NERSC File Systems and Data Management

Steve Leak
NERSC User Engagement Group

NUG New User Training
March 21, 2016
Topics

• What filesystems and storage do we have?
 – And how/when to use it

• How to share data with colleagues

• How to move data to, from and around NERSC systems
Key Points

• Variety of storage types available to meet different needs
 – Be aware of strengths and limitations of each, use each accordingly

• BACK UP YOUR IMPORTANT FILES TO HPSS (archive)

• Many ways to move data to/from NERSC
 – And most of them are better than ‘scp’

• If in doubt, ask for help
 – www.nersc.gov -> “For Users”
 – ServiceNow (help.nersc.gov) or email (consult@nersc.gov)
NERSC File Systems in a nutshell

HPSS
archive.nersc.gov
hpss.nersc.gov
- Tape-backed HSM
 - 240+PB tape, 280+TB disk cache
- Optimized for infrequent access of files >100GB
- Usage charged by files, stored volume and GB read/written

NGF (GPFS)

SHOME
- small space (40GB, 1M nodes)
- backed up
- daily snapshots (7 days)
- not purged
- private to you
- visible everywhere
- not fast (5 GB/s)
- optimized for small files - source code etc
- DO NOT RUN JOBS HERE

$SCRATCH (genepool)

$HOME (NGF)

Project, /projecta, /projectb
- large space (17TB, 1M nodes)
- backed up if quota < 5TB
- not purged
- shared with project group members
- visible everywhere
- Up to 40GB/s I/O bandwidth
- optimized for using and moving large files
 - (actively used job outputs, etc)
- DO NOT RUN JOBS HERE

Burst Buffer - Coming soon
- NOT YET AVAILABLE TO GENERAL USERS
- PCIe-attached SSDs directly connected to Cray Aries interconnect
- Supports IOPS-heavy workloads, faster checkpointing
- (mostly) deleted at the end of each job

$SCRATCH, /scratch3
- large: Edison: 10TB, 5M nodes, Cori: 20TB, 10M nodes
- fast: Edison: 48 + 48 + 72 GB/s, Cori: 700 GB/s
- local to each cluster
- only visible to you
- PURGED: files unused for 8 weeks are deleted without notice
 - Backup your files to HPSS!
- Optimized for large parallel I/O operations
- BEST PLACE TO RUN JOBS

data transfer nodes
dtn0.nersc.gov
dtn1.nersc.gov

edison.nersc.gov
cori.nersc.gov

The internet

infiniband

ethernet
NERSC Global $HOME

• Home directory shared across all NERSC clusters
• Small space (40GB, 1M inodes)
• Backed up to tape, and daily snapshots for last 7 days
• Never purged
• Private to you
• Visible everywhere
• Suitable for source code, configuration files, etc

• **DO NOT RUN JOBS HERE**
• **Served from NERSC Global Filesystem (NGF)**

 – Based on IBM GPFS

• **Provided by two ~100 TB file systems**

 – `/global/u1/`

 – `/global/u2/`

 – Users assigned randomly to one of them

 • Symbolic link on the other

 `/global/u1/s/sleak`

 `/global/u2/s/sleak` → `/global/u1/s/sleak`

• **Access it with $HOME or ~/**

 – Underlying name might change, “$HOME” will not
NERSC Global $HOME

• Served from NERSC Global Filesystem (NGF)
 – Based on IBM GPFS
• 5 GB/s aggregate bandwidth
 – To $HOME, shared by all users
• Shared by ~6000 active NERSC users
 – Inefficient use affects others
• Don’t run jobs here!
 – Neither space nor I/O bandwidth are suitable
• Don’t send Slurm stderr/stdout here
 – Submit jobs from $SCRATCH, or redirect output to there
NERSC Global $HOME

• $HOME daily snapshots (last 7 days)
 – Extra-hidden folder $HOME/.snapshots

sleak@cori03:~$ ls -a
. .bashrc.ext .globus .local .pyhistory .udiRoot .zprofile.ext
.. .cache .history .login .python-eggs .vim .zshenv
.Xauthority .config .inputrc .login.ext .ssh .viminfo .zshenv.ext
.bash_history .cshrc .intel .netrc .subversion .vimrc .zshrc
.bash_profile .cshrc.ext .kshrc .odbc.ini .swp .zlogin .zshrc.ext
.bash_profile.ext .fontconfig .kshrc.ext .profile .tcshrc .zlogin.ext .zshenv.ext
.bashrc .gitconfig .lesshst .profile.ext .tcshrc.ext .zprofile

sleak@cori03:~$ ls .snapshots
2016-03-09 2016-03-10 2016-03-11 2016-03-12 2016-03-13 2016-03-14 2016-03-15 2016-03-16

sleak@cori03:~$ ls .snapshots/2016-03-12
NESAP Tools Training UserSupport aaa bin intel log.lammps xtnodestat

• Mistakes, hardware failures happen!

