processors (GPU).

2

https://github.com/hpc4cmb/toast

Up to x16 speed-up from optimized C++ to JAX!

3

Porting a Python code to GPU

4

Pros and cons of the current approaches

Using off-the-shelf kernels

Call a library providing off-the-shelf kernels:

■ Numpy ➡ Cupy
■ Scipy ➡ Cupy
■ Pandas ➡ RAPIDS CuDF
■ Scikit-learn ➡ RAPIDS CuML

■ Very easy to use,
■ perfect if you find what you need,
■ cannot write your own kernel,
■ performance loss:
➖ allocating intermediate values,
➖ more data transfers to the GPU.

5

https://numpy.org/
https://docs.cupy.dev/en/stable/reference/routines.html
https://scipy.org/
https://docs.cupy.dev/en/stable/reference/scipy.html
https://pandas.pydata.org/
https://docs.rapids.ai/api/cudf/stable/
https://scikit-learn.org/stable/
https://docs.rapids.ai/api/cuml/stable/

Using a deep-learning library

Use a deep-learning library:

■ Pytorch
■ Tensorflow
■ JAX

■ Great for deep-learning,
■ easy to use and well documented,
■ support for most numerical building blocks,
■ usually, a large overhead:
➖ gradient computation,
➖ intermediate values.

6

https://pytorch.org/
https://www.tensorflow.org/
https://jax.readthedocs.io/en/latest/

Writing a kernel in a low-level language

Write a kernel in CUDA / OpenCL / HIP / SYCL / etc and link it in Python.

You can use PyOpenCL or PyCuda to link your kernel.

■ Perfect control of performance,
■ cannot reuse numerical building blocks (PRNG, FFT, linear algebra),
■ requires a lot of expertise:
➖ to write code that is actually performant,
➖ to write correct code,
➖ to compile and link the result into Python.

7

https://documen.tician.de/pyopencl/
https://documen.tician.de/pycuda/

Writing a kernel in Python

Write a kernel in Python using:

■ Numba,
➖ limited Numpy support,
➖ low-level CUDA-like syntax,

■ Taichi
➖ focus on graphics,
➖ requires implementing most of the operations you need from scratch.

■ Full Python codebase,
■ can still be very low-level,
■ very limited building blocks.

8

https://numba.readthedocs.io/en/stable/cuda/index.html
https://www.taichi-lang.org/

Can we have good GPU
performance, portability and

productivity?

9

Introducing JAX

10

High-level introduction to JAX

What is JAX?

JAX is a Python library to write code that can run in parallel on:

■ CPU,
■ GPU (Nvidia and AMD),
■ TPU,
■ etc.

Developed by Google as a building block for deep-learning frameworks. Seeing
wider use in numerical applications including:

■ Molecular dynamics,
■ computational fluid dynamics,
■ ocean simulation. 11

https://github.com/google/jax
https://github.com/google/jax/issues/2012
https://github.com/google/jax-md
https://github.com/google/jax-cfd
https://arxiv.org/abs/2203.13760
https://veros.readthedocs.io/en/latest/

What does JAX look like?

It has a Numpy-like interface:

12

from jax import random
from jax import numpy as jnp

key = random.PRNGKey(0)
x = random.normal(key, shape=(3000, 3000), dtype=jnp.float32)
y = jnp.dot(x, x.T) # runs on GPU if available

How does JAX work?

Calls a just-in-time compiler when you execute your function with a new
problem size:

13

JAX’s limitations

■ Compilation happens just-in-time, at runtime,
easily amortized on a long running computation

■ input sizes must be known to the tracer,
padding, masking and recompiling for various sizes

■ loops and tests are limited inside JIT sections,
JAX provides replacement functions

■ no side effects and no in-place modifications,
one gets used to it, it actually helps with correctness

■ focus on GPU optimizations rather than CPU.
there is growing attention to the problem

14

How do we use it?

15

Using JAX

16

Writing JAX code

Numpy-like syntax

If you know Numpy you are 90% of the way there.

17

import jax.numpy as jnp

x = jnp.ones(shape=(1000,1000))
y = 2 * jnp.zeros(1000)

z = jnp.dot(x, jnp.cos(y))
y2 = jnp.linalg.solve(x, z)

Mutability

JAX arrays are immutable but, you can use shadowing and .at[] functions:

18

arr += 1
arr = arr + 1

arr[index] = 1
WARNING: this produces a new array
arr = arr.at[index].set(1)

arr[index] += 1
NOTE: this operation is atomic
arr = arr.at[index].add(1)

https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.ndarray.at.html#jax.numpy.ndarray.at

Just-in-time compilation

JAX will be slow unless you compile your code:

19

from jax import jit

def f(x):
 print(“Tracing right now!”)
 return x*2

f_jitted = jit(f)
y = f_jitted(x)

■ Recompile when the static inputs (including problem size) are changed,
■ inputs can be built-in types, arrays, lists, dictionaries, struct, etc.

https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit

Just-in-time compilation: static values

Numbers, booleans and user defined struct can be marked as static:

20

from jax import jit

def f(x, should_double):
 return (x*2) if should_double else x

specify static inputs
f_jitted = jit(f, static_argnames=[”should_double”])

■ Useful to help optimizer and workaround limitations in tests and loops,
■ value needs to be hashable (does not apply to lists and arrays),
■ will trigger recompilation if the value is changed.

