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Chombo-Crunch
CFD + multi-component geochemical 
reactive transport in very complex pore 
scale geometry: 
 
 

 
-  Legacy flat MPI code 
-  0.6M SLOC: C++ 90%, Fortran 10% 
-  Dynamic local refinement (AMR) 
-  2nd-order finite-volume (low AI) 
-  2nd-order Crank-Nicolson time 

integration or backward Euler 
-  PETSC AMG linear solver 
-  Geometry from image data 
-  Geochemistry: point-by-point 
-  Scalable (100K+ processors) 

Experiment Image 

L. Yang, LBL 
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Embedded boundary method

FVM reduces to FDM 
in regular cells 

Special stencils used in 
small subset of irregular 
cut cells 

EBIndexSpace: geometric momentum (e.g. volume fractions, area fractions, centroids ) 
Stencils are computed at run time. Number of faces (“edges”) on irregular cells is not constant. 
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regular cells irregular cells covered cells 

§  Random memory access pattern (pure utilization of cache lines and vector units). 
§  Tiling is not straightforward. 



Hotspot pattern

§  30-40% in Chombo: computing of fluxes, extrapolation, mass redistribution,  
normalization by VOF,... 
§  30-40% in PETSC AMG (KSPSolve)  
§  20-40% MPI (Waitall, Barrier) -	4	-	



Pruning of covered boxes
Covered boxes have been “pruned” from domain 

Fraction of covered boxes depends on application:  
it may vary from 5% up to 70% (e.g., fractured dolomite).  
For porous media like shale it is typically ~30-40%. 
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Before pruning 



Box pruning: Impact on performance 
Reduced memory footprint and checkpoint size 

Pruning can reduce a run 
time as well (if the same 
number of PE’s is used 
after pruning. It requires 
more than 1 box per PE). 

Footprint for ranks assigned  
with covered boxes 
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Improving of load imbalance

Load balancer based on num. of cells 

20% decrease of total run time on Cori P1. 
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Communication time over MPI ranks (on single HSW node)  
 

Feedback-based load balancer 



Squeezing memory footprint
Elimination of excessive temporary variables (e.g., conservative variables) in 
operator for computing advective terms:  
EBAdvectLevelIntegrator class replaced EBPatchAdvect!
EBAdvectPatchIntegrator class replaced EBLevelAdvect!

Memory footprint: 1.5x decrease 

MPI rank: 0 to 511 MPI rank: 0 to 511 
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optimized original 



Memory footprint: Valgrind 
Valgrind (massif tool) provides detailed output on heap usage 
valgrind --tool=massif ./chombo.ex!
ms_print massif.out > heapDump.txt!

| ->10.99% (12,007,104B) 0x7C36EC: BaseEBFaceFAB<double>::define(EBISBox const&, Box 
const&, int, int) (in viscoelasticDriver3d.Linux.64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | | ->05.94% (6,488,064B) 0x7C15A7: EBFaceFAB::define(EBISBox const&, Box const&, int, 
int) (in viscoelasticDriver3d.Linux.64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | | | ->04.45% (4,866,048B) 0x5F4E15: EBPatchGodunov::setValidBox(Box const&, EBISBox 
const&, IntVectSet const&, double const&, double const&) (in viscoelasticDriver3d.Linux.
64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | | | | ->04.45% (4,866,048B) 0x5C30C4: EBPatchAdvect::setValidBox(Box const&, EBISBox 
const&, IntVectSet const&, double const&, double const&) !
!
| ->31.18% (34,078,720B) 0x47303C: BaseFab<double*>::resize(Box const&, int, double**) (in 
viscoelasticDriver3d.Linux.64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | ->31.18% (34,078,720B) 0x4A9205: BaseIVFAB<double>::define(IntVectSet const&, EBGraph 
const&, int const&) (in viscoelasticDriver3d.Linux.64.g++.gfortran.OPTHIGH.PETSC.ex) !
| |   ->04.32% (4,718,592B) 0x5F4E95: EBPatchGodunov::setValidBox(Box const&, EBISBox 
const&, IntVectSet const&, double const&, double const&) (in viscoelasticDriver3d.Linux.
64.g++.gfortran.OPTHIGH.PETSC.ex) !
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From flat MPI to MPI+OpenMP
16 Boxes, 16 MPI ranks 

