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Example problem: Monte Carlo Pi

import random

def estimate_pi(n):
    c = 0
    for i in range(n):
        x = random.uniform(0, 1)
        y = random.uniform(0, 1)
        if x*x + y*y < 1:
            c += 1
    return c * 4.0 / n

library.py
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Some terms

A program is a collection of instructions for a computer to execute.

A process is an instance of a program that is being executed. Contains 
one or more threads.

A thread is a unit of execution within a process. Typically, multiple 
threads within a process share process state and memory.
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Serial Python

import time
from library import estimate_pi

n = 20_000_000

start = time.time()
result = estimate_pi(n)
end = time.time()

print(end - start)

pi-serial.py > python pi-serial.py
3.6154

The python interpreter transforms the code 
into Python bytecode instructions and then 
executes those instructions at runtime.

Python is slower than compiled languages 
like c, c++, fortran but developers like it for 
productivity and ease of use.

A simple c version of this example is about an 
order of magnitude faster than the Python 
version.
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Python 3.11.0!
Release Date: Oct. 24, 2022 

General changes
● PEP 657 -- Include Fine-Grained Error Locations in Tracebacks

● PEP 654 -- Exception Groups and except*

● PEP 680 -- tomllib: Support for Parsing TOML in the Standard Library

● gh-90908 -- Introduce task groups to asyncio

● gh-34627 -- Atomic grouping ((?>...)) and possessive quantifiers (*+, ++, ?+, {m,n}+) are now 
supported in regular expressions.

● The Faster CPython Project is already yielding some exciting results. Python 3.11 is up to 
10-60% faster than Python 3.10. On average, we measured a 1.22x speedup on the 
standard benchmark suite. See Faster CPython for details.

https://www.python.org/downloads/release/python-3110/

https://www.python.org/dev/peps/pep-0657/
https://www.python.org/dev/peps/pep-0654/
https://www.python.org/dev/peps/pep-0680/
https://github.com/python/cpython/issues/90908
https://github.com/python/cpython/issues/34627/
https://github.com/faster-cpython/
https://docs.python.org/3.11/whatsnew/3.11.html#faster-cpython
https://www.python.org/downloads/release/python-3110/
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Serial Python (redux)

import time
from library import estimate_pi

n = 20_000_000

start = time.time()
result = estimate_pi(n)
end = time.time()

print(end - start)

pi-serial.py

(py310) > python pi-serial.py
3.17

(py311) > python pi-serial.py
2.21

“free speedup is the best speedup”
-Laurie Stephey
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Multithreading in Python

import time
from library import estimate_pi
from threading import Thread

n = 20_000_000
p = 4

threads = [
    Thread(target=estimate_pi, args=(n//p,))
    for i in range(p)
]

start = time.time()
[t.start() for t in threads]
[t.join() for t in threads]
end = time.time()

print(end - start)

pi-threads.py

> python pi-threads.py
3.8097

The Global Interpreter Lock (GIL) in Python 
prevents compute-bound threads from 
making progress in parallel.

For the most part, don’t bother with 
multithreading for scientific data processing 
in Python

Shared memory
Low overhead for starting up threads
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Multithreading in Python

import time

def task(n):
    time.sleep(n)

n = 5

start = time.time()
task(n)
end = time.time()

print(end - start)

sleep-serial.py

> python sleep-serial.py
5.0050

import time
from threading import Thread
def task(n):
    time.sleep(n)
n = 5
p = 4
t = [
    Thread(target=task, args=(n/p,))
    for i in range(p)
]
start = time.time()
[t[i].start() for i in range(p)]
[t[i].join() for i in range(p)]
end = time.time()
print(end - start)

sleep-threads.py

> python sleep-threads.py
1.2515
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Python 3.12!

Multi-threaded parallelism
Python currently has a single global interpreter lock per process, which prevents multi-threaded 
parallelism. This work, described in PEP 684, is to make all global state thread safe and move to a global 
interpreter lock (GIL) per sub-interpreter. Additionally, PEP 554 will make it possible to create 
subinterpreters from Python (currently a C API-only feature), opening up true multi-threaded parallelism.

https://github.com/faster-cpython/ideas/wiki/Python-3.12-Goals

https://peps.python.org/pep-0684/
https://peps.python.org/pep-0554/
https://github.com/faster-cpython/ideas/wiki/Python-3.12-Goals
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Multiprocessing in Python

import time
from library import estimate_pi
import multiprocessing as mp

n = 20_000_000
p = 4

if __name__ == "__main__":

    mp.set_start_method("spawn")
    start = time.time()
    with mp.Pool(processes=p) as pool:
        results = pool.map(estimate_pi, [n//p]*p)
    end = time.time()
    print(end - start)

pi-multiprocessing.py

> python pi-multiprocessing.py
1.0609

“spawn”: parent process starts a fresh Python 
interpreter process. The child process will 
only inherit those resources necessary to run 
the process object’s run() method.

