NERSC File Systems

New User Training June 16, 2020 Wahid Bhimji Data And Analytics SGroup

Simplified NERSC File Systems

Lustre, one of the most successful/mature HPC FS

Purged! Files not accessed for more than 12 weeks are automatically deleted

- 1. <u>https://en.wikipedia.org/wiki/Lustre (file system)</u>
- 2. MPI-IO on Lustre: https://www.sys.r-ccs.riken.jp/ResearchTopics/fio/mpiio/

"Scratch": Optimize Performance with Striping

Scratch Striping Recommendations

- By default data on 1 OST, ideal for small files and file-per-process IO
- Single shared file IO should be striped according to its size
- Helper scripts

stripe_small, stripe_medium stripe_large

- Manually query with lfs getstripe <file_name>
- Manually set with lfs setstripe -S 1m -c 2 <empty_folder>

	Single Shared-File I/O	File per Process
File size (GB)	command	
< 1	keep default striping	keep default striping
1 - 10	stripe_small	keep default striping
10 - 100	stripe_medium	keep default striping
> 100	stripe_large	keep default striping
> 1000	stripe_large	stripe_large

Burst Buffer (BB)

Datawarp (DW): Cray's applications I/O accelerator

- For: Data read in/out by high IO-bandwidth or IOPS application
- Transient: Allocated per-job or per-campaign ('persistent') via SLURM integration
- Users see mounted POSIX filesystem. Striped across BB nodes.

Burst Buffer Example

#!/bin/bash #SBATCH -q regular -N 10 -C haswell -t 00:10:00 #DW jobdw capacity=1000GB access_mode=striped type=scratch #DW stage_in source=/global/cscratch1/sd/username/file.dat destination=\$DW_JOB_STRIPED/ type=file #DW stage_out source=\$DW_JOB_STRIPED/outputs destination=/lustre/outputs type=directory srun my.x --infile=\$DW JOB_STRIPED/file.dat --outdir=\$DW_JOB_STRIPED/outputs

- 'jobdw' duration just for compute job (i.e. not 'persistent')
- 'access_mode=striped' visible to all compute nodes, striped across BB nodes
 - Number of BB nodes depends on size requested 'granularity' is 20 GB
- Data 'stage_in' before job start and 'stage_out' after
- \$DW_JOB_STRIPED env variable points to the mountpoint
- Can also use interactively:

wbhimji@cori12:~> cat bbf.conf
#DW jobdw capacity=1000GB access_mode=striped type=scratch
wbhimji@cori12:~> salloc -q interactive -N 1 -C knl --time=00:30:00 --bbf=bbf.conf

Creating a Persistent Reservation on Burst Buffer

Can be used by any job (set unix file permissions to share)

Don't forget to delete the PR when not needed (and no more than 6 weeks after)

DW not for long term storage and not resilient - stage_out anything you cannot afford to lose Create a PR Delete PR

Use PR in your jobs

#!/bin/bash
#SBATCH -q regular -N 10 -C haswell -t 00:10:00
#BB create_persistent name=myBBname
capacity=1000GB access=striped type=scratch

Can check reservation outside job:

```
wbhimji@cori12:~> scontrol show burst
```

```
Name=wahid_test_apr15_2
CreateTime=2020-02-14T16:10:36 Pool=(null)
Size=61872MiB State=allocated
UserID=wbhimji(68441)
```

```
#SBATCH -q regular -N 10 -C haswell -t 00:10:00
#DW peristentdw name=myBBname
#DW stage_in
source=/global/cscratch1/sd/[username]/inputs
destination=$DW_PERSISTENT_STRIPED_myBBname
type=directory
srun my.x
--indir=$DW_PERSISTENT_STRIPED_myBBname/inputs
```

#SBATCH -q regular -N 10 -C haswell

#BB destroy persistent **name**=myBBname

Office of Science

#!/bin/bash

-t. 00:10:00

Community File System

- For: Large datasets that you need for a longer period
- Set up for sharing with group read permissions by default
- Not for intensive I/O use Scratch instead
- Can share data externally by dropping it into a www directory Example: /global/cfs/cdirs/das/www/[username]
 https://portal.nersc.gov/project/das/[username]/
- Data is never purged. Snapshots. Usage is managed by quotas

8

 Projects can split their space allocations between multiple directories and give separate working groups separate quotas
 Environment variable \$CFS points to /global/cfs/cdirs

https://docs.nersc.gov/filesystems/community/

Office of

HPSS

- For: Data from your finished paper, raw data you might need in case of emergency, really hard to generate data
- HPSS is tape!
 - Data first hits a spinning disk cache and gets migrated to tapes
 - Files can end up spread all over, so use htar to aggregate into bundles of 100 GB - 2 TB
 - Archive the way you intend to retrieve the data

https://docs.nersc.gov/filesystems/archive/ https://docs.nersc.gov/filesystems/archive_access/

"Global Common": Software Filesystem

• For: Software stacks - Why? Library load performance

- Group writable directories similar to community, but with a smaller quota, /global/common/software/<projectname>
 - Write from login node; read-only on compute node
- Smaller block size for faster compiles than project

Home Directories

- For: Source files, compiling, configuration files
- 20G quota
- Not intended for intensive I/O (e.g. application I/O) use Scratch instead
- Backed up monthly by HPSS
- Snapshots are also available e.g. my homedir is at /global/homes/.snapshots/2020-06-14/w/wbhimji

Simplified NERSC File Systems

Data Dashboard

Data Dashboard

Showing disk space and inode usage for project directories at NERSC to which you have access as PI, PI proxy, or user (includes /project, /p

Data Dashboard: Usage Reports

Data Dashboard

Showing disk space and inode usage for project directories at NERSC to which you have access as PI, PI proxy, or user (includes /project, /projecta, and /projectb/sandbox)

Data as of Thu Jun 20 2019 23:59:59 GMT-0700 (Pacific Daylight Time) Breakdown of allocation usage:

user % of space allocation

user % of inode allocation 0.00 2.00 4.00 6.00 8.00 fryman jshalf others

group % of space allocation

Office of

Science

Adjusting Quotas in IRIS

Pseudo User, d... dastest

gpfs

dastest

0.0 B

1.0 TB

0.0%

1

1

0.0%

2020-06-05

Office of

Science

1.0 M

• Cori File Systems

https://docs.nersc.gov/filesystems//

• NERSC Burst Buffer Web Pages

https://docs.nersc.gov/filesystems/cori-burst-buffer/

• Example batch scripts

https://docs.nersc.gov/jobs/examples/#burst-buffer

DataWarp Users Guide

https://pubs.cray.com/bundle/XC_Series_DataWarp_User_Guide_S-2558_publi sh_S2558_final/page/About_XC_Series_DataWarp_User_Guide.html

Thank You and Welcome to NERSC!

