
1

Debugging Tools
on Perlmutter

New User Training
Sept 28, 2022

Justin Cook
User Engagement Group

2

Outline

● Debug programs graphically with DDT and TotalView - full-fledged
debuggers

● CUDA-gdb and Compute Sanitizer (aka CUDA-memcheck) are
non-MPI CUDA debuggers provided by NVIDIA

● Can debug parallel programs with gdb4hpc, another text-based
GDB-like tool

● Find memory-related bugs with valgrind4hpc and sanitizers4hpc
● Debug crashed or deadlocked programs with STAT and ATP
● https://docs.nersc.gov/tools/debug/

https://docs.nersc.gov/tools/debug/

3

Before we start debugging

● Setup a remote desktop connection
● Compile your program
● Setup your environment
● Allocate compute resources

4

Setup a remote desktop connection

● NoMachine (https://docs.nersc.gov/connect/nx/)
● Better performance than traditional x11 forwarding over ssh
● DDT and TotalView have their own remote connections that can also

be used

https://docs.nersc.gov/connect/nx/

5

Compile your program

● Generate debugging data and disable compiler optimizations
● C

○ cc -g -O0 -o program program.c
● Fortran

○ ftn -g -O0 -o program program.f90
● CUDA

○ nvcc -g -O0 -G -o program program.cu

6

Setup your environment

● Allow creation of core files
○ ulimit -c unlimited

● Abort and create core file on error
○ export MPICH_ABORT_ON_ERROR=1
○ export CUDA_ENABLE_COREDUMP_ON_EXCEPTION=1

● Use cray-cti module for HPE / Cray tools
○ module load cray-cti
○ export CTI_WLM_IMPL=slurm
○ https://github.com/common-tools-interface/cti

https://github.com/common-tools-interface/cti

7

Allocating nodes for debugging

● CPU
○ salloc [options] -q interactive -C cpu

● GPU
○ salloc [options] -q interactive -C gpu

● https://docs.nersc.gov/jobs/policy/#qos-limits-and-charges

https://docs.nersc.gov/jobs/policy/#qos-limits-and-charges

Distributed Debugging Tool (DDT)

9

Debugging programs with DDT

● Supports MPI, OpenMP, OpenACC, CUDA, Python
● Developed by ARM
● Remote client

○ https://docs.nersc.gov/tools/debug/ddt/#reverse-connect-using-re
mote-client

● module load arm-forge
● ddt [options] ./program
● https://docs.nersc.gov/tools/debug/ddt/
● https://developer.arm.com/documentation/101136/22-0-4/

DDT

https://docs.nersc.gov/tools/debug/ddt/#reverse-connect-using-remote-client
https://docs.nersc.gov/tools/debug/ddt/#reverse-connect-using-remote-client
https://docs.nersc.gov/tools/debug/ddt/
https://developer.arm.com/documentation/101136/22-0-4/DDT
https://developer.arm.com/documentation/101136/22-0-4/DDT

10

Sample Blank Page

11

12

13

14

For navigation

Parallel stack frame view
is helpful in quickly
finding out where each
process is executing

To check the value of a
variable, right-click on a
variable or check the
pane on the right

Sparklines

Processing entity to control

Evaluate expressions

15

TotalView

17

Debugging programs with TotalView

● Supports MPI, OpenMP, OpenACC, CUDA
● Developed by Perforce
● Remote client

○ https://docs.nersc.gov/tools/debug/totalview/#remote-display-client
● Remote connection

○ https://docs.nersc.gov/tools/debug/totalview/#remote-connections
● module load totalview
● totalview srun -a [options] ./program
● man totalview
● https://docs.nersc.gov/tools/debug/totalview/
● https://help.totalview.io
● Register for an upcoming training session

○ https://www.nersc.gov/users/training/events/totalview-tutorial-september-29-
2022/

https://docs.nersc.gov/tools/debug/totalview/#remote-display-client
https://docs.nersc.gov/tools/debug/totalview/#remote-connections
https://docs.nersc.gov/tools/debug/totalview/
https://help.totalview.io
https://www.nersc.gov/users/training/events/totalview-tutorial-september-29-2022/
https://www.nersc.gov/users/training/events/totalview-tutorial-september-29-2022/

18

Sample Blank Page

19

CUDA for the GNU Debugger (CUDA-gdb)

21

Debug cuda programs with cuda-gdb

•An extension to GDB that supports cuda programs
•Developed by NVIDIA
•cuda-gpu [options] ./program [core-file]
•(cuda-gdb) help
•(cuda-gdb) bt
•(cuda-gdb) list
•(cuda-gdb) help cuda
•cuda-gdb --help
•https://docs.nvidia.com/cuda/cuda-gdb/index.html

https://docs.nvidia.com/cuda/cuda-gdb/index.html

Compute Sanitizer (aka CUDA-memcheck)