“fork”: child process is identical to parent 
process, all resources are inherited.

More overhead than using threads.
Distributed memory
Limited to single node.
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MPI Parallelism in Python

The Message-Passing Interface (MPI) is a set of library functions which are used 
to facilitate inter-process communication on parallel computing systems. 

Popular open source implementations of MPI are MPICH and OpenMPI. The 
officially supported implementation at NERSC is cray-mpich.

mpi4py builds on the MPI specification and provides a Python interface to 
standard MPI functions. It supports point-to-point and collective communication of 
buffer objects (such as NumPy arrays) and picklable Python objects
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import time
from library import estimate_pi

n = 20_000_000

if __name__ == "__main__":

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    p = comm.size

    comm.barrier(); start = time.time()
    result = estimate_pi(n//p)
    comm.barrier(); end = time.time()

    if comm.rank == 0:
        print(end - start)

pi-mpi.py

MPI Parallelism in Python

> srun -n 4 python pi-mpi.py
0.9922

MPI launcher is responsible for launching 
processes. Processes sync up during 
initialization (from mpi4py import MPI)

Standard communication semantics help 
with move data movement and coordination 
between process.

Very popular framework in HPC.
Distributed memory.
Can scale out to multiple nodes!
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Parallelism with Dask

import time
from library import estimate_pi
import dask
from dask.distributed import Client, progress

n = 20_000_000
p = 4
if __name__ == "__main__":
    client = Client(threads_per_worker=1, n_workers=p)
    futures = [
        dask.delayed(estimate_pi)(n//p)
        for i in range(p)
    ]
    start = time.time()
    dask.compute(*futures)
    end = time.time()
    print(end - start)

pi-dask.py

> python pi-dask.py
1.2273

Dask is very popular tool in 
Python community.

Good documentation with many 
examples and tips for 
performance.

Can scale out to multiple nodes! 
(need to do a little extra work to 
setup and connect to workers)
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Array programming with NumPy

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 
(2020). https://doi.org/10.1038/s41586-020-2649-2
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import time
import numpy as np

def estimate_pi(n):
    xy = np.random.uniform(0, 1, (n, 2))
    c = np.sum(np.linalg.norm(x, axis=1) < 1)
    return c * 4.0 / n

n = 20_000_000

start = time.time()
result = estimate_pi(n)
end = time.time()

print(end - start)

pi-numpy.py

Array programming with NumPy

> python pi-numpy.py
0.4738

NumPy is the foundation of many scientific 
data processing libraries

Use array programming to get C-like 
performance in Python!
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Indirect Parallelism in Python
import numpy as np

# construct a random symmetric positive definite matrix
n = 1000
b = np.random.rand(n, n)
a = b.T @ b

# compute eigenvalue decomposition
w, v = np.linalg.eigh(a)

Many linear algebra methods in 
NumPy use a BLAS backend such as 
OpenBLAS or Intel's MKL, which may 
use multiple threads. 

The multithreading parallelism in 
lower level backends used by NumPy 
is not constrained by Python's GIL.

The OMP_NUM_THREADS 
environment variable can be used to 
control number of threads used by 
BLAS backends of NumPy

> python -m timeit -s “...[snip]...” “np.linalg.eigh(a)”
1 loop, best of 5: 427 msec per loop

https://numpy.org/install/#numpy-packages--accelerated-linear-algebra-libraries
https://numpy.org/install/#numpy-packages--accelerated-linear-algebra-libraries
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Indirect Parallelism in Python

