
1

Running Jobs on Cori

New User Training
June 16, 2020

Helen He
NERSC User Engagement Group

2

Outline
● Running Jobs Introductions
● Batch Script Examples
● Advanced Running Jobs Options
● KNL Process/Thread/Memory Affinity
● Monitoring Jobs
● Running Jobs Best Practices

Running Jobs Introductions

4

Jobs at NERSC
● Most are parallel jobs (10s to 100,000+ cores)
● Also a number of “serial” jobs

○ Typically “pleasantly parallel” simulation or data analysis
● Production runs execute in batch mode
● Our batch scheduler is SLURM
● Debug jobs are supported for up to 30 min
● Batch interactive jobs are supported for up to 4 hrs
● Typical run times are a few to 10s of hours

○ Limits are necessary because of MTBF and the need to
accommodate 7,000 users’ jobs

5

Login Nodes and Compute Nodes
● Login nodes (external)

○ Edit files, compile codes, submit batch jobs, etc.
○ Run short, serial utilities and applications
○ Cori has Haswell login nodes

● Compute nodes
○ Execute your application
○ Dedicated resources for your job
○ Cori has Haswell and KNL compute nodes
○ Binaries built for Haswell can run on KNL nodes, but not vice

versa

6

Cori Haswell Compute Nodes

● Each Cori Haswell node has 2 Intel Xeon 16-core Haswell processors
○ 2 NUMA domains (sockets) per node, 16 cores per NUMA domain. 2 hardware

threads per physical core.
○ NUMA Domain 0: physical cores 0-15 (and logical cores 32-47)

NUMA Domain 1: physical cores 16-31 (and logical cores 48-63)
● Memory bandwidth is non-homogeneous among NUMA domains

To obtain processor info:

Get on a compute node:
% salloc -N 1 -C …

Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls

7

Cori KNL Example Compute Nodes
● A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB high bandwidth on

package memory (MCDRAM)
● Default mode is: quad, cache

● A quad,cache node (default setting) has only 1 NUMA node with all CPUs
on the NUMA node 0 (DDR memory). MCDRAM is hidden from the
“numactl -H” result since it is a cache.

 Other combinations are by reservation only

● A quad,flat node has only 2 NUMA nodes with all CPUs on the NUMA node 0 (DDR
memory). NUMA node 1 has MCDRAM only

● A snc2,flat node has 4 NUMA domains with DDR memory and all CPUs on NUMA
nodes 0 and 1

8

Submitting Batch Jobs
● To run a batch job on the compute nodes you must write a

“batch script” that contains:
○ Directives to allow the system to schedule your job
○ An srun command that launches your parallel executable

● A batch job will request resources about which qos, which type
of compute nodes, how many nodes, and for how long, etc.

● Submit the job to the queuing system with the sbatch or salloc
command

 sbatch my_batch_script or
 salloc <command line options>

9

Launching Parallel Jobs with Slurm

sr
un

sbatch
or

salloc

Login Node

Head Compute
Node

Other Compute Nodes
allocated to the job

Head compute node:
● Runs commands in batch script
● Issues job launcher “srun” to start parallel

jobs on all compute nodes (including itself)

Login node:
● Submit batch jobs via sbatch or salloc
● Please do not issue “srun” from login nodes
● Do not run big executables on login nodes

Batch Script Examples

11

My First “Hello World” Program
my_batch_script:

#!/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -t 10:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob
srun -n 64 ./helloWorld

To run via batch queue
% sbatch my_batch_script
To run via interactive batch
% salloc -N 2 -q interactive -C haswell -t 10:00
<wait_for_session_prompt. Land on a compute node>
% srun -n 64 ./helloWorld

12

Sample Cori Haswell Batch Script

● Need to specify which shell to use for batch script
● Environment is automatically imported

●

#!/bin/bash
#SBATCH --qos=regular
#SBATCH --nodes=4
#SBATCH --time=1:00:00
#SBATCH --constraint=haswell
#SBATCH --license=SCRATCH
#SBATCH --jobname=myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

13

Sample Cori Haswell Batch Script
#!/bin/bash
#SBATCH --qos=regular
#SBATCH --nodes=4
#SBATCH --time=1:00:00
#SBATCH --constraint=haswell
#SBATCH --license=SCRATCH
#SBATCH --jobname=myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