Backup important files to HPSS
NERSC Global $HOME

• Quotas
 – 40 GB
 – 1,000,000 inodes (i.e. files and directories)
 – Quota increases for $HOME are almost never granted
 • (why do you need more than 40GB of source code? May need to reconsider what you are storing in $HOME)
 – Monitor your usage with `myquota`
 • Also visible in NIM

 sleak@cori03:~$ myquota
 Displaying quota usage for user sleak:

 | FileSystem | Usage | Quota | InDoubt | Usage | Quota | InDoubt |
 |------------------|-------|-------|---------|--------|----------|---------|
 | /global/cscratch | 0 | 20480 | – | 51 | 10000000 | – |
 | HOME | 6 | 40 | 0 | 133431 | 1000000 | 0 |
• Help! I deleted some large files, but my usage according to my quota stayed the same
 – Check for any running processes that are using the deleted files. The space will not be returned until these processes finish or are killed
 • The process may be on a different login node, or part of a batch job you have running
NERSC Global $HOME

• **Backups and retention**
 – Nightly backups to tape
 • Kept for 90 days
 • Last 7 days accessible via hidden $HOME/.snapshots folder
 • Recovering from tape is possible but slow, contact us via ServiceNow (help.nersc.gov) or email (consult@nersc.gov)
 – Data is kept on tape for 1 year after your account is deactivated
NERSC File Systems in a nutshell

HPSS
- Tape-backed HSM
 - 240+PB tape, 280+PB disk cache
- Optimized for infrequent access of files >100GB
- Usage charged by hours, stored volume and GB read/written

NGF (GPFS)
- $SCRATCH (genepool)
 - Large space (178PB, 1.1M nodes)
 - Backed up
 - Daily snapshots (7 days)
 - Not purged
 - Private to you
 - Visible everywhere
 - Not fast (5GB/s)
 - Optimized for small files - source code etc.
 - DO NOT RUN JOBS HERE

$HOME (NGF)
- Large space (178PB, 1.1M nodes)
- Backed up
- Not purged
- Shared with project group members
- Visible everywhere
- Up to 40GB/s IO bandwidth
- Optimized for using and moving large files
- (actively used job outputs, etc)
- DO NOT RUN JOBS HERE

Data Transfer Nodes
- dtn0.nersc.gov
- dtn1.nersc.gov

Infiniband

edison.nersc.gov
- SSCRATCH (/scratch3)
 - Large: Edison: 10TB, 5M nodes, Cori: 20TB, 10M nodes
 - Fast: Edison: 48 + 48 + 72 GB/s, Cori: 700 GB/s
 - Local to each cluster
 - Only visible to you
 - PURGED: files unused for 8 weeks are deleted without notice
 - Backup your files to HPSS!
 - Optimized for large parallel I/O operations
 - BEST PLACE TO RUN JOBS

- scratch3
 - Lustre

Burst Buffer - Coming soon
- NOT YET AVAILABLE TO GENERAL USERS
- PCIe-attached SSDs directly connected to Cray Aries interconnect
- Supports IOPS-heavy workloads, faster checkpointing
- (mostly) deleted at the end of each job

The Internet
Project File Systems

• Shared across all NERSC clusters
• Large space (1TB, 5M inodes)
• Backed up to tape, and daily snapshots for last 7 days
 – If quota <= 5 TB
• Never purged
• Shared with project group members
• Visible everywhere
• Web-accessible via science gateways
• Best for holding and sharing actively-used data
• **DO NOT RUN JOBS HERE**
• Served from NERSC Global Filesystem (NGF)
• 5.1 PB high-performance disk
 – 50GB/s aggregate bandwidth
• Every MPP repo has a project space
 – /project/projectdirs/m9999
• Tuned for large streaming file access
 – Not the place to run jobs .. But jobs could read large input files directly from here
Project File Systems

• **Sharing data**
 – Access control is via Unix groups
 – PI manages membership
 • (http://www.nersc.gov/users/accounts/nim/nim-guide-for-pis/)
 – More on sharing soon

• **Science gateways**
 – Web portals for sharing data with external collaborators
 mkdir /project/projectdirs/yourproject/www
 chmod -R 755 /project/projectdirs/yourproject/www
 – Corresponds to http://portal.nersc.gov/project/yourproject
Project File Systems

- **Quotas**
 - 1 TB
 - 1,000,000 inodes (i.e. files and directories)
 - Quota increases considered
 - Monitor your usage with `prjquota <yourproject>`
 - Also visible in NIM

```
sleak@cori03:$ prjquota acme

<table>
<thead>
<tr>
<th>Project</th>
<th>Usage</th>
<th>Quota</th>
<th>InDoubt</th>
<th>Usage</th>
<th>Quota</th>
<th>InDoubt</th>
</tr>
</thead>
<tbody>
<tr>
<td>acme</td>
<td>1014</td>
<td>1024</td>
<td>0</td>
<td>899382</td>
<td>1000000</td>
<td>0</td>
</tr>
</tbody>
</table>
```
• **Backups and retention**

