
1

Debugging Tools

New User Training
June 16, 2020

Woo-Sun Yang
User Engagement Group

2

Debuggers

Using print statements Using debuggers

Typical workflow

• Add print statements around suspicious or strategic
locations in the source code

• Compile the code
• Run the program and examine the printed values to

get a hint about what or where the problem may be
• If no hint is obtained, add different print statements
• Repeat

• Start your program under a debugger
• Set breakpoints in your program
• Run
• When the program stops at the

breakpoints, check variables
• Can add more breakpoints and continue

Pro and con

• “Easy” – no need to learn about a debugging tool
• Difficult to guess where and what to print
• Time consuming and tedious

• Rebuild the code each time the code is modified
• Will likely use multiple batch jobs – inefficient

use of allocations
• Not easy to understand what is wrong from the

potentially long printed values (e.g., multi-dim arrays)

• Compile only once (in general)
• Control program execution (stop,

continue, …)
• Tools and features available to aid to

spot problem areas (e.g., visually check
for abnormality in variable values by
plotting them with the debugger’s
visualization tool)

● Program errors:
○ Program crashes, program hangs, program generates incorrect results, …

● How to find and fix them?

3

Parallel Debuggers Available on Cori
● Parallel debuggers with a graphical user interface (GUI)

○ DDT (Distributed Debugging Tool) – part of the Arm Forge tool
○ TotalView

● Specialized debuggers
○ STAT (Stack Trace Analysis Tool)

■ Collect stack backtraces from all (MPI) tasks

○ ATP (Abnormal Termination Processing)
■ STAT invoked when an application fails

○ Valgrind
■ Suite of debugging and profiling tools

■ Best known for its detailed memory debugging tool, ‘memcheck’

■ https://docs.nersc.gov/development/performance-debugging-tools/valgrind/

○ Intel Inspector
■ Threading and memory debugging

■ https://docs.nersc.gov/programming/performance-debugging-tools/inspector/

https://docs.nersc.gov/development/performance-debugging-tools/valgrind/
https://docs.nersc.gov/programming/performance-debugging-tools/inspector/

4

DDT and TotalView
●GUI-based traditional parallel debuggers
●C, C++, Fortran codes with MPI, OpenMP, pthreads
●Licenses

○ DDT: up to 4,096 processes
○ TotalView: up to 512 processes
○ Shared among users and machines

●For info:
○

○

○

○

https://developer.arm.com/docs/101136/latest/arm-forge
https://docs.nersc.gov/development/performance-debugging-tools/ddt/
https://docs.roguewave.com/en/totalview/current/html/
https://docs.nersc.gov/development/performance-debugging-tools/totalview/

5

How to Build and Run with DDT
● Compile with -g for debugging symbols and -O0 for no

optimization (Intel compiler)

$ ftn -g -O0 -o jacobi_mpi jacobi_mpi.f90

● Start an interactive batch job and run DDT:

$ salloc -N 1 -t 30:00 -q debug -C knl
$ module load allinea-forge
$ ddt ./jacobi_mpi

6

If You Work Far Away From NERSC
● Running X11 GUIs over network: it responses painfully slowly due

to intrinsically high latency and inefficient bandwidth between X11
client and server

● Two solutions
○ Use NoMachine (NX) to improve the speed

■ Works for X11 window applications
■ https://docs.nersc.gov/connect/nx/

○ Use Arm Forge remote client
■ Run on your desktop/laptop
■ Submit a debugging batch job on a NERSC machine and make the job connect to

the client (“reverse connect”)
■ Display results in real time
■ https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge (for downloading remote

clients)
■ (for

setup)

https://docs.nersc.gov/connect/nx/
https://docs.nersc.gov/programming/performance-debugging-tools/ddt/

7

Arm Forge Remote Client Settings

●See
https://docs.nersc.gov/development/performance-debugging-tools/ddt/

https://docs.nersc.gov/development/performance-debugging-tools/ddt/

8

DDT Window

9

Breakpoints, Watchpoints and Tracepoints

● Breakpoint
○ Stops execution when a selected line (breakpoint) is reached
○ Double click on a line to create one; there are other ways, too

● Watchpoints for variables or expressions
○ Stops when a variable or an expression changes its value

● Tracepoints
○ When reached, prints what lines of codes is being executed and

the listed variables
● Can add a condition for an action point

○ Useful inside a loop
● Can be made active or inactive

10

Check Variables
● Right click on a variable for a quick summary
● Variable pane
● Evaluate pane
● Display variable values over processes (Compare across processes) or threads (Compare across

threads)
● MDA (Multi-Dimensional Array) Viewer

○ Visualization
○ Statistics
○ Quick sanity check, for ex., after halo exchange...

11

TotalView
● Start a batch job interactively and run your code with

TotalView
$ salloc -N 1 -C knl -t 30:00 -q debug
$ module load totalview
$ export OMP_NUM_THREADS=4
$ totalview srun -a \
 -n 8 -c 32 --cpu-bind=cores ./jacobi_mpiomp

● Click ‘OK’ in the ‘Startup Parameters - srun’ window

● Click ‘Go’ in the main window

● Click ‘Yes’ to the question ‘Process srun is a parallel job.
Do you want to stop the job now?’

