Parallel GPU Quantum Circuit Simulations on Qiskit Aer

Jun Doi
IBM Quantum, IBM Research – Tokyo
doichan@jp.ibm.com
Qiskit Aer Overview

Qiskit is an opensource platform for quantum computing.

Qiskit Aer is one of the components of Qiskit, an opensource quantum circuits simulator. Quantum circuits can be executed both on hardware and simulator.

Qiskit Aer supports various simulation methods and noise models:

- Statevector
- Unitary
- Density matrix
- Stabilizer
- MPS

- Pauli noise
- Kraus/superoperator noise
- etc..
Qiskit Aer GPU Support

Qiskit is an opensource platform for quantum computing.

Qiskit Aer is one of the components of Qiskit, an opensource quantum circuits simulator. Quantum circuits can be executed both on hardware and simulator.

Qiskit Aer supports various simulation methods and noise models:

- Statevector
- Unitary
- Density matrix
- Stabilizer
- MPS
- Tensor network
- Pauli noise
- Kraus/superoperator noise
- etc..

GPU support in plan:
Quantum Volume Simulation Time [sec]

number of qubits

GPU
CPU

GPU Simulation Performance

Single GPU has 16 GB, <= 29 qubits statevector

30-32 qubits statevector can be stored on 6 GPUs

IBM Power System AC922 (6x NVIDIA Tesla V100)
Installing GPU Ready Qiskit Aer

1. Install Qiskit
 - `pip install qiskit`

2. Uninstall Qiskit Aer
 - `pip uninstall qiskit-aer`

3. Install GPU version of Qiskit Aer
 - `pip install qiskit-aer-gpu`
Simulating Quantum Circuits Using GPU

```python
from qiskit import *
from qiskit.circuit.library import *
from qiskit.providers.aer import *

sim = AerSimulator(method='statevector', device='GPU')

shots = 100
depth=10
qubits = 25
circuit = transpile(QuantumVolume(qubits, depth, seed=0),
    backend=sim,
    optimization_level=0)
circuit.measure_all()

result = execute(circuit, sim, shots=shots, seed_simulator=12345).result()
```
Parallel Quantum Circuit Simulation

For large qubits circuits, quantum states are distributed into multiple GPUs or multiple processes (MPI).

States are divided into chunk and data exchange is done per chunk to save memory space.
Optimization of Parallel Quantum Circuit Simulation

Transpiling quantum circuit before running simulation

Inserting swap gates to move all gates into chunk (< nc)

< nc qubits gates can be applied inside chunk independently

>= nc qubits gates have to refer to other chunk that requires data exchange between chunks

Now we can apply all gates without data exchange

There is no gate outside chunk, inserted swap gates only require data exchange
Simulating Quantum Circuits Using Multiple-GPUs

```python
from qiskit import *
from qiskit.circuit.library import *
from qiskit.providers.aer import *

sim = AerSimulator(method='statevector', device='GPU', blocking_qubits=20)

shots = 100
depth=10
qubits = 25
circuit = transpile(QuantumVolume(qubits, depth, seed=0),
    backend=sim,
    optimization_level=0)
circuit.measure_all()

result = execute(circuit, sim, shots=shots, seed_simulator=12345).result()
```

This option defines chunk size
from qiskit import *
from qiskit.circuit.library import *
from qiskit.providers.aer import *
sim = AerSimulator(method='statevector', device='GPU', blocking_qubits=20)

shots = 100
depth=10
qubits = 35
circuit = transpile(QuantumVolume(qubits, depth, seed=0),
 backend=sim,
 optimization_level=0)
circuit.measure_all()
result = execute(circuit,sim,shots=shots,seed_simulator=12345).result()
if result.to_dict()]['metadata']['mpi_rank'] == 0:
 print(sorted(result.to_dict()]['results'][0]['data']['counts'].items(),key=lambda x:x[0])
MPI Simulation Performance

Strong scaling
(Fixed qubits of circuit)

Weak scaling
(Fixed qubits / node)

IBM Power System AC922 (6x NVIDIA Tesla V100)
Shot Level Parallel Simulation

Distribute shots by CPU threads to GPUs

Problem for small qubits simulation

CPU overheads	shot 1	shot 2	shot 3	shot 4
GPU execution |

If qubits is larger enough, CPU overheads can be ignored ...

CPU overheads	shot 1	shot 2	shot 3	shot 4
GPU execution |

1 2 3 4
Multi-Shots Batched Execution on GPU

Execute in a single GPU kernel

- **gates**
- **Pauli noises (X, Y, Z gates)**
- **ID gates, to sync all shots**

Kraus operators
Multi-Shots Simulation Performance

IBM Power System AC922 (6x NVIDIA Tesla V100)

Simulating QFT with 1% Kraus noise (4000 shots)

- CPU
- GPU : Base
- GPU : Optimized
- GPU : density_matrix with batched execution
There is no binary distribution of cuQuantum supported Qiskit Aer, please build from source code.

cuQuantum is enabled by setting ‘cuStateVec_enable=True’

Currently, statevector, unitary and density matrix methods are supported.
Summary

- Parallel Quantum Circuit Simulation on Qiskit Aer
 - Cache blocking transpiler to distribute larger qubits circuits
 - Batched execution to accelerate multi-shots simulations

Plan

- cuTensorNet supported tensor network simulator
- Stabilizer simulator GPU support