 – Nightly backups to tape
 • Kept for 90 days
 • Last 7 days accessible via hidden $HOME/.snapshots folder
 • Recovering from tape is possible but slow, contact us via ServiceNow (help.nersc.gov) or email (consult@nersc.gov)

 – Data is kept on tape for 1 year after project becomes inactive (no allocation, no activity)
NERSC File Systems in a nutshell

- **HPSS**
 - NERSC archiving system
 - Tape-backed HSM
 - 240+PB tape, 280+TB disk cache
 - Optimized for infrequent access of files >100GB
 - Usage charged by files, stored volume and GB read/written

- **NGF (GPFS)**
 - Large space (17TB, 11M nodes)
 - Backed up
 - Daily snapshots (7 days)
 - Not purged
 - Private to you
 - Visible everywhere
 - Not fast (5 Gbps)
 - Optimized for large parallel I/O operations
 - BEST PLACE TO RUN JOBS

- **SHOME**
 - Small space (40GB, 1M nodes)
 - Backed up
 - Daily snapshots (7 days)
 - Not purged
 - Private to you
 - Visible everywhere
 - Not fast (5 Gbps)
 - Optimized for small files - source code etc
 - DO NOT RUN JOBS HERE

- **/project, /projecta, /projectb**
 - Large space (17TB, 11M nodes)
 - Backed up if quota < 5TB
 - Not purged
 - Shared with project group members
 - Visible everywhere
 - Up to 400GB I/O bandwidth
 - Optimized for using and moving large files
 - (actively used job outputs, etc)
 - DO NOT RUN JOBS HERE

- **/scratch, /scratch3**
 - Large: Edison: 10TB, 5M nodes, Cori: 20TB, 10M nodes
 - Fast: Edison: 48 + 48 + 72 GB/s, Cori: 700 GB/s
 - Local to each cluster
 - Only visible to you
 - PURGED files unused for 8 weeks are deleted without notice
 - Backup your files to HPSS!
 - Optimized for large parallel I/O operations

- **Burst Buffer - Coming soon**
 - NOT YET AVAILABLE TO GENERAL USERS
 - PCIe-attached SSDs directly connected to Cray Aries interconnect
 - Supports IOPS-heavy workloads, faster checkpointing
 - (mostly) deleted at the end of each job

- **Data Transfer Nodes**
 - dtn0.nersc.gov
 - dtn1.nersc.gov

- **edison.nersc.gov**

- **genepool.nersc.gov**

- **cori.nersc.gov**

- **Infiniband**

- **Ethernet**

- **The Internet**
Local $SCRATCH$

- Tape-backed HSM
 - 240-1PB tape, 280+TB disk cache
 - Optimized for infrequent access of files >100GB
 - Usage charged by slice, stored volume and GB read/written

$SCRATCH$ (genepool)
- NGF (GPFS)
 - small space (40GB, 1M inodes)
 - backed up
 - daily snapshots (7 days)
 - not purged
 - private to you
 - visible everywhere
 - not fast (5 GB/s)
 - optimized for small files - source code etc.
 - DO NOT RUN JOBS HERE

SHOME
- large space (1TB, 1M inodes)
- backed up (if quota < 5TB)
- not purged
- shared with project group members
- visible everywhere
- Up to 40GB/s I/O bandwidth
- optimized for using and moving large files
 (active use job outputs, etc.)
- DO NOT RUN JOBS HERE

$project$ (GeneProject)
- large space (1TB, 1M inodes)
- backed up (if quota < 5TB)
- not purged
- shared with project group members
- visible everywhere
- Up to 40GB/s I/O bandwidth
- optimized for using and moving large files
 (active use job outputs, etc.)
- DO NOT RUN JOBS HERE

HPSS
- archive.nersc.gov
- hpss.nersc.gov
- Tape-backed HSM
- 240-1PB tape, 280+TB disk cache
- Optimized for infrequent access of files >100GB
- Usage charged by slice, stored volume and GB read/written

Data Transfer Nodes
dtn5.nersc.gov
dtn1.nersc.gov

edison.nersc.gov

Burst Buffer - Coming soon
- NOT YET AVAILABLE TO GENERAL USERS
- PCIe-attached SSDs directly connected to Cray Aries interconnect
- Supports IOPs-heavy workloads, faster checkpointing
- (mostly) deleted at the end of each job

$SCRATCH$, /scratch3
- large: Edison: 30TB, 5M inodes, Cori: 20TB, 10M inodes
- fast: Edison: 48 = 48 + 72 GB/s, Cori: 700 GB/s
- local to each cluster
- only visible to you
- PURGED: files unused for 8 weeks are deleted without notice
 - Backup your files to HPSS!
- Optimized for large parallel I/O operations
- BEST PLACE TO RUN JOBS
Local SCRATCH

