
- 1 -

June 21, 2019

• Program errors
– Program crashes
– Program hangs
– Wrong results

• How to find and fix them?
– Print statements

• Difficult to guess where and what to print
• Recompile and submit jobs whenever you change them
• Tedious, exhausting and time-consuming
• Hard to extract info from output about the error, especially for parallel

codes

– Debuggers
• Compile only once (generally)
• Control execution of your program
• Check variables; visualize and get stats

- 2 -

• Parallel debuggers with a graphical user interface
– DDT (Distributed Debugging Tool)
– TotalView

• Specialized debuggers
– STAT (Stack Trace Analysis Tool)

• Collect stack backtraces from all (MPI) tasks

– ATP (Abnormal Termination Processing)
• Collect stack backtraces from all (MPI) tasks when an application fails

– Valgrind
• Suite of debugging and profiling tools
• Best known for its detailed memory debugging tool, ‘memcheck’
• https://docs.nersc.gov/development/performance-debugging-tools/valgrind/

– Intel Inspector
• Threading and memory debugging
• https://docs.nersc.gov/programming/performance-debugging-tools/inspector/

- 3 -

https://docs.nersc.gov/development/performance-debugging-tools/valgrind/
https://docs.nersc.gov/programming/performance-debugging-tools/inspector/

• GUI-based traditional parallel debuggers
• C, C++, Fortran codes with MPI, OpenMP, pthreads
• Licenses

– DDT: up to 8192 MPI tasks on Cori
– TotalView: up to 512 MPI tasks on Cori
– Shared among users and machines

• For info
– https://developer.arm.com/tools-and-software/server-and-h
pc/arm-architecture-tools/arm-forge

– https://docs.nersc.gov/development/performance-debugging-t
ools/ddt/

– https://www.roguewave.com/products-services/totalview
– https://docs.nersc.gov/development/performance-debugging-t

ools/totalview/

- 4 -

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-forge
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-forge
https://docs.nersc.gov/development/performance-debugging-tools/ddt/
https://docs.nersc.gov/development/performance-debugging-tools/ddt/
https://www.roguewave.com/products-services/totalview
https://docs.nersc.gov/development/performance-debugging-tools/totalview/
https://docs.nersc.gov/development/performance-debugging-tools/totalview/

- 5 -

$ ftn -g -O0 -o jacobi_mpi jacobi_mpi.f90

$ salloc -N 1 -t 30:00 -q debug -C knl
$ module load allinea-forge
$ ddt ./jacobi_mpi

Load the allinea-forge module to use DDT
Start DDT

-g for debugging symbols;
-O0 for the Intel compiler

Start an interactive batch session

• Running X11 GUIs over network: reponses painfully slow due
to intrinsically high latency and inefficient bandwidth
between X11 client and server

• Two solutions
– Use NX (NoMachine) to improve the speed

• Works for X11 window applications
• https://docs.nersc.gov/connect/nx/

– Use Arm Forge remote client
• Run on your desktop/laptop
• Submit a debugging batch job on a NERSC machine and make the job connect

to the client (“reverse connect”)
• Displays results in real time
• https://developer.arm.com/tools-and-software/server-and-hpc/arm-architect

ure-tools/downloads/download-arm-forge (for downloading remote clients)
• https://docs.nersc.gov/programming/performance-debugging-tools/ddt/#
reverse-connect-using-remote-client (for setup)

- 6 -

https://docs.nersc.gov/connect/nx/
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/downloads/download-arm-forge
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/downloads/download-arm-forge
https://docs.nersc.gov/programming/performance-debugging-tools/ddt/#reverse-connect-using-remote-client
https://docs.nersc.gov/programming/performance-debugging-tools/ddt/#reverse-connect-using-remote-client

• See
https://docs.nersc.gov/development/performance-debugging-tool
s/ddt/

- 7 -

Uncheck
for MFA

https://docs.nersc.gov/development/performance-debugging-tools/ddt/
https://docs.nersc.gov/development/performance-debugging-tools/ddt/

- 8 -

For navigation

Parallel stack frame view is helpful in
quickly finding out where each process is
executing

To check the value of a
variable, right-click on a
variable or check the
pane on the right

Sparklines

Processing entity
to control

To evaluate
expressions

• Breakpoint
– Stops execution when a selected line (breakpoint) is reached

– Double click on a line to create one; there are other ways, too

• Watchpoints for variables or expressions
– Stops when a variable or an expression changes its value