Just-in-time compilation: donate input

Inputs can be donated:

21

from jax import jit

def f(x):
 return 2*x

specify donated inputs
f_jitted = jit(f, donate_argnums=[0])

■ useful to reduce allocations,
■ does not currently apply to CPU.

Conditionals

In jitted sections, you can only perform tests on static values, instead:

■ Use where to combine inexpensive computations with a mask,
■ use cond to run expensive computations depending on a boolean.

22

import jax

where
y = jax.numpy.where(is_true, y_true, y_false)

cond
y = jax.lax.cond(is_true, f_true, f_false, x)

https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.where.html?highlight=where
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.cond.html?highlight=cond

Loops and vectorisation

In jitted sections, loop conditions are restricted to static values and will be unrolled:

■ JAX provides control flow operators including while_loop and fori_loop,
■ JAX let you vectorise your function with vmap, pmap and xmap.

23

from jax.experimental.maps import xmap
from jax import vmap

#for i in range(nb_i):
for j in range(nb_j):
result[i,j] = f_body(x[i,j,:], y)

f_vmap_j = vmap(f_body, in_axes=(0,None), out_axes=0)
f_vmap_ij = vmap(f_vmap_j, in_axes=(0,None), out_axes=0)

f_xmap_ij = xmap(f_body, in_axes=[['i','j',...],[...]], out_axes=['i','j'])

https://jax.readthedocs.io/en/latest/jax.lax.html#control-flow-operators
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.while_loop.html#jax.lax.while_loop
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.fori_loop.html#jax.lax.fori_loop
https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html#jax.vmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.pmap.html#jax.pmap
https://jax.readthedocs.io/en/latest/_autosummary/jax.experimental.maps.xmap.html?highlight=xmap

Pseudo random number generation

JAX uses its own PRNG tailored for parallelism and reproducibility:

24

from jax import random

initialize PRNG
seed = 1701
key = random.PRNGKey(seed)

generates random numbers
key, subkey = random.split(key)
x = random.normal(subkey, shape=(3000, 3000))

https://jax.readthedocs.io/en/latest/jax.random.html

Automatic differentiation

25

JAX does automatic differentiation by code transformation:

from jax import grad

computes the derivative of the function f
df = grad(f)

gets a result and its derivative
y = f(x)
dx = df(x)

■ Can be applied repeatedly for higher order derivation,
■ overhead similar to analytic solution,
■ no overhead to function that are not differentiated,
■ some operations cannot be differentiated.

https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation
https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#summary

Performance tricks

You can do three things to improve performance significantly:

■ Minimise the number of recompilations,

■ put a maximum of your code inside a jitted section,

■ keep the data on GPU, inside JAX arrays.

26

Useful libraries

The Awesome JAX repository has a lot of good references including:

■ MPI4JAX: MPI support for JAX,
■ Chex: testing utilities for JAX,
■ JAXopt: optimizers written in JAX,
■ Einshape: an alternative reshaping syntax,
■ deep learning frameworks built upon JAX:
➖ FLAX: widely used and flexible,
➖ Equinox: focus on simplicity,
➖ etc.

27

https://github.com/n2cholas/awesome-jax
https://github.com/mpi4jax/mpi4jax
https://github.com/deepmind/chex
https://github.com/google/jaxopt
https://github.com/deepmind/einshape
https://github.com/google/flax
https://github.com/patrick-kidger/equinox
https://github.com/n2cholas/awesome-jax#libraries

Is it worth it?

28

Case study

29

Porting the TOAST codebase to GPU

TOAST

TOAST is a large Python application used to study the cosmic microwave
background.

It is made of pipelines distributed with MPI and composed of C++ kernels
parallelized with OpenMP.

Kernels use a wide variety of numerical methods including random number
generation, linear algebra and fast fourier transforms.

We ported two pipelines to GPU.

30

https://github.com/hpc4cmb/toast

Porting the code

Kernels were ported from C++ to Numpy to JAX and validated using unit tests.

Kernels loop on irregular intervals, we introduced a JaxIntervals type to
automate padding and masking.

Kernels mutate output parameters, we introduced a MutableJaxArray type to
box JAX arrays.

Data movement is expensive, we move data once at the beginning and end of
each pipeline call.

31

Porting the code (x7 reduction in lines of code)

32

Performance per kernel (up to x16 speed-up)

33

Perspectives

This was a proof of concept, we can improve and simplify things significantly:

■ Reduce data movement,

■ remove C++ dependencies by porting more kernels,

■ default to JAX arrays and pure functions,

■ redesign pipelines to JIT them into single GPU kernels.

34

Overview

35

Should you use JAX in your project?

Should you use JAX?

36

■ Your code is written in Python,

■ your code can be written with Numpy,

■ your array sizes are not too dynamic,

■ single-thread CPU is an acceptable fallback in the absence of GPU.

JAX’s strengths

37

I believe JAX is in a sweet spot for research and complex numerical codes:

■ Focus on the semantic, leaves optimization to the compiler,

■ single code base to deal with CPU and GPUs,

■ immutable design is actually nice for correctness,

■ easy to use numerical building blocks inside kernels.

Thank you!

38

ndemeure@lbl.gov

mailto:ndemeure@lbl.gov

Exercises!
https://cutt.ly/tNf8N7w

39

https://cutt.ly/tNf8N7w

