
1

I/O Best Practices

New User Training
June 16, 2020

Quincey Koziol
Data and Analytics Services Group

2

Outline
● Parallel I/O

○ I/O Stack Overview
○ I/O Profiling Tools: Darshan, Success story
○ I/O Pattern Analysis: Contiguous, Non-contiguous, Random, etc.
○ I/O Libraries: MPI-IO, HDF5, h5py

● Burst Buffer
○ Architecture
○ Data Path: BB to/from Lustre
○ Success Story: BB vs. Lustre w/ Astronomy App: H5Boss

3

I/O Stack: Moving Data To Disk

df=pd.read_csv(“/scratch/data.csv”)

High Level I/O Libraries map
application abstractions onto
storage abstractions and provide
data portability.

HDF5, Parallel netCDF, ADIOS

I/O Middleware organizes accesses
from many processes, especially
those using collective I/O.

MPI-IO, GLEAN, PLFS

Parallel file systems maintain a
logical file model and provide
efficient access to data.

Lustre, GPFS, PVFS, PanFS

I/O Hardware

Application

Parallel File System

High-Level I/O Library
I/O Middleware

I/O Forwarding

Based on Jialin Liu, Philip Carns, and Rob Ross’ slides

I/O Forwarding transforms I/O from
many clients into fewer, larger
requests; reduces lock contention;
and bridges between the HPC
system and external storage.

IBM ciod, IOFSL, Cray DVS, Cray
Datawarp

Productivity Interface

Productivity Interface is a thin
layer on top of existing high
performance I/O libraries, for
productive big data analytics

Python, Spark, TensorFlow

Home: /global/homes/k/koziol
Scratch: /global/cscratch1/sd/koziol
Project: /project/projectdirs/dasrepo

4

Productive I/O Interface: h5py

● Parallel h5py example:

from mpi4py import MPI

import h5py

fx=h5py.File(’output.h5’, ‘w’, driver=‘mpio’, comm=MPI.COMM_WORLD)

dset[start:end,:]=temp with dset.collective:

 dset[start:end,:]=temp

Independent I/O Collective I/O

5

Coding Effort

6

Python vs. C Performance: h5py vs. HDF5 C

Single Node Multi-nodes

Metadata
1k File Creation 63.8%
1k Object Scanning 60.0%

Independent I/O
Weak Scaling 97.8% 100%
Strong Scaling 100% 97.1%

Collective I/O
Weak Scaling 100% 90%
Strong Scaling 98.6% 87%

Question: When you improve productivity, how much performance do you lose?

HDF5 vs. h5py: https://www.nersc.gov/assets/Uploads/H5py-2017-May26-public.pdf

7

High Level I/O Libraries
● Provide high-performance parallel I/O, while reducing complexity

○ Object-oriented data model that allows users to specify complex
data relationships and dependencies

○ Have self-describing, machine-independent data formats that are
suitable for array-oriented scientific data

● Examples:
○ HDF5:

■ HDF Group / LBNL, started in 1997
■ Very popular: in top 5 libraries at NERSC

○ Parallel netCDF:
■ Unidata / NWU / ANL, started in 2001

○ ADIOS:
■ ORNL / SNL, started in 2009

8

High-level I/O Libraries: HDF5

● Parallel HDF5 example:

fapl_id = H5Pcreate(H5P_FILE_ACCESS);

file_id = H5Fcreate(FNAME,…, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, space_id,…);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id);
…

9

High-level I/O Libraries: HDF5
● Parallel HDF5 example:

MPI_Init(&argc, &argv);

fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
file_id = H5Fcreate(FNAME,…, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, space_id,…);
xf_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id);
…
MPI_Finalize();

10

High-level I/O Libraries: HDF5

● Parallel HDF5 Tutorials:
○ NERSC:

■ https://www.nersc.gov/users/training/online-tutorials/introduction-to-
scientific-i-o/

○ ATPESC:
■ https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_20

19_Track-3_6_8-2_130pm_Koziol-Scalable_HDF5.pdf
○ The HDF Group:

■ https://confluence.hdfgroup.org/display/HDF5/Parallel+HDF5

https://www.nersc.gov/users/training/online-tutorials/introduction-to-scientific-i-o/
https://www.nersc.gov/users/training/online-tutorials/introduction-to-scientific-i-o/
https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-3_6_8-2_130pm_Koziol-Scalable_HDF5.pdf
https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-3_6_8-2_130pm_Koziol-Scalable_HDF5.pdf
https://confluence.hdfgroup.org/display/HDF5/Parallel+HDF5

11

I/O Middleware
● More I/O Software! Why?

