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Jobs at NERSC
● Most are parallel jobs (10s to 100,000+ cores)
● Also a number of “serial” jobs

○ Typically “pleasantly parallel” simulation or data analysis
● Production runs execute in batch mode
● Our batch scheduler is SLURM
● Debug jobs are supported for up to 30 min
● Batch interactive jobs are supported for up to 4 hrs
● Typical run times are a few to 10s of hours 

○ Limits are necessary because of MTBF and the need to 
accommodate 7,000 users’ jobs
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Login Nodes and Compute Nodes
● Login nodes (external)

○ Edit files, compile codes, submit batch jobs, etc.
○ Run short, serial utilities and applications
○ Cori has Haswell login nodes

● Compute nodes
○ Execute your application
○ Dedicated resources for your job
○ Cori has Haswell and KNL compute nodes
○ Binaries built for Haswell can run on KNL nodes, but not vice 

versa
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Cori Haswell Compute Nodes

● Each Cori Haswell node has 2 Intel Xeon 16-core Haswell processors
○ 2 NUMA domains (sockets) per node, 16 cores per NUMA domain. 2 hardware 

threads per physical core. 
○ NUMA Domain 0: physical cores 0-15 (and logical cores 32-47)                         

NUMA Domain 1: physical cores 16-31 (and logical cores 48-63)
● Memory bandwidth is non-homogeneous among NUMA domains

To obtain processor info:

Get on a compute node:
% salloc -N 1 -C …

Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls
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Cori KNL Example Compute Nodes
● A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB high bandwidth on 

package memory (MCDRAM)
● Default mode is: quad, cache

● A quad,cache node (default setting) has only 1 NUMA node with all CPUs 
on the NUMA node 0 (DDR memory). MCDRAM is hidden from the 
“numactl -H” result since it is a cache.

   Other combinations are by reservation only

● A quad,flat node has only 2 NUMA nodes with all CPUs on the NUMA node 0 (DDR 
memory). NUMA node 1 has MCDRAM only

● A snc2,flat node has 4 NUMA domains with DDR memory and all CPUs on NUMA 
nodes 0 and 1
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Submitting Batch Jobs
● To run a batch job on the compute nodes you must write a 

“batch script” that contains:
○ Directives to allow the system to schedule your job
○ An srun command that launches your parallel executable 

● A batch job will request resources about which qos, which type 
of compute nodes, how many nodes, and for how long, etc.

● Submit the job to the queuing system with the sbatch or salloc 
command

  sbatch my_batch_script      or
       salloc <command line options>
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Launching Parallel Jobs with Slurm

sr
un

sbatch
or

salloc

Login Node

Head Compute 
Node 

Other Compute Nodes 
allocated to the job

Head compute node:
● Runs commands in batch script
● Issues job launcher “srun” to start parallel 

jobs on all compute nodes (including itself)

Login node:
● Submit batch jobs via sbatch or salloc
● Please do not issue “srun” from login nodes
● Do not run big executables on login nodes



  

Batch Script Examples
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My First “Hello World” Program
my_batch_script:

#!/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -t 10:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob
srun -n 64 ./helloWorld

To run via batch queue
% sbatch my_batch_script
To run via interactive batch
% salloc -N 2 -q interactive -C haswell -t 10:00 
<wait_for_session_prompt. Land on a compute node>
% srun -n 64 ./helloWorld
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Sample Cori Haswell Batch Script

● Need to specify which shell to use for batch script
● Environment is automatically imported

 

●

#!/bin/bash
#SBATCH --qos=regular
#SBATCH --nodes=4
#SBATCH --time=1:00:00
#SBATCH --constraint=haswell
#SBATCH --license=SCRATCH
#SBATCH --jobname=myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe
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Sample Cori Haswell Batch Script
#!/bin/bash
#SBATCH --qos=regular
#SBATCH --nodes=4
#SBATCH --time=1:00:00
#SBATCH --constraint=haswell
#SBATCH --license=SCRATCH
#SBATCH --jobname=myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

