
Chombo-Crunch case study

Andrey Ovsyannikov*
NESAP Postdoc, NERSC

November 3, 2016

with David Trebotich and Brian Van Straalen (CRD, LBL)

*Email: aovsyannikov@lbl.gov

Chombo-Crunch
CFD + multi-component geochemical
reactive transport in very complex pore
scale geometry:

-  Legacy flat MPI code
-  0.6M SLOC: C++ 90%, Fortran 10%
-  Dynamic local refinement (AMR)
-  2nd-order finite-volume (low AI)
-  2nd-order Crank-Nicolson time

integration or backward Euler
-  PETSC AMG linear solver
-  Geometry from image data
-  Geochemistry: point-by-point
-  Scalable (100K+ processors)

Experiment Image

L. Yang, LBL

-	2	-	

() , uuuu
Δ=∇+∇⋅+

∂

∂
νp

t
0=⋅∇ u

kkkk
k rcDc
t
c

ρρρ
ρ

+∇⋅∇=⋅∇+
∂

∂ u

Embedded boundary method

FVM reduces to FDM
in regular cells

Special stencils used in
small subset of irregular
cut cells

EBIndexSpace: geometric momentum (e.g. volume fractions, area fractions, centroids)
Stencils are computed at run time. Number of faces (“edges”) on irregular cells is not constant.

-	3	-	

regular cells irregular cells covered cells

§  Random memory access pattern (pure utilization of cache lines and vector units).
§  Tiling is not straightforward.

Hotspot pattern

§  30-40% in Chombo: computing of fluxes, extrapolation, mass redistribution,
normalization by VOF,...
§  30-40% in PETSC AMG (KSPSolve)
§  20-40% MPI (Waitall, Barrier) -	4	-	

Pruning of covered boxes
Covered boxes have been “pruned” from domain

Fraction of covered boxes depends on application:
it may vary from 5% up to 70% (e.g., fractured dolomite).
For porous media like shale it is typically ~30-40%.

-	5	-	

Before pruning

Box pruning: Impact on performance
Reduced memory footprint and checkpoint size

Pruning can reduce a run
time as well (if the same
number of PE’s is used
after pruning. It requires
more than 1 box per PE).

Footprint for ranks assigned
with covered boxes

-	6	-	

Improving of load imbalance

Load balancer based on num. of cells

20% decrease of total run time on Cori P1.

-	7	-	

Communication time over MPI ranks (on single HSW node)

Feedback-based load balancer

Squeezing memory footprint
Elimination of excessive temporary variables (e.g., conservative variables) in
operator for computing advective terms:
EBAdvectLevelIntegrator class replaced EBPatchAdvect!
EBAdvectPatchIntegrator class replaced EBLevelAdvect!

Memory footprint: 1.5x decrease

MPI rank: 0 to 511 MPI rank: 0 to 511

Fo
ot

pr
in

t,
M

B

-	8	-	

optimized original

Memory footprint: Valgrind
Valgrind (massif tool) provides detailed output on heap usage
valgrind --tool=massif ./chombo.ex!
ms_print massif.out > heapDump.txt!

| ->10.99% (12,007,104B) 0x7C36EC: BaseEBFaceFAB<double>::define(EBISBox const&, Box
const&, int, int) (in viscoelasticDriver3d.Linux.64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | | ->05.94% (6,488,064B) 0x7C15A7: EBFaceFAB::define(EBISBox const&, Box const&, int,
int) (in viscoelasticDriver3d.Linux.64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | | | ->04.45% (4,866,048B) 0x5F4E15: EBPatchGodunov::setValidBox(Box const&, EBISBox
const&, IntVectSet const&, double const&, double const&) (in viscoelasticDriver3d.Linux.
64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | | | | ->04.45% (4,866,048B) 0x5C30C4: EBPatchAdvect::setValidBox(Box const&, EBISBox
const&, IntVectSet const&, double const&, double const&) !
!
| ->31.18% (34,078,720B) 0x47303C: BaseFab<double*>::resize(Box const&, int, double**) (in
viscoelasticDriver3d.Linux.64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | ->31.18% (34,078,720B) 0x4A9205: BaseIVFAB<double>::define(IntVectSet const&, EBGraph
const&, int const&) (in viscoelasticDriver3d.Linux.64.g++.gfortran.OPTHIGH.PETSC.ex) !
| | ->04.32% (4,718,592B) 0x5F4E95: EBPatchGodunov::setValidBox(Box const&, EBISBox
const&, IntVectSet const&, double const&, double const&) (in viscoelasticDriver3d.Linux.
64.g++.gfortran.OPTHIGH.PETSC.ex) !