OMP_NUM_THREADS=1   | n=1000 | 2 loops, best of 5: 188 msec per loop
OMP_NUM_THREADS=2   | n=1000 | 2 loops, best of 5: 126 msec per loop
OMP_NUM_THREADS=4   | n=1000 | 2 loops, best of 5: 117 msec per loop
OMP_NUM_THREADS=8   | n=1000 | 2 loops, best of 5: 94.9 msec per loop
OMP_NUM_THREADS=16  | n=1000 | 2 loops, best of 5: 85.4 msec per loop
OMP_NUM_THREADS=32  | n=1000 | 5 loops, best of 5: 98.3 msec per loop
OMP_NUM_THREADS=64  | n=1000 |  1 loop, best of 5: 327 msec per loop
OMP_NUM_THREADS=128 | n=1000 |  1 loop, best of 5: 468 msec per loop
OMP_NUM_THREADS=256 | n=1000 |  1 loop, best of 5: 446 msec per loop

By default, the OpenMP runtime used by BLAS backends will typically use 1 thread per core. 
There are 128 on cores on a Perlmutter CPU node.
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Scaling performance analysis
Name Description Notes

CPU baseline

GPU_V1 zchi2_batch on gpu

GPU_V2 batch dot product of 
target.spectra.R with 
template bases

batch sizes 
become too 
small with many 
ranks

GPU_V3 remove distributed 
template redshift ranges

OOM above 16 
ranks

GPU_V4 4 ranks use GPUs, all 
others are CPU only. 
lopsided distribution of 
work. 

GPU_V5 use mpi ranks to rebin 
templates and combine 
(partial undo of GPU_V3)



  
21

Scaling performance analysis



Python + GPUs
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Getting started with GPUs in Python
• NumPy and SciPy do not utilize GPUs out of the box

• There are many Python GPU frameworks out there:
o “drop in” replacements for numpy, scipy, pandas, scikit-learn, etc

o CuPy, RAPIDS
o “machine learning” libraries that also support general GPU 

computing
o PyTorch, TensorFlow, JAX

o “I want to write my own GPU kernels”
o Numba, PyOpenCL, PyCUDA, CUDA Python

o multi-node / distributed memory:
o mpi4py+X, dask, cuNumeric

• Many of these GPU libraries have adopted the CUDA Array 
Interface which makes it easier to pass array-like objects 
stored in GPU memory between the libraries

• There is also effort in the community to standardize around 
a common Python array API 

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://data-apis.org/array-api/latest/
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GPU programming in Python
import cupy
import numba.cuda
import numpy

# CUDA kernel
@numba.cuda.jit
def _cuda_addone(x):
    i = numba.cuda.grid(1)
    if i < x.size:
        x[i] += 1

# convenience wrapper with thread/block 
configuration
def addone(x):
    # threads per block
    tpb = 256
    # blocks per grid
    bpg = (x.size + (tpb - 1)) // tpb
    _cuda_addone[bpg, tpb](x)

# create array on device using cupy
x = cupy.zeros(10000)

# pass cupy ndarray to numba.cuda kernel
addone(x)

# Use numpy api with cupy ndarray
# (result is still on device)
total = numpy.sum(x)

https://docs.cupy.dev/en/stable/user_guide/basic.html
https://numba.readthedocs.io/en/stable/cuda/index.html

○ NumPy’s __array_function__ protocol (NEP 18) 
■ numpy.sum(x) -> cupy.sum(x)

○ CPU and GPU execution paths can share same 
implementation (sometimes)

○ Can also use helper functions to get the appropriate 
array module. For example:
■ xp = cupy.get_array_module(x)

https://docs.cupy.dev/en/stable/user_guide/basic.html
https://numba.readthedocs.io/en/stable/cuda/index.html
https://numpy.org/neps/nep-0018-array-function-protocol.html
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Is my code a good fit for a GPU?

There’s a good chance it is for cases where:
● operations can be performed on “large” 

arrays, matrices, images, etc
● IO is not a bottleneck

It can be “expensive” to move excessive amounts of data 
between device and host memory.

There is overhead for launching kernels on the GPU.

a = xp.random.rand(size, size)
b = xp.random.rand(size, size)
def f(a, b):
    return xp.dot(a, b)

CPUs → low latency
GPUs → high throughput
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Final thoughts

● Array Programming with NumPy!
○ eliminate for-loops in your program
○ vectorization / broadcasting / indexing

● Python startup is filesystem intensive. Containers may 
help with this at larger scales. 

● You’ll likely use more than one level of parallelism, 
consider composability of your choices.

● Profile your application before optimizing!
○ print/logging time differences is a good place to start



Thank you
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Multithreading in Python

main thread main thread

t0
t1

t2
t3

“start” (does not block 
main thread)

“join” (main thread waits 
for thread to finish)

serial 
progress

concurrent 
progress