Job directives: instructions for the batch system 

● Can use long name or short name (see next slide) to request resources
● Submission QOS (default is “debug”)
● How many compute nodes to reserve for your job
● How long to reserve those nodes
● What type of compute nodes to use
● More optional SBATCH keywords

long names for SBATCH 
options are used here 
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Sample Cori Haswell Batch Script - MPI

SBATCH optional keywords: 
● What file systems my job depends on (prevent to start when there are file 

system issues)
● What to name my job
● What to name STDOUT files
● What account to charge
● Whether to notify you by email when your job finishes
● …

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 4
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

short names for SBATCH 
options are used here 
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Sample Cori Haswell Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu_bind=cores ./mycode.exe

● There are 64 logical CPUs (the number Slurm sees) on each node
● “-c” specifies #_logical_CPUs to be allocated to each MPI task
● --cpu_bind is critical especially when nodes are not fully occupied

○ use “--cpu_bind=cores” when #_MPI_tasks <= #_physical_cores_per _node
○ use “--cpu_bind=threads” when #MPI_tasks >#_physical_cores_per_node

● With 40 nodes, using hyperthreading, up to 40*64=2,560 MPI tasks can be launched:     
“srun -n 2560 -c 1 --cpu_bind=threads ./mycode.exe” is OK

32 MPI tasks per node
in this example
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Sample Cori Haswell Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe 

● No need to set this if your application programming model is pure MPI
● If your code is hybrid MPI/OpenMP, or to prevent from using threaded libraries, 

set OMP_NUM_THREADS to 1 to run in pure MPI mode.
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Sample Cori Haswell Batch Script - MPI

SBATCH optional keywords: 
● What file systems my job depends on (prevent to start when there are file 

system issues)
● What to name my job
● What to name STDOUT files
● What account to charge
● Whether to notify you by email when your job finishes
● …

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 4
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

export OMP_NUM_THREADS=1
srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe
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Use “shared” QOS to Run Serial Jobs
● The “shared” QOS allows multiple executables from different users to share a 

node
● Each serial job run on a single physical core of a “shared” node
● Up to 32 (Cori Haswell) jobs from different users depending on their memory 

requirements
#SBATCH -q shared
#SBATCH -t 1:00:00
#SBATCH --mem=4GB
#SBATCH -C haswell
#SBATCH -J my_job
./mycode.x

● Only available on Cori Haswell
● Small parallel job that use less than a full node can also run in the “shared” partition
● https://docs.nersc.gov/jobs/best-practices/#serial-jobs

● Do not specify #SBATCH -N”
● Default “#SBATCH -n” is 1
● Default memory is 1,952 MB for 

Haswell 
● Use -n or --mem to request more 

slots for larger memory
● Do not use “srun” for serial 

executable (reduces overhead)

https://docs.nersc.gov/jobs/best-practices/#serial-jobs
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How to Run Debug and Interactive Jobs
● You can run small parallel jobs interactively on dedicated 

nodes.
● Debug

○ Max 512 nodes, up to 30 min, run limit 2, submit limit 5
% salloc -N 20 -q debug -C haswell -t 30:00

● Interactive   (highly recommend to use this!!)
○ Instant allocation (get nodes in 5 min or reject), run limit 2, submit limit 2 
○ Max walltime 4 hrs, up to 64 nodes on Cori (Haswell and KNL combined) 

per project 
% salloc -N 2 -q interactive -C knl -t 2:00:00

○ More information (such as find out who in your project is using)
■ https://docs.nersc.gov/jobs/examples/#interactive
■ https://docs.nersc.gov/jobs/interactive/

https://docs.nersc.gov/jobs/examples/#interactive
https://www.nersc.gov/users/live-status/


  