23

Perform dynamic analysis of cuda programs with
compute-sanitizer
•Use several tools to check program correctness at run-time
•Dynamic instrumentation at compile time
•Developed by NVIDIA
•srun compute-sanitizer --tool=memcheck [options] ./program
•memcheck, Detect memory errors
•racecheck, Detect race conditions
•initcheck, Detect use of uninitialized variables
•syncheck, Detect sync errors
•https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html

GNU Debugger for HPC (gdb4hpc)

25

Debug parallel programs with gdb4hpc

•An extension to GDB that supports parallel programming models
•Does not support GPUs
•Developed by Cray / HPE
•module load gdb4hpc
•gdb4hpc
•(debug all) launch $p{N} ./program
•(debug all) help viewset
•(debug all) viewset $p
•man gdb4hpc
•https://docs.nersc.gov/tools/debug/gdb4hpc_ccdb/#parallel-debugging-
with-gdb4hpc

https://docs.nersc.gov/tools/debug/gdb4hpc_ccdb/#parallel-debugging-with-gdb4hpc
https://docs.nersc.gov/tools/debug/gdb4hpc_ccdb/#parallel-debugging-with-gdb4hpc

26

27

Valgrind for HPC (valgrind4hpc)

29

Perform dynamic analysis of parallel programs with
valgrind4hpc
• Use several tools to check program correctness at run-time
• Dynamic instrumentation at compile time
• Does not support GPUs
• Based on valgrind
•Developed by HPE / Cray
• Aggregated messages/results from all MPI ranks
•Less spurious error messages than valgrind
•module load valgrind4hpc
•valgrind4hpc -n4 --tool=memcheck [launcher-args] [valgrind-args] ./program
•Tools: memcheck, helgrind, exp-sgcheck, drd
•man valgrind4hpc
•man valgrind
•https://docs.nersc.gov/tools/debug/valgrind/
•https://valgrind.org/

https://docs.nersc.gov/tools/debug/valgrind/
https://valgrind.org/

Sanitizers for HPC (sanitizers4hpc)

31

Perform dynamic analysis of parallel programs with
sanitizers4hpc
• Use several tools to check program correctness at run-time
• Static instrumentation at compile time
• Aggregates report across all processes
• Based on LLVM Sanitizers
• Supports CCE, GCC
• Supports GPUs with cuda-memcheck
•Developed by HPE / Cray
•module swap PrgEnv-gnu PrgEnv-cray
•module load sanitizers4hpc
•-fsanitize=<sanitizer>
•Sanitizers: Address, Leak, Thread
•sanitizers4hpc -l “-n4” -- ./program
•man sanitizers4hpc
•https://github.com/google/sanitizers

https://github.com/google/sanitizers

Stack Trace Analysis Tool (STAT)

33

Debug deadlocked programs with STAT

• Attach to a job launcher process
• Gathers and merges stack traces for all processes
• Supports MPI, threads, and cuda (using cuda-gdb)
•module load cray-stat
•srun [options] program &
•<program-pid will output>
•stat-cl [options] program-pid
•stat-view stat-output-file
•man stat-cl
•man stat-view
•https://docs.nersc.gov/tools/debug/stat_atp/#stat
•https://github.com/LLNL/STAT
•https://github.com/LLNL/STAT/tree/develop/doc

https://docs.nersc.gov/tools/debug/stat_atp/#stat
https://github.com/LLNL/STAT
https://github.com/LLNL/STAT/tree/develop/doc

34

$ ftn -g -o jacobi_mpi jacobi_mpi.f90
$ salloc -N 1 -t 30:00 -q debug -C knl
...
$ srun -n 4 -c 64 --cpu-bind=cores ./jacobi_mpi &
[1] 135543
$ module load stat
$ stat-cl –i 135543
...
Attaching to application...
Attached!
Application already paused... ignoring request to pause
Sampling traces...
Traces sampled!
...
Resuming the application...
Resumed!
Merging traces...
Traces merged!
Detaching from application...
Detached!

Results written to /global/cscratch1/sd/wyang/debugging/stat/stat_results/jacobi_mpi.0003
$ ls -l stat_results/jacobi_mpi.0003/*.dot
-rw-rw---- 1 wyang wyang 5201 Jun 7 14:55 stat_results/jacobi_mpi.0003/00_jacobi_mpi.0003.3D.dot
$ STATview stat_results/jacobi_mpi.0003/00_jacobi_mpi.0003.3D.dot

35

Sample Blank Page

Abnormal Termination Processing (ATP)

37

Debugging crashed programs with ATP

•Signal handler processes termination signals
•Gathers and merges stack traces for all processes
• Selectively produces core files
• Support MPI, threads, and cuda (using cuda-gdb)
•module load cray-stat
•module load atp
•export ATP_ENABLED=1
•export ATP_GDB_BINARY=$(which gdb) # optional
•-fno-backtrace # GNU Fortran
•srun [options] program
•<termination signal> or <app crashes>
•stat-view dot-file
•man atp
•https://docs.nersc.gov/tools/debug/stat_atp/#atp

https://docs.nersc.gov/tools/debug/stat_atp/#atp

38

Sample Blank Page

39

Thank You and
Welcome to

NERSC!