- Local to each cluster
- Large
 - Edison: 10 TB, 5,000,000 inodes
 - Cori: 20 TB, 10,000,000 inodes
- FAST
 - Edison SCRATCH: 48 GB/s aggregate per filesystem
 - Edison /scratch3: 72 GB/s aggregate
 - Cori SCRATCH: 700 GB/s aggregate
- Optimized for large parallel I/O workloads
- **BEST PLACE TO RUN JOBS**
Local $SCRATCH

• Not backed up
• Subject to purging
 – Files not actively used in last 8 weeks are deleted without notice
 • Purged files are listed in $SCRATCH/.purged.<timestamp>

BACK UP IMPORTANT FILES TO HPSS!
• **Quotas**
 – Edison: 10 TB, 5,000,000 inodes
 – Cori: 20 TB, 10,000,000 inodes
 – Quota increases considered
 – Monitor your usage with `myquota`
 • Also visible in NIM

```bash
sleak@cori03:~$ myquota
Displaying quota usage for user sneak:

<table>
<thead>
<tr>
<th>FileSystem</th>
<th>Usage</th>
<th>Space (GB)</th>
<th>Quota</th>
<th>InDoubt</th>
<th>Usage</th>
<th>Quota</th>
<th>InDoubt</th>
</tr>
</thead>
<tbody>
<tr>
<td>/global/cscratch</td>
<td>0</td>
<td>20480</td>
<td>-</td>
<td>-</td>
<td>51</td>
<td>10000000</td>
<td>-</td>
</tr>
<tr>
<td>HOME</td>
<td>6</td>
<td>40</td>
<td>0</td>
<td></td>
<td>133431</td>
<td>1000000</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Local SCRATCH

- **Lustre filesystem**
 - Edison: provided by two 2 PB filesystems
 - Users assigned randomly to one of them
 - Cori: single 28 PB filesystem
 - **Access it with SCRATCH**
 - Edison /scratch3: access considered by request
 - http://www.nersc.gov/users/computational-systems/edison/file-storage-and-i-o/
 - Access it by name (/scratch3/scratchdirs/USER)
 - /scratch3 has greater I/O bandwidth
Local $\$SCRATCH$

- $\$SCRATCH$ is configured to provide high-bandwidth I/O for many simultaneous users
 - How does it work?

MDS == "MetaDataServer" == "which OSS to talk to"

OST == "Object Storage Target" == "bunch of disks"

- Striping == spread file over multiple disks improves available bandwidth (if reading/writing enough data)

- MDS

- OSS

- High-speed data network directly to/from storage

- Many clients

just enough to find which OSS
• **Tip: Cray MPI-IO is Lustre-aware**
 – Aggregator MPI tasks communicate each with 1 OST

10 disks / OST
4 OST / OSS

0.5 GB/s per OST

**-default striping of 2
== two full OSTS**

x12

48 GB/s aggregate bandwidth for each of /scratch1, /scratch2
- I/O striped over 8 OSTs of 40 disks each
 - high I/O bandwidth
• Large space, highly parallel
 – Eventually will become global scratch space
Optimizing I/O Performance

• You can view/change the stripe size
 – lfs getstripe $SCRATCH/my_file.dat
 – lfs setstripe --s 4m --c 4 $SCRATCH/my_file.dat

• Some shortcuts for single-shared-file I/O:
 – stripe_small $SCRATCH/my_folder
 • Files >1 GB
 – stripe_medium $SCRATCH/my_folder
 • Files >10 GB
 – stripe_large $SCRATCH/my_folder
 • Files >100 GB

• Use with care: can make performance worse
Lustre tips and gotchas

• Don’t keep 100,000 files in the same folder
 – Hard work for OSS, affects performance for other users
 – 100 folders with 1000 files each is much faster

• ‘ls’ vs ‘ls –l’
 – Passing options to ‘ls’ invokes an inquiry on each inode in the folder – occupies OSS/OST with small transfers, non-optimal
 – Basic ‘ls’ needs only information kept in MDS, much faster

• ‘lfs find’ vs ‘find’
 – Same principle: special (limited) version of find that only uses data on MDS, not OSS/OST
NERSC File Systems in a nutshell

- **HPSS**
 - archive.nersc.gov
 - hpss.nersc.gov
 - Tape-backed HSM
 - 240+PB tape, 280+TB disk cache
 - Optimized for infrequent access of files >100GB
 - Usage charged by files, stored volume and GB read/written

- **NGF**
 - $SCRATCH (genepool)
 - $HOME (NGF)