Job directives: instructions for the batch system

● Can use long name or short name (see next slide) to request resources
● Submission QOS (default is “debug”)
● How many compute nodes to reserve for your job
● How long to reserve those nodes
● What type of compute nodes to use
● More optional SBATCH keywords

long names for SBATCH
options are used here

14

Sample Cori Haswell Batch Script - MPI

SBATCH optional keywords:
● What file systems my job depends on (prevent to start when there are file

system issues)
● What to name my job
● What to name STDOUT files
● What account to charge
● Whether to notify you by email when your job finishes
● …

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 4
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

short names for SBATCH
options are used here

15

Sample Cori Haswell Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu_bind=cores ./mycode.exe

● There are 64 logical CPUs (the number Slurm sees) on each node
● “-c” specifies #_logical_CPUs to be allocated to each MPI task
● --cpu_bind is critical especially when nodes are not fully occupied

○ use “--cpu_bind=cores” when #_MPI_tasks <= #_physical_cores_per _node
○ use “--cpu_bind=threads” when #MPI_tasks >#_physical_cores_per_node

● With 40 nodes, using hyperthreading, up to 40*64=2,560 MPI tasks can be launched:
“srun -n 2560 -c 1 --cpu_bind=threads ./mycode.exe” is OK

32 MPI tasks per node
in this example

16

Sample Cori Haswell Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

● No need to set this if your application programming model is pure MPI
● If your code is hybrid MPI/OpenMP, or to prevent from using threaded libraries,

set OMP_NUM_THREADS to 1 to run in pure MPI mode.

17

Sample Cori Haswell Batch Script - MPI

SBATCH optional keywords:
● What file systems my job depends on (prevent to start when there are file

system issues)
● What to name my job
● What to name STDOUT files
● What account to charge
● Whether to notify you by email when your job finishes
● …

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 4
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

18

Use “shared” QOS to Run Serial Jobs
● The “shared” QOS allows multiple executables from different users to share a

node
● Each serial job run on a single physical core of a “shared” node
● Up to 32 (Cori Haswell) jobs from different users depending on their memory

requirements
#SBATCH -q shared
#SBATCH -t 1:00:00
#SBATCH --mem=4GB
#SBATCH -C haswell
#SBATCH -J my_job
./mycode.x

● Only available on Cori Haswell
● Small parallel job that use less than a full node can also run in the “shared” partition
● https://docs.nersc.gov/jobs/best-practices/#serial-jobs

● Do not specify #SBATCH -N”
● Default “#SBATCH -n” is 1
● Default memory is 1,952 MB for

Haswell
● Use -n or --mem to request more

slots for larger memory
● Do not use “srun” for serial

executable (reduces overhead)

https://docs.nersc.gov/jobs/best-practices/#serial-jobs

19

How to Run Debug and Interactive Jobs
● You can run small parallel jobs interactively on dedicated

nodes.
● Debug

○ Max 512 nodes, up to 30 min, run limit 2, submit limit 5
% salloc -N 20 -q debug -C haswell -t 30:00

● Interactive (highly recommend to use this!!)
○ Instant allocation (get nodes in 5 min or reject), run limit 2, submit limit 2
○ Max walltime 4 hrs, up to 64 nodes on Cori (Haswell and KNL combined)

per project
% salloc -N 2 -q interactive -C knl -t 2:00:00

○ More information (such as find out who in your project is using)
■ https://docs.nersc.gov/jobs/examples/#interactive
■ https://docs.nersc.gov/jobs/interactive/

https://docs.nersc.gov/jobs/examples/#interactive
https://www.nersc.gov/users/live-status/

Advanced Running Jobs Options

21

Advanced Running Jobs Options
● Bundle jobs (multiple “srun”s in one script, sequentially or

simultaneously)
● Use Job Arrays to manage collections of similar jobs
● Use job dependency features to chain jobs
● Run variable-time jobs to run longer jobs
● Use workflow tools to manage jobs
● Use Burst Buffer for faster IO
● Use Shifter for jobs with custom user environment
● Use “xfer” for transferring to/from HPSS
● Use “bigmem” for large memory jobs