Advanced Running Jobs Options
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Advanced Running Jobs Options
● Bundle jobs (multiple “srun”s in one script, sequentially or 

simultaneously)
● Use Job Arrays to manage collections of similar jobs 
● Use job dependency features to chain jobs 
● Run variable-time jobs to run longer jobs 
● Use workflow tools to manage jobs
● Use Burst Buffer for faster IO
● Use Shifter for jobs with custom user environment
● Use “xfer” for transferring to/from HPSS
● Use “bigmem” for large memory jobs
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Bundle Jobs
Multiple Jobs Sequentially:
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 100  
#SBATCH -t 12:00:00 
#SBATCH -J my_job 
#SBATCH -o my_job.o%j 
#SBATCH -L project,SCRATCH
#SBATCH -C haswell
 
srun -n 3200 ./a.out 
srun -n 3200 ./b.out 
srun -n 3200 ./c.out 

Multiple Jobs Simultaneously:
#!/bin/bash
#SBATCH -q regular 
#SBATCH -N 9       
#SBATCH -t 12:00:00 
#SBATCH -J my_job 
#SBATCH -o my_job.o%j 
#SBATCH -L project
#SBATCH -C haswell

srun -n 44 -N 2 -c2 --cpu-bind=cores ./a.out & 
srun -n 108 -N 5 -c2 --cpu-bind=cores ./b.out & 
srun -n 40 -N 2 -c2 --cpu-bind=cores ./c.out & 
wait

● Need to request total number of nodes needed
● No applications are shared on the same nodes
● Make sure to use “&” (otherwise run in sequential) and 

“wait” (otherwise job exit immediately)
● https://docs.nersc.gov/jobs/examples/#multiple-parallel-jo

bs-simultaneously

● Need to request largest number of 
nodes needed

● https://docs.nersc.gov/jobs/examples/#
multiple-parallel-jobs-sequentially

https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
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Job Arrays
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 1
#SBATCH -t 1:00:00 
#SBATCH --array=1-10 
#SBATCH -L SCRATCH 
#SBATCH -C haswell

cd test_$SLURM_ARRAY_JOB_ID  
srun ./mycode.exe

● Better managing jobs, not necessary 
faster turnaround

● Each array task is considered a single 
job for scheduling

● Use $SLURM_ARRAY_JOB_ID for 
each individual array task

https://docs.nersc.gov/jobs/examples/#job-arrays

https://docs.nersc.gov/jobs/examples/#job-arrays
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Dependency Jobs
cori% sbatch job1 
Submitted batch job 1655447 

cori06% sbatch --dependency=afterok:165547 job2 
or 
cori06% sbatch --dependency=afterany:165547 job2

cori06% sbatch job1 
submitted batch job 1655447

cori06% cat job2 
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 1 
#SBATCH -t 1:30:00 
#SBATCH -d afterok:1655447 
#SBATCH -C haswell 
srun -n 16 -c 4 ./a.out 

cori06% sbatch job2

https://docs.nersc.gov/jobs/example
s/#dependencies

https://docs.nersc.gov/jobs/examples/#dependencies
https://docs.nersc.gov/jobs/examples/#dependencies
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Variable Time Jobs
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -C haswell 
#SBATCH -N 2
#SBATCH --comment=96:00:00 
#SBATCH --time-min=2:00:00
#SBATCH --time=48:00:00 
#SBATCH --signal=B:USR1@60 
#SBATCH --requeue

ckpt_command=my_ckpt_script    (# or empty)
. /usr/common/software/variable-time-job/setup.sh
requeue_job func_trap USR1
srun -n 8 -c 16 --cpu-bind=cores ../test.exe & 
wait

● Allows to run multiple jobs with 
accumulated run time longer than 
max allowed wall time

● You may get run time longer than 2 
hrs but shorter than 48 hrs at a time 
in this example

● Job needs to have checkpoint/restart 
capability

● Individual jobs will be terminated with 
signal USR1 before time limit is 
reached

● Pre-terminated jobs will be requeued

https://docs.nersc.gov/jobs/examples/#
variable-time-jobs

https://docs.nersc.gov/jobs/examples/#variable-time-jobs
https://docs.nersc.gov/jobs/examples/#variable-time-jobs
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Use “flex” QOS to Run Variable Time Jobs
● For user jobs that can produce useful work with a relatively short 

amount of run time before terminating, such as jobs capable of 
checkpointing and restarting where left off.  