rank 0 rank 1 rank 2 rank 3 

rank 4 rank 5 rank 6 rank 7 

rank 8 rank 9 rank 10 rank 11 

rank 12 rank 13 rank 14 rank 15 

DataIterator dit = a_grids.dataIterator(); 
int nbox = dit.size(); 
#pragma omp parallel for  
for(int mybox = 0; mybox < nbox; mybox++) 
  { 
      averageCellToFace(a_fluxData[dit[mybox]
[idir],                              a_cellData[dit[mybox]], 
                                      a_grids[dit[mybox]],...); 
  } 

for (DataIterator dit = a_grids.dataIterator(); dit.ok(); ++dit) 
  { 
      averageCellToFace(a_fluxData[dit()][idir], 
                                         a_cellData[dit()], 
                                         a_grids[dit()], 
                                         a_ebisl[dit()],...); 
  } 

rank 0 

rank 1 

rank 2 

rank 3 

thread 0 thread 1 thread 2 thread 3 

thread 0 thread 1 thread 2 thread 3 

thread 0 thread 1 thread 2 thread 3 

thread 0 thread 1 thread 2 thread 3 

16 Boxes, 4 MPI ranks, 4 threads per rank 
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Fixing data races with Intel Inspector 
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#pragma omp atomic Detected all race conditions. Introduced omp 
atomic, critical and threadprivate to 
fix data races. 



Further footprint reduction due to shared 
memory
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1.7x less memory for MPI+OpenMP: for 6 spheres benchmark 
memory drops from 2880 MB/node to 1672 Mbytes/node. 
 
Performance of MPI+OpenMP has not been assessed. Issues 
with dead locks.  



Overall performance speedup
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Overall performance speedup
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248 sec 164 sec 



KNL: Single node performance (1)
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Relative KNL-to-HSW performance strongly depends on  
complexity of geometry (i.e. fraction of irregular cells): 

benchmark GFLOPS/sec 
(HSW) 

GFLOPS/sec 
(KNL) 

 

KNL-to-HSW 

100% regular 
(AMRPoisson) 

20.7 30.8 1.49 

1 sphere (0.5% 
irregular cells) 

12.8 10.5 0.82 

6 spheres (5% 
irregular cells) 

7.5 4.4 0.58 

200 spheres (15% 
irregular cells) 

4.0 1.6 0.40 



KNL: Single node performance (2)
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Relative KNL-to-HSW performance strongly depends on problem size: 

Mesh size GFLOPS/sec 
(HSW) 

GFLOPS/sec 
(KNL, HBM) 

 

GFLOPS/sec 
(KNL, DDR) 

 

643 7.5 1.6 1.4 
1283 20.7 7.3 6.3 
2563 17.1 19.4 10.2 
5123 17.8 30.8 10.3 



KNL: Single node performance (3)
KNL, QuadFlat (benchmark fits to HBM) 
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Only ~1.5x speedup using HBM vs DDR! 
Kernels have different performance limitation: PETSc AMG is DRAM-bandwidth bound; EBChombo 
kernels (e.g., AggStencil::apply) are latency bound. Detailed roofline assessment of all major hotspots is 
in progress. 



KNL: Multi node strong scaling study
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Chombo-Crunch: Strong scaling

KNL (DDR)

IvyBridge

Ideal scaling
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KNL: 1 to 16 nodes on Gerty (64 MPI ranks per node, 4 remaining cores for OS) 
Ivy Bridge: 1 to 16 nodes on Edison (24 MPI ranks per node) 



Summary
§  Reduced commun. time (MPI_Waitall) à 20-30% speedup. 
§  BetterEB (AggStencil) à leads to another 20% speedup. 
§  1.5x reduction of memory footprint due to optimization of advection 

terms. 1.7x reduction due to threading. 
§  MPI+OpenMP development: fixed race conditions  
   AMG solver (PETSC) remains unthreaded.  
-    Short-term: 16 MPI ranks + 4 threads in Chombo;  
                        16 MPI ranks for PETSc. 
-    Long-term: MPI Communication Endpoints. 

§  KNL-to-Haswell (single node) performance: strongly depends on 
geometry (fraction of irregular cells) and problem size: from 1.5x to 0.2x. 

§  Vectorization is pure: only 5-10% of speedup by using AVX512 vector 
instructions. 

§  Started to work on the kernel (AggStencil) to improve data locality in 
irregular part of computation. 
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Thank you.  
Questions?