22

Bundle Jobs
Multiple Jobs Sequentially:
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 100
#SBATCH -t 12:00:00
#SBATCH -J my_job
#SBATCH -o my_job.o%j
#SBATCH -L project,SCRATCH
#SBATCH -C haswell

srun -n 3200 ./a.out
srun -n 3200 ./b.out
srun -n 3200 ./c.out

Multiple Jobs Simultaneously:
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 9
#SBATCH -t 12:00:00
#SBATCH -J my_job
#SBATCH -o my_job.o%j
#SBATCH -L project
#SBATCH -C haswell

srun -n 44 -N 2 -c2 --cpu-bind=cores ./a.out &
srun -n 108 -N 5 -c2 --cpu-bind=cores ./b.out &
srun -n 40 -N 2 -c2 --cpu-bind=cores ./c.out &
wait

● Need to request total number of nodes needed
● No applications are shared on the same nodes
● Make sure to use “&” (otherwise run in sequential) and

“wait” (otherwise job exit immediately)
● https://docs.nersc.gov/jobs/examples/#multiple-parallel-jo

bs-simultaneously

● Need to request largest number of
nodes needed

● https://docs.nersc.gov/jobs/examples/#
multiple-parallel-jobs-sequentially

https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially

23

Job Arrays
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -t 1:00:00
#SBATCH --array=1-10
#SBATCH -L SCRATCH
#SBATCH -C haswell

cd test_$SLURM_ARRAY_JOB_ID
srun ./mycode.exe

● Better managing jobs, not necessary
faster turnaround

● Each array task is considered a single
job for scheduling

● Use $SLURM_ARRAY_JOB_ID for
each individual array task

https://docs.nersc.gov/jobs/examples/#job-arrays

https://docs.nersc.gov/jobs/examples/#job-arrays

24

Dependency Jobs
cori% sbatch job1
Submitted batch job 1655447

cori06% sbatch --dependency=afterok:165547 job2
or
cori06% sbatch --dependency=afterany:165547 job2

cori06% sbatch job1
submitted batch job 1655447

cori06% cat job2
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -t 1:30:00
#SBATCH -d afterok:1655447
#SBATCH -C haswell
srun -n 16 -c 4 ./a.out

cori06% sbatch job2

https://docs.nersc.gov/jobs/example
s/#dependencies

https://docs.nersc.gov/jobs/examples/#dependencies
https://docs.nersc.gov/jobs/examples/#dependencies

25

Variable Time Jobs
#!/bin/bash
#SBATCH -q regular
#SBATCH -C haswell
#SBATCH -N 2
#SBATCH --comment=96:00:00
#SBATCH --time-min=2:00:00
#SBATCH --time=48:00:00
#SBATCH --signal=B:USR1@60
#SBATCH --requeue

ckpt_command=my_ckpt_script (# or empty)
. /usr/common/software/variable-time-job/setup.sh
requeue_job func_trap USR1
srun -n 8 -c 16 --cpu-bind=cores ../test.exe &
wait

● Allows to run multiple jobs with
accumulated run time longer than
max allowed wall time

● You may get run time longer than 2
hrs but shorter than 48 hrs at a time
in this example

● Job needs to have checkpoint/restart
capability

● Individual jobs will be terminated with
signal USR1 before time limit is
reached

● Pre-terminated jobs will be requeued

https://docs.nersc.gov/jobs/examples/#
variable-time-jobs

https://docs.nersc.gov/jobs/examples/#variable-time-jobs
https://docs.nersc.gov/jobs/examples/#variable-time-jobs

26

Use “flex” QOS to Run Variable Time Jobs
● For user jobs that can produce useful work with a relatively short

amount of run time before terminating, such as jobs capable of
checkpointing and restarting where left off.

● Helps to improve throughput by submitting jobs that can fit into
“backfill holes” in Slurm job scheduling

● Requires to use “--time-min” of <= 2hrs, max “--time” is 48 hrs
● 75% charging discount as of June 2020 (subject to change)

○ Available for KNL only. More info at
https://docs.nersc.gov/jobs/examples/#using-the-flex-qos-for-chargin
g-discount-for-variable-time-jobs-on-knl

○ https://docs.nersc.gov/jobs/policy/#flex

https://docs.nersc.gov/jobs/examples/#using-the-flex-qos-for-charging-discount-for-variable-time-jobs-on-knl
https://docs.nersc.gov/jobs/examples/#using-the-flex-qos-for-charging-discount-for-variable-time-jobs-on-knl

27

Use “overrun” QOS When Project is Out of Allocation

● When a project has zero or negative balance, a user can submit
to the overrun qos (or “overrun_shared”) qos explicitly.