12

TotalView (cont’d)

13

STAT (Stack Trace Analysis Tool)

● Gathers stack backtraces (sequence of function calls
leading up to the current function) from all (MPI)
processes
○ Merge them into a single file (*.dot)
○ Results displayed as a single call tree for all processes
○ Can be useful for debugging a hanging application
○ With the info learned from STAT, can investigate further with DDT

or TotalView
● Works for MPI, CAF, UPC, and OpenMP

14

STAT (Stack Trace Analysis Tool) (cont’d)

● STAT commands (after loading the ‘stat’ module)
○ stat-cl: invokes STAT to gather stack backtraces
○ STATview: A GUI to view the results
○ STATGUI: a GUI to run STAT or view results

● For more info:
○ ‘intro_stat’, ‘STAT’, ‘STATview’ and ‘STATGUI’ man pages
○ /opt/cray/pe/stat/default/doc/stat_userguide.pdf
○ –https://docs.nersc.gov/development/performance-debugging-too

ls/stat_atp/

https://docs.nersc.gov/development/performance-debugging-tools/stat_atp/
https://docs.nersc.gov/development/performance-debugging-tools/stat_atp/

15

Debug a Hanging App with STAT
● If your code hangs consistently, use STAT to examine whether MPI processes get stuck.

$ ftn -g -o jacobi_mpi jacobi_mpi.f90
$ salloc -N 1 -t 30:00 -q debug -C knl
...
$ srun -n 4 -c 64 --cpu-bind=cores ./jacobi_mpi &
[1] 135543
$ module load stat
$ stat-cl –i 135543
...
Attaching to application...
Attached!
Application already paused... ignoring request to pause
Sampling traces...
Traces sampled!
...
Resuming the application...
Resumed!
Merging traces...
Traces merged!
Detaching from application...
Detached!

Results written to /global/cscratch1/sd/wyang/debugging/stat/stat_results/jacobi_mpi.0003
$ ls -l stat_results/jacobi_mpi.0003/*.dot
-rw-rw---- 1 wyang wyang 5201 Jun 7 14:55 stat_results/jacobi_mpi.0003/00_jacobi_mpi.0003.3D.dot
$ STATview stat_results/jacobi_mpi.0003/00_jacobi_mpi.0003.3D.dot

16

Debug a Hanging App with STAT (cont’d)

Rank 0 was here Rank 3 was here

Ranks 1 and 2 were here

Rank 3 was here
(in other samples)

Check these locations!

17

ATP (Abnormal Termination Processing)
● ATP invokes STAT wgeb the application fails

○ Output in atpMergedBT.dot and atpMergedBT_line.dot (showing
source line numbers), which are to be viewed with STATview

● The atp module is loaded on Cori by default, but ATP is
not enabled; to enable:
$ export ATP_ENABLED=1 # sh/bash/ksh

% setenv ATP_ENABLED 1 # csh/tcsh

● For more info
○ ‘intro_atp’ man page
○ –https://docs.nersc.gov/development/performance-debugging-tools/stat_

atp/

https://docs.nersc.gov/development/performance-debugging-tools/stat_atp/
https://docs.nersc.gov/development/performance-debugging-tools/stat_atp/

18

Debug a Hanging App with ATP

●Submit a hanging job with ATP enabled
$ ftn -g -o jacobi_mpi jacobi_mpi.f90
$ cat runit

 #!/bin/bash

 #SBATCH -N 1

 #SBATCH -C knl

 ...

 export ATP_ENABLED=1

 export FOR_IGNORE_EXCEPTIONS=true

 srun -n 4 -c 64 --cpu-bind=cores ./jacobi_mpi

$ sbatch runit

Submitted batch job 31445729

Enable ATP
Code built with Intel fortran compiler

19

Debug a Hanging App with ATP (cont’d)
● From a login node, ssh to a MOM node and cancel the srun job

$ ssh cmom02

...

$ sacct -j 31445729

 JobID JobName Partition Account AllocCPUS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------

31445729 runit debug_knl nstaff 272 RUNNING 0:0

...

31445729.0 jacobi_mpi nstaff 256 RUNNING 0:0

31445729.1 cti_dlaun+ nstaff 1 RUNNING 0:0

$ scancel -s ABRT 31445729.0

$ logout

● Dot files are generated; view them with STATview
$ ls -l *.dot

-rw-rw---- 1 wyang wyang 1287 Jun 7 15:31 atpMergedBT.dot

-rw-rw---- 1 wyang wyang 1837 Jun 7 15:31 atpMergedBT_line.dot

$ module load stat

$ STATview atpMergedBT_line.dot

20

Debug a Hanging App with ATP (cont’d)

Rank 0 was here Rank 3 was here

Ranks 1 and 2 were here

Check these
locations!

21

Arm Tools Tutorial on July 16, 2020!

●½-day tutorial for Arm tools
○ Arm Forge

■ DDT - debugger
■ MAP – performance profiling

○ Performance Reports: performance summary
●Beginning/Intermediate level
●Will teach how to profile Python apps, too
●By Arm engineer
● Info and registration:

○ https://www.nersc.gov/users/training/events/arm-debugging-and-profiling-t
ools-tutorial-june-25-2020/

https://www.nersc.gov/users/training/events/arm-debugging-and-profiling-tools-tutorial-june-25-2020/
https://www.nersc.gov/users/training/events/arm-debugging-and-profiling-tools-tutorial-june-25-2020/

22

Thank You and
Welcome to

NERSC!