 - Large space (20TB, 10M nodes)
 - Backed up (if quota < 5TB)
 - Not purged
 - Shared with project group members
 - Visible everywhere
 - Up to 400GB I/O bandwidth
 - Optimized for using and moving large files

- **SHOME**
 - Small space (40GB, 1M nodes)
 - Backed up
 - Daily snapshots (7 days)
 - Not purged
 - Private to you
 - Visible everywhere
 - Not fast (5 GB/s)
 - Optimized for small files - source code etc.
 - DO NOT RUN JOBS HERE

- **/project, /projecta, /projectb**
 - Large space (17TB, 1M nodes)
 - Backed up (if quota < 5TB)
 - Not purged
 - Shared with project group members
 - Visible everywhere
 - Up to 400GB I/O bandwidth
 - Optimized for using and moving large files
 - Actively used job outputs, etc
 - DO NOT RUN JOBS HERE

- **Infiniband**
 - Data Transfer Nodes
 - dtn0.nersc.gov
 - dtn1.nersc.gov

- **Ethernet**
 - edison.nersc.gov
 - cori.nersc.gov

- **Burst Buffer - Coming soon**
 - NOT YET AVAILABLE TO GENERAL USERS
 - PCIe-attached SSDs directly connected to Cray Aries interconnect
 - Supports IOPS-heavy workloads, faster checkpointing
 - (mostly) deleted at the end of each job

- **edison.nersc.gov**
 - SSCRATCH, /scratch3
 - Large: Edison: 10TB, 5M nodes, Cori: 20TB, 10M nodes
 - Fast: Edison: 48 + 48 + 72 GB/s, Cori: 700 GB/s
 - Local to each cluster
 - Only visible to you
 - PURGED: files unused for 8 weeks are deleted without notice
 - Backup your files to HPSS!
 - Optimized for large parallel I/O operations
 - BEST PLACE TO RUN JOBS

- **cori.nersc.gov**
 - SSCRATCH
 - Large: Edison: 50TB, 10M nodes, Cori: 20TB, 10M nodes
 - Fast: Edison: 48 + 48 + 72 GB/s, Cori: 700 GB/s
 - Local to each cluster
 - Only visible to you
 - PURGED: files unused for 8 weeks are deleted without notice
 - Backup your files to HPSS!
Burst Buffer

- Tape-backed HSM
 - 240+PB tape, 260+TB disk cache
- Optimized for infrequent access of files >100GB
- Usage charged by slice, stored volume and GB read/written

- NGF (GPFS)
- $SCRATCH$ (genepool)
 - 33GB
 - not fast (5GB/s)
 - optimized for small files - source code etc.
 - DO NOT RUN JOBS HERE

- HOME
 - small space (40GB, 1M inodes)
 - backed up
 - daily snapshots (7 days)
 - not purged
 - private to you
 - visible everywhere
 - not fast (5GB/s)
 - DO NOT RUN JOBS HERE

- $SCRATCH$ (lustre)
 - large: Edison 20TB, 5M inodes
 - fast: Edison 48 + 48 + 72 GB/s, Cori: 700 GB/s
 - local to each cluster
 - only visible to you
 - PURGED: files unused for 8 weeks are deleted without notice
 - Backup your files to HPSS!
 - Optimized for large parallel I/O operations
 - BEST PLACE TO RUN JOBS

- cori.nersc.gov
- edison.nersc.gov
- dtn5.nersc.gov
dtn1.nersc.gov
- genepool.nersc.gov
- pdfs.nersc.gov
- Burst Buffer - Coming soon
- NOT YET AVAILABLE TO GENERAL USERS
- PCIe-attached SSDs directly connected to Cray Aries interconnect
- Supports IOPS-heavy workloads, faster checkpointing
- (mostly) deleted at the end of each job
Burst Buffer

• Coming soon! (not yet available to general users)
• SSD-equipped nodes (and supporting software) for high-IOPS, high-throughput, “job-local” storage
 – Directly attached to XC-40 interconnect (Aries)
• Pre/post-job stage in and stage out
• Current configuration:
 – 144 BB nodes (2 SSDs per BB node)
 – 900 TB @ 900 GB/s, 12.5M IOPS (measured)
• Cori phase 2:
 – ~2x
Burst Buffer

• Why?
 – Limitations of $SCRATCH$:
 • Relies on large, throughput-oriented I/O for performance
 – Checkpointing – extreme bandwidth requirements
 • 1000’s of nodes each writing 10’s of GB
 • Mostly not required again
 – For large parallel jobs, I/O is often “bursty”
 • Most cores waiting while few cores do I/O

• How?
 – #BB job directives passed to sbatch
Burst Buffer

Burst buffer nodes