● Lowest priority
● Zero charge
● Requires to use “--time-min” of <= 4hrs

○ sbatch -q overrun --time-min=01:30:00 my_batch_script.sl
● More info at

○ https://docs.nersc.gov/jobs/policy/#overrun

https://docs.nersc.gov/jobs/policy/#overrun

28

Use Workflow Management Tools
● These tools can help data-centric science to automate moving

data, multi-step processing, and visualization at scales. Can
manage to run large number of similar jobs.

● Please do not do below!
for i = 1, 10000

 srun -n 1 ./a.out

which is inefficient and also overwhelms the scheduler
● Available workflow tools include: GNU parallel, Taskfarmer,

Fireworks, etc.
● See this afternoon’s Workflow talk for usage examples

29

Use Burst Buffer for Faster IO

● Cori has 1.8PB of SSD-based “Burst Buffer” to support
I/O intensive workloads

● Jobs can request a job-temporary BB filesystem, or a
persistent (up to a few weeks) reservation
○ More info at

http://www.nersc.gov/users/computational-systems/cori/burst-buf
fer/

○ https://docs.nersc.gov/jobs/examples/#burst-buffer
● See this afternoon’s Burst Buffer talk for usage

examples

http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/

30

Use Shifter for Custom Environment
● Shifter is an open-source software stack that enables users

to run custom environments on HPC systems
● Compatible with the popular Docker container format so

users can easily run Docker containers on NERSC systems
● More info at

○ https://docs.nersc.gov/development/shifter/how-to-use/
● See this afternoon’s Shifter talk for usage examples

https://docs.nersc.gov/development/shifter/how-to-use/

31

 xfer Jobs
#!/bin/bash
#SBATCH -M escori
#SBATCH -q xfer
#SBATCH -t 12:00:00
#SBATCH -J my_transfer

#Archive run01 to HPSS
htar -cvf run01.tar run01

● Configured for the purpose of staging data from HPSS before run or archive
result to HPSS after run

● Avoid wasting NERSC hours if done within large runs
● Runs on external login nodes, via Slurm Server ”escori”.
● Can submit jobs to the xfer QOS from inside another batch script:

○ Add to the end of batch script: “sbatch -M escori -q xfer myarchive.sl”
● https://docs.nersc.gov/jobs/examples/#xfer-queue

https://docs.nersc.gov/jobs/examples/#xfer-queue

32

bigmem Jobs
#!/bin/bash
#SBATCH -M escori
#SBATCH -q bigmem
#SBATCH -N 1
#SBATCH -t 01:00:00
#SBATCH -J my_big_job
#SBATCH -L SCRATCH
#SBATCH --mem=250GB
srun -N 1 -n 1 ./my_big_exe

● Runs on external login nodes, via Slurm Server “escori”
● Node is shared among multiple users by default
● Can request exclusive node if needed to run with multiple threads

○ add #SBATCH --exclusive, and use srun -N 1 -c 32 ./my_big_exe
● https://docs.nersc.gov/jobs/examples/#large-memory

https://docs.nersc.gov/jobs/examples/#large-memory

KNL Process / Thread / Memory Affinity

34

Process / Thread / Memory Affinity
● Correct process, thread and memory affinity is the basis for

getting optimal performance on Cori Haswell and KNL. It is also
essential for guiding further performance optimizations.
○ Process Affinity: bind MPI tasks to CPUs
○ Thread Affinity: bind threads to CPUs allocated to its MPI process
○ Memory Affinity: allocate memory from specific NUMA domains

● Our goal is to promote OpenMP standard settings for portability.
○ OMP_PROC_BIND and OMP_PLACES are preferred to Intel

specific KMP_AFFINITY and KMP_PLACE_THREADS settings.
● https://docs.nersc.gov/jobs/affinity/

https://docs.nersc.gov/jobs/affinity/

35

Can We Just Do a Naive srun?
Example: 16 MPI tasks x 8 OpenMP threads per task on a single 68-core KNL quad,cache
node:

% export OMP_NUM_THREADS=8
% export OMP_PROC_BIND=spread (other choice are “close”,”master”,”true”,”false”)
% export OMP_PLACES=threads (other choices are: cores, sockets, and various ways to specify
explicit lists, etc.)