○ I/O middleware provides performance portability between parallel
file systems

○ Reduces or eliminates optimization in application code
● MPI-IO

○ Standardized I/O Interface specification for MPI applications
○ Same access model as POSIX: byte-stream in file
○ Features:

■ Collective I/O operations
■ Non-contiguous I/O w/MPI datatypes & file views
■ Non-blocking I/O
■ FORTRAN (and other) language bindings
■ Method of encoding files in a portable format (external32)

12

Independent and Collective Parallel I/O

P0 P1 P2 P3 P4 P5

Independent I/O

● Independent I/O operations specify only what a single MPI process will do
○ Independent I/O calls do no pass on relationships between I/O to other processes

● Why use independent I/O?
○ Sometimes the synchronization of collective calls is not natural
○ Sometimes the overhead of collective calls outweighs their benefits

■ Example: Very small metadata I/O operations

13

P0 P1 P2 P3 P4 P5

Independent and Collective Parallel I/O

Collective I/O

● Collective I/O operations are coordinated access by a group of MPI processes
○ Collective I/O routines must be called by all processes that opened the file

● Why use collective I/O?
○ Allows I/O middleware to get a global perspective on entire access from all processes,

providing more opportunities for optimization in lower software layers
○ When used for non-contiguous access patterns, collective I/O typically yields the best

performance

14

I/O Middleware

● MPI-IO Tutorials:
○ NERSC:

■ https://docs.nersc.gov/performance/io/library/#mpi-io-tuning
○ ATPESC:

■ https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_20
19_Track-3_4_8-2_1030am_Latham-Introduction_to_MPI_IO.pdf

○ NCSA:
■ http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture32.pd

f

https://docs.nersc.gov/performance/io/library/#mpi-io-tuning
https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-3_4_8-2_1030am_Latham-Introduction_to_MPI_IO.pdf
https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-3_4_8-2_1030am_Latham-Introduction_to_MPI_IO.pdf
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture32.pdf
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture32.pdf

15

I/O Pattern Analysis

Contiguous I/O
● read time, 0.1ms

Noncontiguous I/O
● Seek time, 4ms
● Rotation time, 3ms
● Read time, 0.1 ms
● Total time: 7.1ms

How to describe your I/O
● Number of Processes
● Number of Files
● Size per file
● Frequency of I/O
● Size per I/O
● Read or Write or ?
● Shared File or not
● I/O Libraries
● ...

What is your I/O Pattern?
● Contiguous or Non-contiguous?
● (i.e. Sequential or Random?)

16

I/O Profiling
● Darshan

○ Lightweight HDF5/MPI-IO/POSIX I/O profiling tool, developed by ANL
○ Loaded by default for all NERSC users: “module load darshan”

■ module list: darshan/3.1.7
● Darshan Log

○ Location: /global/cscratch1/sd/darshanlogs/<year>/<month>/<day>/
■ Around 5000 logs / day

○ Filename format: Username_Jobname_SlurmId_JobId_xxx.darshan
■ Example: zisheng_vasp_gam_id31418939_6-11-85148-14130502361054725666_1.darshan

● Darshan Scripts:
○ “darshan-job-summary.pl <xxx>.darshan”
○ “darshan-summary-per-file.sh <xxx>.darshan”

17

I/O Profiling Success Story: Athena’s I/O
Athena is an astrophysics code, used in wide range of problems: interstellar
medium, star formation, etc.

IO Analysis with Darshan: “darshan-job-summary.pl <darshan_log> <output.pdf>”

“I made the changes you suggested and did
the test. It solved my problem! Previously, the
I/O can take 40% of the time. Now the I/O
time is basically 0.