• Tracepoints
– When reached, prints what lines of codes is being executed and

the listed variables

• Can add a condition for an action point
– Useful inside a loop

• Can be made active or inactive

- 9 -

• Right click on a variable for a quick summary
• Variable pane
• Evaluate pane
• Display variable values over processes (Compare across processes) or

threads (Compare across threads)
• MDA (Multi-dimensional Array) Viewer

– Visualization
– Statistics

- 10 -

- 11 -

$ salloc -N 1 -C knl -t 30:00 -q debug
$ module load totalview
$ export OMP_NUM_THREADS=4
$ totalview srun -a \
 -n 8 -c 32 --cpu_bind=cores ./jacobi_mpiomp

Then,
• Click OK in the ‘Startup Parameters - srun’ window

• Click ‘Go’ button in the main window

• Click ‘Yes’ to the question ‘Process srun is a parallel job. Do you want to stop the job now?’

- 12 -

To see the value of a
variable, right-click on a
variable to “dive” on it or
just hover mouse over it

For navigation
Root window Process window

State of MPI tasks
and threads;
members denoted
roughly as
‘rank.thread’

For selecting MPI task
and thread Breakpoints, etc.

• Gathers stack backtraces (sequence of function calls
leading up to the current function) from all (MPI)
processes
– Merge them into a single file (*.dot)

– Results displayed as a single call tree for all processes

– Can be useful for debugging a hanging application

– With the info learned from STAT, can investigate further
with DDT or TotalView

• Works for MPI, CAF and UPC, OpenMP

- 13 -

• STAT commands (after loading the ‘stat’ module)
– stat-cl: invokes STAT to gather stack backtraces

– STATview: a GUI to view the results

– STATGUI: a GUI to run STAT or view results

• For more info:
– ‘intro_stat’, ‘STAT’, ‘STATview’ and ‘STATGUI’ man pages

– /opt/cray/pe/stat/default/doc/stat_userguide.pdf

– https://docs.nersc.gov/development/performance-debugg
ing-tools/stat_atp/

- 14 -

https://docs.nersc.gov/development/performance-debugging-tools/stat_atp/
https://docs.nersc.gov/development/performance-debugging-tools/stat_atp/

• If your code hangs in a consistent manner, you can use STAT
to see whether some MPI ranks got stuck.

- 15 -

$ ftn -g -o jacobi_mpi jacobi_mpi.f90
$ salloc -N 1 -t 30:00 -q debug -C knl
...
$ srun -n 4/jacobi_mpi &
[1] 53634
$ module load stat
$ stat-cl -i 53634
…
Attaching to application...
Attached!
Application already paused... ignoring request to pause
Sampling traces...
Traces sampled!
…
Resuming the application...
Resumed!
Merging traces...
Traces merged!
Detaching from application...
Detached!

Results written to /global/cscratch1/sd/wyang/debugging/stat/stat_results/jacobi_mpi.0000

$ ls -l stat_results/jacobi_mpi.0000/*.dot
-rw-r--r-- 1 wyang wyang 9028 Jun 20 10:42 stat_results/jacobi_mpi.0000/00_jacobi_mpi.0000.3D.dot

$ STATview stat_results/jacobi_mpi.0000/00_jacobi_mpi.0000.3D.dot

-i to get source line numbers
STAT samples stack backtraces a few times

with usual optimization flags, if any

- 16 -

Rank 3 is hereRank 1 is here

Rank 2 is here Rank 0 is here

• ATP gathers stack backtraces from all processes
when the application fails
– Invokes STAT underneath
– Output in atpMergedBT.dot and atpMergedBT_line.dot

(which shows source code line numbers), which are to be
viewed with STATview

• The atp module is loaded on Cori by default, but
ATP is not enabled; to enable:

export ATP_ENABLED=1 # sh/bash/ksh
setenv ATP_ENABLED 1 # csh/tcsh

• For more info
– ‘intro_atp’ man page
– https://docs.nersc.gov/development/performance-debugg

ing-tools/stat_atp/
- 17 -

https://docs.nersc.gov/development/performance-debugging-tools/stat_atp/
https://docs.nersc.gov/development/performance-debugging-tools/stat_atp/

- 18 -

