

1

Scaling Python
Applications

Data Day
Oct 27th 2022

Daniel Margala

2

DESI Data Processing on Perlmutter

25x

Implementation milestone

S
pe

ed
 U

p

10x

20x

0x

*DESI Extraction on Perlmutter GPUs

Parallelism in Python

4

Example problem: Monte Carlo Pi

import random

def estimate_pi(n):
 c = 0
 for i in range(n):
 x = random.uniform(0, 1)
 y = random.uniform(0, 1)
 if x*x + y*y < 1:
 c += 1
 return c * 4.0 / n

library.py

5

Some terms

A program is a collection of instructions for a computer to execute.

A process is an instance of a program that is being executed. Contains
one or more threads.

A thread is a unit of execution within a process. Typically, multiple
threads within a process share process state and memory.

6

Serial Python

import time
from library import estimate_pi

n = 20_000_000

start = time.time()
result = estimate_pi(n)
end = time.time()

print(end - start)

pi-serial.py > python pi-serial.py
3.6154

The python interpreter transforms the code
into Python bytecode instructions and then
executes those instructions at runtime.

Python is slower than compiled languages
like c, c++, fortran but developers like it for
productivity and ease of use.

A simple c version of this example is about an
order of magnitude faster than the Python
version.

7

Python 3.11.0!
Release Date: Oct. 24, 2022

General changes
● PEP 657 -- Include Fine-Grained Error Locations in Tracebacks

● PEP 654 -- Exception Groups and except*

● PEP 680 -- tomllib: Support for Parsing TOML in the Standard Library

● gh-90908 -- Introduce task groups to asyncio

● gh-34627 -- Atomic grouping ((?>...)) and possessive quantifiers (*+, ++, ?+, {m,n}+) are now
supported in regular expressions.

● The Faster CPython Project is already yielding some exciting results. Python 3.11 is up to
10-60% faster than Python 3.10. On average, we measured a 1.22x speedup on the
standard benchmark suite. See Faster CPython for details.

https://www.python.org/downloads/release/python-3110/

https://www.python.org/dev/peps/pep-0657/
https://www.python.org/dev/peps/pep-0654/
https://www.python.org/dev/peps/pep-0680/
https://github.com/python/cpython/issues/90908
https://github.com/python/cpython/issues/34627/
https://github.com/faster-cpython/
https://docs.python.org/3.11/whatsnew/3.11.html#faster-cpython
https://www.python.org/downloads/release/python-3110/

8

Serial Python (redux)

import time
from library import estimate_pi

n = 20_000_000

start = time.time()
result = estimate_pi(n)
end = time.time()

print(end - start)

pi-serial.py

(py310) > python pi-serial.py
3.17

(py311) > python pi-serial.py
2.21

“free speedup is the best speedup”
-Laurie Stephey

9

Multithreading in Python

import time
from library import estimate_pi
from threading import Thread

n = 20_000_000
p = 4

threads = [
 Thread(target=estimate_pi, args=(n//p,))
 for i in range(p)
]

start = time.time()
[t.start() for t in threads]
[t.join() for t in threads]
end = time.time()

print(end - start)

pi-threads.py

> python pi-threads.py
3.8097

The Global Interpreter Lock (GIL) in Python
prevents compute-bound threads from
making progress in parallel.

For the most part, don’t bother with
multithreading for scientific data processing
in Python

Shared memory
Low overhead for starting up threads

10

Multithreading in Python

import time

def task(n):
 time.sleep(n)

n = 5

start = time.time()
task(n)
end = time.time()

print(end - start)

sleep-serial.py

> python sleep-serial.py
5.0050

import time
from threading import Thread
def task(n):
 time.sleep(n)
n = 5
p = 4
t = [
 Thread(target=task, args=(n/p,))
 for i in range(p)
]
start = time.time()
[t[i].start() for i in range(p)]
[t[i].join() for i in range(p)]
end = time.time()
print(end - start)

sleep-threads.py

> python sleep-threads.py
1.2515

11

Python 3.12!