Storage Fabric

Storage Servers

I/O nodes present $SCRATCH, $HOME
Burst Buffer

compute nodes

BB nodes

LNET/DVS

IO nodes

service nodes
NERSC File Systems in a nutshell

HPSS
archive.nersc.gov
hpss.nersc.gov
- Tape-backed HSM
 - 240+PB tape, 280+TB disk cache
- Optimized for infrequent access of files >100GB
- Usage charged by effort, stored volume and GB read/written

NGF (GPFS)
- Small space (40GB, 1M nodes)
- Backed up
- Daily snapshots (7 days)
- Not purged
- Private to you
- Visible everywhere
- Not fast (5 GB/s)
- Optimized for small files - source code etc
- DO NOT RUN JOBS HERE

SHOME
- Large space (17TB, 1M nodes)
- Backed up (if quota < 5TB)
- Not purged
- Shared with project group members
- Visible everywhere
- Up to 40GB/s I/O bandwidth
- Optimized for using and moving large files (actively used job outputs, etc)
- DO NOT RUN JOBS HERE

$SCRATCH (genepool)

$HOME (NGF)

$HOME (GPFS)

Data Transfer Nodes
dtn0.nersc.gov
dtn1.nersc.gov

Infiniband

Ethernet

edison.nersc.gov
cori.nersc.gov

$SCRATCH (Lustre)

$SCRATCH (GPFS)

$SCRATCH (Lustre)

$SCRATCH (Lustre)

Burst Buffer - Coming soon
- NOT YET AVAILABLE TO GENERAL USERS
- PCIe-attached SSDs directly connected to Cray Aries interconnect
- Supports IOPS-heavy workloads, faster checkpointing
- (mostly) deleted at the end of each job
• Data grows exponentially
 – 80% of stored data is never accessed again after 90 days
Memory

Burst Buffer

Disk

Tape

Speed, Cost

Space, Reliability
• archive.nersc.gov
 – HSM: disk cache, ultimately everything is stored on tape
 – Parallel connections over NERSC internal 10GbE network
• Available to all NERSC users
 – (a second system, hpss.nersc.gov, is for internal use such as system backups)
• No quota, but charged in “Storage Resource Units”
 • Like Amazon Glacier, etc
 – Monitor usage via NIM
Accessing HPSS

<table>
<thead>
<tr>
<th>Tool</th>
<th>What it does</th>
<th>Where/why to use it</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>htar</td>
<td>Tar directly to/from HPSS</td>
<td>From NERSC hosts. Simple store/retrieve of large directories</td>
<td><code>$ htar cf results-for-publication.tar my_results/</code></td>
</tr>
<tr>
<td>hsi</td>
<td>CLI client</td>
<td>From NERSC hosts. Full featured client</td>
<td><code>$ hsi A:/home/s/sleak-> put myfile</code></td>
</tr>
<tr>
<td>pftp, ftp</td>
<td>High performance (parallel) ftp</td>
<td>When need/prefer ftp-like interface</td>
<td><code>$ pftp archive.nersc.gov ftp> pput results-for-publication.tar</code></td>
</tr>
<tr>
<td>gridFTP</td>
<td></td>
<td>External, gridFTP-enabled sites (you need a grid credential)</td>
<td><code>$ globus-url-copy file://${HOME}/myresults.tar gsfftp://garchive.nersc.gov/home/s/sleak/results-for-publication.tar</code></td>
</tr>
<tr>
<td>Globus Online</td>
<td>Data transfer service</td>
<td>Fire-and-forget transfers</td>
<td>See www.globusonline.org</td>
</tr>
</tbody>
</table>
• **Tape storage performance and gotchas**

 – Tape is linear media

 • Data cannot be written anywhere, only appended at end
 • Reading and writing are sequential, not random-access

 – Very high latency:

 • Robot must fetch tape, load it into drive, read forwards until file is reached, then read file
 • Number-of-files has bigger impact on access performance than number-of-GB

 – Size matters

 • Sweet spot currently **100s of GB**
 • Files >1TB will cause trouble (too big for tapes)
Retrieving files in same order they were stored ...

.. vs in random order
• Best practices/Worst practices:
 – Store a few very large files, not many small files
 • htar or tar-first-in-$SCRATCH$
 – Recursively storing or fetching a directory tree will result in many unordered accesses