% srun -n 16 ./xthi |sort -k4n,6n
 Hello from rank 0, thread 0, on nid02304. (core affinity = 0)
 Hello from rank 0, thread 1, on nid02304. (core affinity = 144) (on physical core 8)
 Hello from rank 0, thread 2, on nid02304. (core affinity = 17)
 Hello from rank 0, thread 3, on nid02304. (core affinity = 161) (on physical core 25)
 Hello from rank 0, thread 4, on nid02304. (core affinity = 34)
 Hello from rank 0, thread 5, on nid02304. (core affinity = 178) (on physical core 42)
 Hello from rank 0, thread 6, on nid02304. (core affinity = 51)
 Hello from rank 0, thread 7, on nid02304. (core affinity = 195) (on physical core 59)
 Hello from rank 1, thread 0, on nid02304. (core affinity = 0)
 Hello from rank 1, thread 1, on nid02304. (core affinity = 144)

 It is a mess! thread 0 for rank 0, and thread 1 for rank 1 are on same physical core 0

36

 Importance of -c and --cpu-bind Options
● The reason: 68 is not divisible by #MPI tasks!

○ Each MPI task is getting 68x4/#MPI tasks of logical cores as the domain
size

○ MPI tasks are crossing tile boundaries
● Set number of logical cores per MPI task (-c) manually by wasting extra

4 cores on purpose: 256/#MPI_tasks_per_node.
○ Meaning to use 64 cores only on the 68-core KNL node, and spread the

logical cores allocated to each MPI task evenly among these 64 cores.
○ Now it looks good!
○ % srun -n 16 -c 16 --cpu-bind=cores ./xthi

 Hello from rank 0, thread 0, on nid09244. (core affinity = 0)
 Hello from rank 0, thread 1, on nid09244. (core affinity = 136) (on physical core 0)
 Hello from rank 0, thread 2, on nid09244. (core affinity = 1)
 Hello from rank 0, thread 3, on nid09244. (core affinity = 137) (on physical core 1)

37

Now It Looks Good!

38

Essential Runtime Settings for Process/Thread Affinity

● Use srun -c and --cpu-bind flags to bind tasks to CPUs
○ -c <n> (or --cpus-per-task=n) allocates n CPUs per MPI task (process).
○ It helps to evenly spread MPI tasks, can use up to n OpenMP threads per MPI

task.
○ Use --cpu-bind=cores (no hyperthreads) or --cpu-bind=threads (if

hyperthreads are used)
● Use OpenMP envs: OMP_PROC_BIND, OMP_PLACES to fine pin each

thread to a subset of CPUs allocated to the host task
● Different compilers may have different implementations
● The following provide compatible thread affinity among Intel, GNU and Cray

compilers:
○ OMP_PROC_BIND=true # Specify threads may not be moved between CPUs
○ OMP_PLACES=threads # Specif a thread should be placed on a single CPU

39

Sample Job Script to Run on KNL Nodes

Illustration Courtesy of Zhengji Zhao, NERSC

40

Affinity Verification Methods
● NERSC has provided pre-built binaries from a Cray code (xthi.c) to

display process thread affinity: check-mpi.intel.cori, check-mpi.cray.cori,
check-hybrid.intel.cori, etc.