Multi-threaded parallelism
Python currently has a single global interpreter lock per process, which prevents multi-threaded
parallelism. This work, described in PEP 684, is to make all global state thread safe and move to a global
interpreter lock (GIL) per sub-interpreter. Additionally, PEP 554 will make it possible to create
subinterpreters from Python (currently a C API-only feature), opening up true multi-threaded parallelism.

https://github.com/faster-cpython/ideas/wiki/Python-3.12-Goals

https://peps.python.org/pep-0684/
https://peps.python.org/pep-0554/
https://github.com/faster-cpython/ideas/wiki/Python-3.12-Goals

12

Multiprocessing in Python

import time
from library import estimate_pi
import multiprocessing as mp

n = 20_000_000
p = 4

if __name__ == "__main__":

 mp.set_start_method("spawn")
 start = time.time()
 with mp.Pool(processes=p) as pool:
 results = pool.map(estimate_pi, [n//p]*p)
 end = time.time()
 print(end - start)

pi-multiprocessing.py

> python pi-multiprocessing.py
1.0609

“spawn”: parent process starts a fresh Python
interpreter process. The child process will
only inherit those resources necessary to run
the process object’s run() method.

“fork”: child process is identical to parent
process, all resources are inherited.

More overhead than using threads.
Distributed memory
Limited to single node.

13

MPI Parallelism in Python

The Message-Passing Interface (MPI) is a set of library functions which are used
to facilitate inter-process communication on parallel computing systems.

Popular open source implementations of MPI are MPICH and OpenMPI. The
officially supported implementation at NERSC is cray-mpich.

mpi4py builds on the MPI specification and provides a Python interface to
standard MPI functions. It supports point-to-point and collective communication of
buffer objects (such as NumPy arrays) and picklable Python objects

14

import time
from library import estimate_pi

n = 20_000_000

if __name__ == "__main__":

 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 p = comm.size

 comm.barrier(); start = time.time()
 result = estimate_pi(n//p)
 comm.barrier(); end = time.time()

 if comm.rank == 0:
 print(end - start)

pi-mpi.py

MPI Parallelism in Python

> srun -n 4 python pi-mpi.py
0.9922

MPI launcher is responsible for launching
processes. Processes sync up during
initialization (from mpi4py import MPI)

Standard communication semantics help
with move data movement and coordination
between process.

Very popular framework in HPC.
Distributed memory.
Can scale out to multiple nodes!

15

Parallelism with Dask

import time
from library import estimate_pi
import dask
from dask.distributed import Client, progress

n = 20_000_000
p = 4
if __name__ == "__main__":
 client = Client(threads_per_worker=1, n_workers=p)
 futures = [
 dask.delayed(estimate_pi)(n//p)
 for i in range(p)
]
 start = time.time()
 dask.compute(*futures)
 end = time.time()
 print(end - start)

pi-dask.py

> python pi-dask.py
1.2273

Dask is very popular tool in
Python community.

Good documentation with many
examples and tips for
performance.

Can scale out to multiple nodes!
(need to do a little extra work to
setup and connect to workers)

16

Array programming with NumPy

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362
(2020). https://doi.org/10.1038/s41586-020-2649-2

17

import time
import numpy as np

def estimate_pi(n):
 xy = np.random.uniform(0, 1, (n, 2))
 c = np.sum(np.linalg.norm(x, axis=1) < 1)
 return c * 4.0 / n

n = 20_000_000

start = time.time()
result = estimate_pi(n)
end = time.time()

print(end - start)

pi-numpy.py

Array programming with NumPy

> python pi-numpy.py
0.4738

NumPy is the foundation of many scientific
data processing libraries

Use array programming to get C-like
performance in Python!

18

Indirect Parallelism in Python
import numpy as np

construct a random symmetric positive definite matrix
n = 1000
b = np.random.rand(n, n)
a = b.T @ b

compute eigenvalue decomposition
w, v = np.linalg.eigh(a)

Many linear algebra methods in
NumPy use a BLAS backend such as
OpenBLAS or Intel's MKL, which may
use multiple threads.

The multithreading parallelism in
lower level backends used by NumPy
is not constrained by Python's GIL.

The OMP_NUM_THREADS
environment variable can be used to
control number of threads used by
BLAS backends of NumPy

> python -m timeit -s “...[snip]...” “np.linalg.eigh(a)”
1 loop, best of 5: 427 msec per loop

https://numpy.org/install/#numpy-packages--accelerated-linear-algebra-libraries
https://numpy.org/install/#numpy-packages--accelerated-linear-algebra-libraries