 • Use htar or tar instead
 • hpss_file_sorter.script => sorts a list of files into “tape order”
• **Best practices/Worst practices:**

 – HPSS has a single database instances, all user interactions trigger database activity

 • `hsi -q 'ls -l'` is database intensive, $O(N^2)$ with number of files in directory

 – Too many files in one folder can lock up system for everybody

 – Streaming data to pftp from Unix pipeline

 • HPSS does not know how big the data will be, likely to put it in wrong place

 • Vulnerable to network glitch
Checking my Usage

- nim.nersc.gov

My NGF Quotas & Usage

<table>
<thead>
<tr>
<th>Username</th>
<th>Full Name</th>
<th>Home Space Used (GiB)</th>
<th>Home Space Quota (GiB)</th>
<th>HSQ Def?</th>
<th>Home Inodes Used</th>
<th>Home Inode Quota</th>
<th>HIQ Def?</th>
<th>Home Quota End</th>
<th>Prop Chng</th>
</tr>
</thead>
<tbody>
<tr>
<td>sleek</td>
<td>Stephen Leak</td>
<td>6.1</td>
<td>40</td>
<td>Y</td>
<td>133,443</td>
<td>1,000,000</td>
<td>Y</td>
<td>Never</td>
<td>N</td>
</tr>
</tbody>
</table>

Update User Quotas

Usage for My Project Directories

<table>
<thead>
<tr>
<th>Project Directory</th>
<th>Owner</th>
<th>Group Name</th>
<th>ERCAP Project</th>
<th>Space Usage</th>
<th>Space Quota</th>
<th>Default Space Quota?</th>
<th>Space%</th>
<th>Inode Usage</th>
<th>Inode Quota</th>
<th>Default Inode Quota?</th>
<th>Inode%</th>
<th>Quota Expiration Date</th>
<th>Projdir Status</th>
<th>Status Effective Date</th>
<th>Projdir ID</th>
<th>Group ID</th>
<th>Project ID</th>
<th>Prop Chng</th>
</tr>
</thead>
<tbody>
<tr>
<td>carver</td>
<td>d paul</td>
<td>mpc cc</td>
<td>staff</td>
<td>8</td>
<td>1.0</td>
<td>Y</td>
<td>0.8</td>
<td>63,918</td>
<td>1,000,000</td>
<td>Y</td>
<td>6</td>
<td>Never</td>
<td>Active</td>
<td>Jan-06-2016</td>
<td>43906</td>
<td>11988</td>
<td>13439</td>
<td>N</td>
</tr>
<tr>
<td>dirac</td>
<td>whitney</td>
<td>mpc cc</td>
<td>staff</td>
<td>165</td>
<td>1.0</td>
<td>Y</td>
<td>16</td>
<td>15,576</td>
<td>1,000,000</td>
<td>Y</td>
<td>1.6</td>
<td>Never</td>
<td>Active</td>
<td>Jan-06-2016</td>
<td>43946</td>
<td>11988</td>
<td>13439</td>
<td>N</td>
</tr>
<tr>
<td>gene pool</td>
<td>jay</td>
<td>mpc cc</td>
<td>staff</td>
<td>130</td>
<td>1.0</td>
<td>Y</td>
<td>13</td>
<td>900,469</td>
<td>1,000,000</td>
<td>Y</td>
<td>90</td>
<td>Never</td>
<td>Active</td>
<td>Jan-06-2016</td>
<td>43970</td>
<td>11988</td>
<td>13439</td>
<td>N</td>
</tr>
</tbody>
</table>

- myquota
- prjquota
Sharing Data
Sharing Data

• **Security matters!**
 – Never share passwords

• **With other NERSC users**
 – Project directories (/project) are designed for sharing files with colleagues
 • Not $HOME
 – Unix groups, FACLs (“file access control lists”)
 – give, take commands

• **With external collaborators**
 – Science gateways (on /project)
Sharing Data

• Unix groups
 – What groups am I in?
 • groups
 – New files are associated with your default group
 – To change which group the file is associated with:
 • chgrp my_other_group myfile.txt
 • chgrp –R my_other_group whole_directory_tree/
 – To ensure users in my_other_group can read/write a file or folder:
 • chmod g+rw myfile.txt
 • chmod g+rws my_new_folder/
 – “s” – setgid
“setgid” ??

• setgid “set group id”
 – File mode, set with `chmod`
 – When set on a folder, it means “things added to this folder should inherit the group of the folder”
 • (so I don’t need to keep typing `chgrp` for each new file)
 – NOTE: only things added, not things that were already there
FACLs

- **Finer-grain control of access**

 - `getfacl`, `setfacl`

 - `setfacl -m u_or_g:who:what_perms myfile.txt`

 - `setfacl -x`

 - Remove a FACL