 % srun -n 32 -c 8 --cpu-bind=cores check-mpi.intel.cori | sort -nk 4
 Hello from rank 0, on nid02305. (core affinity = 0,1,68,69,136,137,204,205)
 Hello from rank 1, on nid02305. (core affinity = 2,3,70,71,138,139,206,207)

● OpenMP 5.0 has OMP_DISPLAY_AFFINITY and
OMP_AFFINITY_FORMAT
○ Available in Intel compiler >= 18.0.5, gcc >= 9.0, and CCE >= 9.0.0

 % export OMP_DISPLAY_AFFINITY=true
 % export OMP_AFFINITY_FORMAT="host=%H, pid=%P, thread_num=%n, thread
affinity=%A”
 host=nid02496, pid=150147, thread_num=0, thread affinity=0

 host=nid02496, pid=150147, thread_num=1, thread affinity=4

41

NERSC Job Script Generator
https://my.nersc.gov/script_generator.php

Monitoring Jobs

43

Monitoring Your Jobs
● Once your job is submitted, it enters the queue and will start when

resources are available
● Overall job priorities are a combination of QOS, queue wait time, job size,

wall time request (and fair share).
● You can monitor with

○ sqs
○ squeue
○ sacct

● On the web
○ https://my.nersc.gov

■ Cori Queues, Queue backlogs, Queue Wait Times (statistics data)
○ https://www.nersc.gov/users/live-status/ 🡺 Queue Look
○ https://iris.nersc.gov the “Jobs” tab

https://my.nersc.gov/
https://www.nersc.gov/users/live-status/
https://iris.nersc.gov

44

squeue: Slurm Batch Queue Display

● By default, “squeue” displays all users jobs.
● Use “squeue -u" to display your own jobs.
● See “squeue --help” or “man squeue” for more details.

yunhe@cori09:~> squeue -a |more
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 31593007 regular_k allHSQf2 detar CG 5:46:29 13 nid[02568-02569,03678,03816,03888-03889,0726
5,07806,07811,09911-09912,10697,10806]
 31611508 shared run_each cemitch CG 3:12 1 nid00553
 31611509 shared run_each cemitch CG 3:12 1 nid00552
 31146718 regular_k hello_up bonachea PD 0:00 1 (ReqNodeNotAvail, UnavailableNodes:nid[02655
,02994,03002,03446,03465,03818,03912,04028-04029,04202,04219,04408,04466,04950,05087,05152,05163,05444,05689,060
96-06099,06580,06662,06902,06948,07462,07813,08029,08215,08251,08562,08603,08815,09133,09408-09419,09424-09487,0
9492-09547,09552-09599,09762,11062,11247,11557,11835,11905])
 31612924 genepool align-70 qc_user PD 0:00 1 (Resources)
 31612927 genepool filter-7 qc_user PD 0:00 1 (Priority)
 31612929 genepool align-70 qc_user PD 0:00 1 (Priority)
 31611879 debug_knl benchmar junmin PD 0:00 8 (Dependency)
 31611883 debug_knl benchmar junmin PD 0:00 128 (Dependency)
 31611888 debug_knl benchmar junmin PD 0:00 16 (Dependency)
 31611897 debug_hsw test startsev PD 0:00 32 (Dependency)
 31611902 debug_knl benchmar junmin PD 0:00 32 (Dependency)
 31612757_[3-5] debug_hsw runme.sh kkrizka PD 0:00 1 (QOSMaxJobsPerUserLimit)
...

45

sqs: NERSC Custom Batch Queue Display

yunhe@cori05:~> sqs2
JOBID ST USER NAME NODES TIME_LIMIT TIME SUBMIT_TIME QOS START_TIME FEATURES
NODELIST(REASON)
31567887 PD fxxx wrxx 512 15:00 0:00 2020-06-09T23:11:27 debug_knl 2020-06-10T00:56:00 knl&quad&cache (Resources)

31438456 PD fxxx mpixxx 150 30:00 0:00 2020-06-07T12:42:04 regular_1 N/A haswell (Resources)
31543103 PD fxxx mpixxx 3 30:00 0:00 2020-06-09T00:22:12 regular_1 N/A haswell (Priority)
31402334 R fxxx Nxxxxx 1 12:00:00 4:27:45 2020-06-05T23:59:19 regular_1 2020-06-09T19:28:54 knl&quad&cache nid10273
<omitted….>

● By default, “sqs” displays your own jobs. Use “sqs -a" to display all users jobs.
● See “sqs --help” for more details.
● sqs2 is a simplified NERSC wrapper for the Slurm "squeue" command with a

chosen default format. It is more flexible, takes all allowed flags in “squeue”.
● “sqs2” will be renamed to “sqs” in July.