19

Indirect Parallelism in Python

OMP_NUM_THREADS=1 | n=1000 | 2 loops, best of 5: 188 msec per loop
OMP_NUM_THREADS=2 | n=1000 | 2 loops, best of 5: 126 msec per loop
OMP_NUM_THREADS=4 | n=1000 | 2 loops, best of 5: 117 msec per loop
OMP_NUM_THREADS=8 | n=1000 | 2 loops, best of 5: 94.9 msec per loop
OMP_NUM_THREADS=16 | n=1000 | 2 loops, best of 5: 85.4 msec per loop
OMP_NUM_THREADS=32 | n=1000 | 5 loops, best of 5: 98.3 msec per loop
OMP_NUM_THREADS=64 | n=1000 | 1 loop, best of 5: 327 msec per loop
OMP_NUM_THREADS=128 | n=1000 | 1 loop, best of 5: 468 msec per loop
OMP_NUM_THREADS=256 | n=1000 | 1 loop, best of 5: 446 msec per loop

By default, the OpenMP runtime used by BLAS backends will typically use 1 thread per core.
There are 128 on cores on a Perlmutter CPU node.

20

Scaling performance analysis
Name Description Notes

CPU baseline

GPU_V1 zchi2_batch on gpu

GPU_V2 batch dot product of
target.spectra.R with
template bases

batch sizes
become too
small with many
ranks

GPU_V3 remove distributed
template redshift ranges

OOM above 16
ranks

GPU_V4 4 ranks use GPUs, all
others are CPU only.
lopsided distribution of
work.

GPU_V5 use mpi ranks to rebin
templates and combine
(partial undo of GPU_V3)

21

Scaling performance analysis

Python + GPUs

23

Getting started with GPUs in Python
• NumPy and SciPy do not utilize GPUs out of the box

• There are many Python GPU frameworks out there:
o “drop in” replacements for numpy, scipy, pandas, scikit-learn, etc

o CuPy, RAPIDS
o “machine learning” libraries that also support general GPU

computing
o PyTorch, TensorFlow, JAX

o “I want to write my own GPU kernels”
o Numba, PyOpenCL, PyCUDA, CUDA Python

o multi-node / distributed memory:
o mpi4py+X, dask, cuNumeric

• Many of these GPU libraries have adopted the CUDA Array
Interface which makes it easier to pass array-like objects
stored in GPU memory between the libraries

• There is also effort in the community to standardize around
a common Python array API

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://data-apis.org/array-api/latest/

24

GPU programming in Python
import cupy
import numba.cuda
import numpy

CUDA kernel
@numba.cuda.jit
def _cuda_addone(x):
 i = numba.cuda.grid(1)
 if i < x.size:
 x[i] += 1

convenience wrapper with thread/block
configuration
def addone(x):
 # threads per block
 tpb = 256
 # blocks per grid
 bpg = (x.size + (tpb - 1)) // tpb
 _cuda_addone[bpg, tpb](x)

create array on device using cupy
x = cupy.zeros(10000)

pass cupy ndarray to numba.cuda kernel
addone(x)

Use numpy api with cupy ndarray
(result is still on device)
total = numpy.sum(x)

https://docs.cupy.dev/en/stable/user_guide/basic.html
https://numba.readthedocs.io/en/stable/cuda/index.html

○ NumPy’s __array_function__ protocol (NEP 18)
■ numpy.sum(x) -> cupy.sum(x)

○ CPU and GPU execution paths can share same
implementation (sometimes)

○ Can also use helper functions to get the appropriate
array module. For example:
■ xp = cupy.get_array_module(x)

https://docs.cupy.dev/en/stable/user_guide/basic.html
https://numba.readthedocs.io/en/stable/cuda/index.html
https://numpy.org/neps/nep-0018-array-function-protocol.html

25

Is my code a good fit for a GPU?

There’s a good chance it is for cases where:
● operations can be performed on “large”

arrays, matrices, images, etc
● IO is not a bottleneck

It can be “expensive” to move excessive amounts of data
between device and host memory.

There is overhead for launching kernels on the GPU.

a = xp.random.rand(size, size)
b = xp.random.rand(size, size)
def f(a, b):
 return xp.dot(a, b)

CPUs → low latency
GPUs → high throughput

26

Final thoughts

● Array Programming with NumPy!
○ eliminate for-loops in your program
○ vectorization / broadcasting / indexing

● Python startup is filesystem intensive. Containers may
help with this at larger scales.

● You’ll likely use more than one level of parallelism,
consider composability of your choices.

● Profile your application before optimizing!
○ print/logging time differences is a good place to start

Thank you

28

Multithreading in Python

main thread main thread

t0
t1

t2
t3

“start” (does not block
main thread)

“join” (main thread waits
for thread to finish)

serial
progress

concurrent
progress