```plaintext
getfacl some_file.txt
# file: some_file.txt
# owner: sneak
# group: sneak
user::rw-
group::r--
other::---

setfacl -m u:rjhb:rw some_file.txt

getfacl some_file.txt
# file: some_file.txt
# owner: sneak
# group: sneak
user::rw-
user:rjhb:rw-
group::r--
mask::rw-
other::---
```
My colleague still can’t see my file?

• Check permissions of the folder it is in, and the folder above that, etc
 – Missing permissions at any point in the tree will prevent access to the next level of the tree

• Don’t forget “x” on folders
Give and Take

• Appropriate for smaller files

joe% give -u bob coolfile
 – File copied to spool location
 – Bob gets email telling him Joe has given him a file

bob% take -u joe coolfile
 – File copied from spool location
Science Gateways

• Make data available to outside world

 mkdir /project/projectdirs/bigsci/www
 chmod o+x /project/projectdirs/bigsci
 chmod o+rx /project/projectdirs/bigsci/www

• Access with web browser

 http://portal.nersc.gov/project/bigsci

• More info:

Moving Data Around

• Don’t do it!
 – Ok, sometimes you need to
 – Don’t forget $HOME and /project are shared by all NERSC clusters

• Data transfer nodes
 – Fast network between all NERSC storage locations
 – Visible to internet
 – Dedicated to data transfer
 • Avoids adding load to Edison, Cori login nodes
NERSC File Systems Summary

HPSS
archive.nersc.gov
hpss.nersc.gov
- Tape-backed HSM
- 240+PB tape, 280+TB disk cache
- Optimized for infrequent access of files >100GB
- Usage charged by files, stored volume and GB read/written

NGF (GPFS)

$SCRATCH (genepool)

SHOME
- small space (40GB, 1M nodes)
- backed up
- daily snapshots (7 days)
- not purged
- private to you
- visible everywhere
- not fast (5 Gbps)
- optimized for small files - source code etc
- DO NOT RUN JOBS HERE

Data Transfer Nodes
dtn0.nersc.gov
dtn1.nersc.gov

Infiniband

Ethernet

The Internet

cori.nersc.gov

genepool.nersc.gov

pdfs.nersc.gov

edison.nersc.gov

$HOME (NGF)

$SCRATCH (NGF)

$SCRATCH, /scratch3
- large: Edison: 10TB, 5M nodes, Cori: 20TB, 10M nodes
- fast: Edison: 48 + 48 + 72 GB/s, Cori: 700 GB/s
- Local to each cluster
- only visible to you
- PURGED: files unused for 8 weeks are deleted without notice
- Backup your files to HPSS!
- Optimized for large parallel I/O operations
- BEST PLACE TO RUN JOBS

Burst Buffer - Coming soon
- NOT YET AVAILABLE TO GENERAL USERS
- PCIe-attached SSDs directly connected to Cray Aries interconnect
- Supports IOPS-heavy workloads, fast checkpointing
- (mostly) deleted at the end of each job
Moving Data Around

<table>
<thead>
<tr>
<th>Tool</th>
<th>What it does</th>
<th>Where/why to use it</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp</td>
<td>Local copy</td>
<td>Between NERSC filesystems</td>
<td><code>$ cp $SCRATCH/output.dat /project/projectdirs/m9999/</code></td>
</tr>
</tbody>
</table>
| scp, rsync | Encrypted copy over network | Small amounts of data, collections of small files, over small distances. Use HPN version if available. | `$ scp my_code.f cori:`
 `$ scp -R my_folder/ cori:`
 `$ rsync -avr my_folder/ cori:`
 `$ ssh -V
 OpenSSH_7.1p1-hpn14v5NMOD_3.17, OpenSSL 0.9.8j-fips 07 Jan 2009` |
| bbcp | Fast parallel network copy. Requires client program | Larger files, longer distances | `$ bbcp -T "ssh -x -a -oFallbackToRsh=no %I -l %U %H /usr/common/usg/bin/bbcp" /local/path/file
"user_name@dt01.nersc.gov:/remote/path/"` |

See https://www.nersc.gov/users/storage-and-file-systems/transferring-data/
Moving Data Around

<table>
<thead>
<tr>
<th>Tool</th>
<th>What it does</th>
<th>Where/why to use it</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NERSC ftp upload</td>
<td>Temporary ftp account/server</td>
<td>Allow external collaborators to upload files for you to collect</td>
<td>See https://www.nersc.gov/users/storage-and-file-systems/transferring-data/nersc-ftp-upload-service/</td>
</tr>
<tr>
<td>gridFTP</td>
<td>Fast network copy protocol, requires certificate</td>
<td>External, gridFTP-enabled sites (you need a grid credential)</td>
<td><code>$ globus-url-copy file://$HOME/myresults.tar</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: garchive.nersc.gov</td>
<td><code>gsiftp://garchive.nersc.gov/home/s/sleak/results-for-publication.tar</code></td>
</tr>
<tr>
<td>Globus Online</td>
<td>Fast data transfer service. Web or CLI</td>
<td>Fire-and-forget transfers (Especially between NERSC and other HPC centers)</td>
<td>See www.globusonline.org</td>
</tr>
</tbody>
</table>

See https://www.nersc.gov/users/storage-and-file-systems/transferring-data/
Summary

• Variety of storage types available to meet different needs
 – Be aware of strengths and limitations of each, use each accordingly

• BACK UP YOUR IMPORTANT FILES TO HPSS (archive)

• Many ways to move data to/from NERSC
 – And most of them are better than ‘scp’

• If in doubt, ask for help
 – www.nersc.gov -> “For Users”
 – ServiceNow (help.nersc.gov) or email (consult@nersc.gov)