yunhe@cori05:~> sqs
JOBID ST USER NAME NODES REQUESTED USED SUBMIT QOS SCHEDULED_START FEATURES REASON
110901xx PD fxxxx mxxx 1536 5:00 0:00 2018-03-20T10:49:23 regular_0 2018-03-22T06:30:00 haswell Resources
110901xx PD fxxxx run.xxx* 1537 20:00 0:00 2018-03-20T10:51:03 regular_0 2018-03-22T06:30:00 haswell Resources
110823xx PD fxxxx gxxx 300 30:00 0:00 2018-03-19T23:05:24 regular_1 avail_in_~1.6_days haswell Priority
110823xx PD fxxxx run-xx 768 20:00 0:00 2018-03-19T23:05:33 regular_1 avail_in_~1.6_days haswell Priority
110823xx PD fxxxx rxxxx 1536 20:00 0:00 2018-03-19T23:05:04 regular_0 N/A haswell JobHeldUser
110823xx PD fxxxx axxxxxxxx* 1536 30:00 0:00 2018-03-19T23:05:16 regular_0 N/A haswell JobHeldUser
111152xx PD fxxxx run.xxx 769 2:00:00 0:00 2018-03-21T09:39:29 regular_1 avail_in_~3.0_days knl&quad&cache None
<omitted…>

46

scontrol: Show Job Details
% scontrol show job <jobid> for details of a job
 yunhe@cori10:~> scontrol show job 31610730
JobId=31610730 JobName=mpi4py-import-cori-haswell-scratch-003
 UserId=fbench(42034) GroupId=fbench(42034) MCS_label=N/A
 Priority=66295 Nice=0 Account=nstaff QOS=regular_1
 JobState=PENDING Reason=Nodes_required_for_job_are_DOWN,_DRAINED_or_reserved_for_jobs_in_higher_priority_partitions Dependency=(null)
 Requeue=0 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=00:00:00 TimeLimit=00:30:00 TimeMin=N/A
 SubmitTime=2020-06-11T08:22:13 EligibleTime=2020-06-11T08:22:13
 AccrueTime=2020-06-11T10:17:54
 StartTime=Unknown EndTime=Unknown Deadline=N/A
 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2020-06-11T11:16:50
 Partition=regular_hsw AllocNode:Sid=cori03:23877
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=(null)
 NumNodes=3-3 NumCPUs=96 NumTasks=96 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
 TRES=cpu=96,node=3,billing=96
 Socks/Node=* NtasksPerN:B:S:C=32:0:*:* CoreSpec=*
 MinCPUsNode=32 MinMemoryNode=0 MinTmpDiskNode=0
 Features=haswell DelayBoot=2-00:00:00
 OverSubscribe=NO Contiguous=0 Licenses=cscratch1:1 Network=(null)
 Command=/global/cscratch1/sd/fbench/nersc-python-bench/scripts/mpi4py-import-cori-haswell-scratch-003.sh
 WorkDir=/global/cscratch1/sd/fbench/nersc-python-bench/scripts
 StdErr=/global/cscratch1/sd/fbench/nersc-python-bench/scripts/logs/mpi4py-import-cori-haswell-scratch-003-31610730.out
 StdIn=/dev/null
 StdOut=/global/cscratch1/sd/fbench/nersc-python-bench/scripts/logs/mpi4py-import-cori-haswell-scratch-003-31610730.out
 Power=
 TresPerNode=craynetwork:1

47

sacct: Query Completed and Pending Jobs

● Maximum query duration is one month (subject to change)
● Detailed job steps info will be displayed without “-X” flag
● Many more job fields can be queried. See “sacct --help” or “man

sacct” for more details.