-	9	-	

From flat MPI to MPI+OpenMP
16 Boxes, 16 MPI ranks

rank 0 rank 1 rank 2 rank 3

rank 4 rank 5 rank 6 rank 7

rank 8 rank 9 rank 10 rank 11

rank 12 rank 13 rank 14 rank 15

DataIterator dit = a_grids.dataIterator();
int nbox = dit.size();
#pragma omp parallel for
for(int mybox = 0; mybox < nbox; mybox++)
 {
 averageCellToFace(a_fluxData[dit[mybox]
[idir], a_cellData[dit[mybox]],
 a_grids[dit[mybox]],...);
 }

for (DataIterator dit = a_grids.dataIterator(); dit.ok(); ++dit)
 {
 averageCellToFace(a_fluxData[dit()][idir],
 a_cellData[dit()],
 a_grids[dit()],
 a_ebisl[dit()],...);
 }

rank 0

rank 1

rank 2

rank 3

thread 0 thread 1 thread 2 thread 3

thread 0 thread 1 thread 2 thread 3

thread 0 thread 1 thread 2 thread 3

thread 0 thread 1 thread 2 thread 3

16 Boxes, 4 MPI ranks, 4 threads per rank

-	10	-	

Fixing data races with Intel Inspector

-	11	-	

#pragma omp atomic Detected all race conditions. Introduced omp
atomic, critical and threadprivate to
fix data races.

Further footprint reduction due to shared
memory

-	12	-	

1.7x less memory for MPI+OpenMP: for 6 spheres benchmark
memory drops from 2880 MB/node to 1672 Mbytes/node.

Performance of MPI+OpenMP has not been assessed. Issues
with dead locks.

Overall performance speedup

-	13	-	

Overall performance speedup

-	14	-	

248 sec 164 sec

KNL: Single node performance (1)

-	15	-	

Relative KNL-to-HSW performance strongly depends on
complexity of geometry (i.e. fraction of irregular cells):

benchmark GFLOPS/sec
(HSW)

GFLOPS/sec
(KNL)

KNL-to-HSW

100% regular
(AMRPoisson)

20.7 30.8 1.49

1 sphere (0.5%
irregular cells)

12.8 10.5 0.82

6 spheres (5%
irregular cells)

7.5 4.4 0.58

200 spheres (15%
irregular cells)

4.0 1.6 0.40

KNL: Single node performance (2)

-	16	-	

Relative KNL-to-HSW performance strongly depends on problem size:

Mesh size GFLOPS/sec
(HSW)

GFLOPS/sec
(KNL, HBM)

GFLOPS/sec
(KNL, DDR)

643 7.5 1.6 1.4
1283 20.7 7.3 6.3
2563 17.1 19.4 10.2
5123 17.8 30.8 10.3

KNL: Single node performance (3)
KNL, QuadFlat (benchmark fits to HBM)

-	17	-	

Only ~1.5x speedup using HBM vs DDR!
Kernels have different performance limitation: PETSc AMG is DRAM-bandwidth bound; EBChombo
kernels (e.g., AggStencil::apply) are latency bound. Detailed roofline assessment of all major hotspots is
in progress.

KNL: Multi node strong scaling study
S

o
lu

tio
n
 t
im

e
 p

e
r

tim
e
st

e
p
 (

se
c)

Number of nodes

Chombo-Crunch: Strong scaling

KNL (DDR)

IvyBridge

Ideal scaling

 8

 16

 32

 64

 128

 256

 1 2 4 8 16

-	18	-	

KNL: 1 to 16 nodes on Gerty (64 MPI ranks per node, 4 remaining cores for OS)
Ivy Bridge: 1 to 16 nodes on Edison (24 MPI ranks per node)

Summary
§  Reduced commun. time (MPI_Waitall) à 20-30% speedup.
§  BetterEB (AggStencil) à leads to another 20% speedup.
§  1.5x reduction of memory footprint due to optimization of advection

terms. 1.7x reduction due to threading.
§  MPI+OpenMP development: fixed race conditions
 AMG solver (PETSC) remains unthreaded.
-  Short-term: 16 MPI ranks + 4 threads in Chombo;
 16 MPI ranks for PETSc.
-  Long-term: MPI Communication Endpoints.

§  KNL-to-Haswell (single node) performance: strongly depends on
geometry (fraction of irregular cells) and problem size: from 1.5x to 0.2x.

§  Vectorization is pure: only 5-10% of speedup by using AVX512 vector
instructions.

§  Started to work on the kernel (AggStencil) to improve data locality in
irregular part of computation.

-	19	-	

Thank you.  
Questions?