Thank you very much for your help. This is
really useful.”

 ---Dr. Yan-Fei Jiang, Harvard

Darshan: https://docs.nersc.gov/performance/io/ And https://www.mcs.anl.gov/research/projects/darshan/
HDF5: https://docs.nersc.gov/development/libraries/hdf5/ And https://www.hdfgroup.org/solutions/hdf5/
Athena: https://princetonuniversity.github.io/athena/

https://docs.nersc.gov/performance/io/
https://www.mcs.anl.gov/research/projects/darshan/
https://docs.nersc.gov/development/libraries/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://princetonuniversity.github.io/athena/

18

NERSC Storage Systems

Location File System Visibility Access Backups? Snapshots? Purged?

Home GPFS Global User Yes Yes No

Common GPFS Global Repository No No No

Community GPFS Global Repository No Yes No

Scratch Lustre Local User No No Yes

Burst Buffer DataWarp Local Job No No Yes

Archive HPSS Global User No No No

NERSC File Systems: https://docs.nersc.gov/filesystems/
https://docs.nersc.gov/performance/io/

https://docs.nersc.gov/filesystems/

19

Cori Scratch: Lustre Overview

● Lustre is a high-performance parallel file system
○ POSIX File System

■ Directories & Files
○ Each file’s data can be striped over multiple storage servers (“OSTs”)

■ Default is a “stripe count” of 1, i.e. not striped
■ “Stripe size” is amount of data in each stripe, with data “round robined”

over # of OSTs for file
○ Files inherit striping configuration of directory where they are created
○ More details at: https://docs.nersc.gov/performance/io/lustre/

https://docs.nersc.gov/performance/io/lustre/

20

Burst Buffer: Architecture

● DataWarp software (integrated with SLURM WLM) allocates portions of available Burst Buffer storage
to users either per-job or ‘persistent’.

● Users see Burst Buffer as a POSIX filesystem
● Filesystem can be striped across multiple Burst Buffer nodes (depending on allocation size requested)

Compute Nodes

Aries High-Speed
Network

Blade = 2x Burst Buffer Node: 4 Intel P3608 3.2 TB SSDs

InfiniBand Fabric

Lustre OSS/OST

St
o

ra
ge

Fa

b
ri

c
(I

n
fi

n
iB

an
d

)

Storage Servers

CN

CN CN

CN

BB SSD
SSD

ION IB
IB

Burst Buffer: https://docs.nersc.gov/filesystems/cori-burst-buffer/
https://docs.nersc.gov/performance/io/bb/

Burst
Buffer

Lustre

Nodes 288 248

Capacity (PB) 1.8 28

https://docs.nersc.gov/filesystems/cori-burst-buffer/
https://docs.nersc.gov/performance/io/bb/

21

Burst Buffer: Data Paths

When submitting job, request:
● Capacity (GiB or TiB)
● Files to stage in before job starts
● Files to stage out after job finishes

Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

22

Burst Buffer: Data Paths
Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

Before job start:
● Create private parallel file system (DWFS)

across parts of multiple BB nodes
● Pre-load user data into this DWFS

23

Burst Buffer: Data Paths
Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

At job runtime:
● Compute nodes mount DWFS created

for job
● User application interacts with DWFS

via standard POSIX I/O

DVS

24

Burst Buffer: Data Paths
Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

At job completion:
● Stage out user data from DWFS to

Lustre

25

Burst Buffer: Data Paths
Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

Double-copy Data Path:
● e.g., if cp is issued from a compute node

● Bad data path, except when #CN >> #BBNs

26

Burst Buffer: Success Story – H5Boss

● Selecting subsets of galaxy spectra from a large dataset
○ Small, random memory accesses
○ Typical web query for SDSS dataset

Time taken to extract
1000 random spectra

From one
HDF5 file

From one
FITS file

From Lustre 44.1s 160.3s
From BB 1.3s 44.0s
Speedup: 33x 3.6x

27

Thank You and
Welcome to

NERSC!