Running Jobs Best Practices

49

Where to Run My Jobs?
● Queue configuration and policies are subject to further tuning for max

throughput and system utilization
● Factors to consider: queue wait time (much shorter on KNL than on

Haswell), throughput, charging, code readiness on KNL
○ Cori Haswell (also known as the "Cori Data Partition") system is designed

to accelerate data-intensive applications; 2388 total compute nodes
○ Cori KNL: Large capability and performance; 9688 total compute nodes
○ Smaller KNL charging factor (80) than Haswell (140)
○ Jobs use 1024+ nodes on Cori KNL get 20% charging discount
○ “flex” and “low” qos with discounts only available on Cori KNL
○ “shared” and ”realtime” available on Cori Haswell only
○ “interactive” nodes available on Cori Haswell and KNL
○ “bigmem” and “xfer” available on Cori (run on external login nodes)

50

Cori Haswell Queue Policy (as of June 2020)

51

Cori KNL Queue Policy (as of June 2020)

52

Charging (1)
● Unit: NERSC Hours
● Each architecture has a base charge per node hour used:

○ Cori Haswell: 140
○ Cori KNL: 80

● Modification to base charge by QOS used:
○ premium: 2.0
○ regular: 1.0 (default)
○ low: 0.5
○ flex: 0.25
○ overrun: 0
○ shared: fraction of the node used

● On Cori KNL
○ Jobs requesting 1024 or more nodes get a 20% discount

53

Charging (2)
● Your project is charged for each node your job was allocated for the

entire duration, (i.e. used time, not wall request time), of your job
○ The minimum allocatable unit is a node (except for the “shared” QOS).
○ Example: 4 Cori Haswell nodes, run for 1 hour with “premium” QOS

NERSC hours = 4 * 1 hour * 140 * 2 = 1120
○ “shared” jobs are charged with # of physical cores used instead of the

entire node.
● If you have access to multiple projects, pick which one to charge in

your batch script
 #SBATCH –A project_name

54

Jobs Scheduling
● Each job has its priority value, composed of qos, job age, and a small

value of fairshare.
● There are two Slurm schedulers: main and backfill.
● Every few minutes, the main scheduler schedules jobs in the order of

priority list for a few days into the future.
○ Jobs are only eligible to be scheduled if they've reached a priority

threshold.
○ Currently only 2 jobs per qos per user are considered for scheduling.

● The backfill scheduler then schedules small and short jobs to run if
they will not affect the start time of those jobs that are already
scheduled by the main scheduler.

55

Tips for Getting Better Throughput
● Line jumping is allowed, but it may cost more (with “premium” QOS)
● Submit shorter jobs, they are easier to schedule

○ Checkpoint to break up long jobs, use variable time
○ Short jobs can take advantage of “backfill” opportunities
○ Run short jobs just before maintenance
○ Run variable-time jobs; use “flex” QOS

● Make sure the wall clock time you request is accurate
○ Larger shorter jobs are easier to schedule than long smaller jobs
○ Many users unnecessarily request the largest wall clock time possible

as default
● Check queue backlogs and queue wait times

○ https://my.nersc.gov/backlog.php
○ https://my.nersc.gov/queuewaittimes.php

https://my.nersc.gov/backlog.php
https://my.nersc.gov/queuewaittimes.php

56

Large Jobs Considerations
● sbcast your executable to compute nodes before srun:

sbcast --compress=lz4 /path/to/exe /tmp/exe

srun /tmp/exe

https://docs.nersc.gov/jobs/best-practices/#large-jobs
● Consider to build statically to run large jobs.

○ There may be considerable startup delays for running large jobs of
dynamic executables.

● Consider to use shifter for large jobs using shared libraries.
● Consider to use burst buffer for jobs doing large IO.

https://docs.nersc.gov/jobs/best-practices/#large-jobs

57

Other Running Jobs Considerations
● Remember to compile separately for each type of compute nodes
● Running jobs from global homes is strongly discouraged

○ IO is not optimized
○ The global homes file system access on compute nodes is much slower than

from $SCRATCH
○ It may also cause negative impact for other users interactive response on the

system

● Consider to put your project’s shared software in
/global/common/software/<project>
○ It is mounted read-only on compute nodes, so has less impact than other

GPFS file systems (global homes or community file system)

● Consider to adopt workflow tools for better managing your jobs

58

More Information

● NERSC Web pages:
○ https://docs.nersc.gov/jobs/
○ https://docs-dev.nersc.gov

■ Using Cori GPU nodes, not covered in this talk

● Contact NERSC Consulting:
○ File a service ticket via Help Portal

https://help.nersc.gov

https://docs.nersc.gov/jobs/
https://docs-dev.nersc.gov
https://my.nersc.gov/queuewaittimes.php

59

Thank You and
Welcome to

NERSC!