● Helps to improve throughput by submitting jobs that can fit into 
“backfill holes” in Slurm job scheduling

● Requires to use “--time-min” of <= 2hrs, max “--time” is 48 hrs
● 75% charging discount as of June 2020 (subject to change)

○ Available for KNL only. More info at 
https://docs.nersc.gov/jobs/examples/#using-the-flex-qos-for-chargin
g-discount-for-variable-time-jobs-on-knl

○ https://docs.nersc.gov/jobs/policy/#flex

https://docs.nersc.gov/jobs/examples/#using-the-flex-qos-for-charging-discount-for-variable-time-jobs-on-knl
https://docs.nersc.gov/jobs/examples/#using-the-flex-qos-for-charging-discount-for-variable-time-jobs-on-knl
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Use “overrun” QOS When Project is Out of Allocation

● When a project has zero or negative balance, a user can submit 
to the overrun qos (or “overrun_shared”) qos explicitly.

● Lowest priority
● Zero charge
● Requires to use “--time-min” of <= 4hrs

○ sbatch -q overrun --time-min=01:30:00 my_batch_script.sl
● More info at 

○ https://docs.nersc.gov/jobs/policy/#overrun

https://docs.nersc.gov/jobs/policy/#overrun
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Use Workflow Management Tools
● These tools can help data-centric science to automate moving 

data, multi-step processing, and visualization at scales.  Can 
manage to run large number of similar jobs.

● Please do not do below!
for i = 1, 10000

     srun -n 1 ./a.out

which is inefficient and also overwhelms the scheduler
● Available workflow tools include: GNU parallel, Taskfarmer, 

Fireworks, etc. 
● See this afternoon’s Workflow talk for usage examples
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Use Burst Buffer for Faster IO

● Cori has 1.8PB of SSD-based “Burst Buffer” to support 
I/O intensive workloads

● Jobs can request a job-temporary BB filesystem, or a 
persistent (up to a few weeks) reservation
○ More info at 

http://www.nersc.gov/users/computational-systems/cori/burst-buf
fer/

○ https://docs.nersc.gov/jobs/examples/#burst-buffer
● See this afternoon’s Burst Buffer talk for usage 

examples

http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
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Use Shifter for Custom Environment 
● Shifter is an open-source software stack that enables users 

to run custom environments on HPC systems
● Compatible with the popular Docker container format so 

users can easily run Docker containers on NERSC systems
● More info at 

○ https://docs.nersc.gov/development/shifter/how-to-use/
● See this afternoon’s Shifter talk for usage examples

https://docs.nersc.gov/development/shifter/how-to-use/
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 xfer Jobs
#!/bin/bash 
#SBATCH -M escori
#SBATCH -q xfer 
#SBATCH -t 12:00:00 
#SBATCH -J my_transfer
 
#Archive run01 to HPSS 
htar -cvf run01.tar run01

● Configured for the purpose of staging data from HPSS before run or archive 
result to HPSS after run 

● Avoid wasting NERSC hours if done within large runs
● Runs on external login nodes, via Slurm Server ”escori”.
● Can submit jobs to the xfer QOS from inside another batch script:

○ Add to the end of batch script: “sbatch -M escori -q xfer myarchive.sl”
● https://docs.nersc.gov/jobs/examples/#xfer-queue

https://docs.nersc.gov/jobs/examples/#xfer-queue
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bigmem Jobs
#!/bin/bash
#SBATCH -M escori 
#SBATCH -q bigmem 
#SBATCH -N 1 
#SBATCH -t 01:00:00 
#SBATCH -J my_big_job 
#SBATCH -L SCRATCH 
#SBATCH --mem=250GB 
srun -N 1 -n 1 ./my_big_exe

● Runs on external login nodes, via Slurm Server “escori”
● Node is shared among multiple users by default
● Can request exclusive node if needed to run with multiple threads

○ add #SBATCH --exclusive,   and use srun -N 1 -c 32 ./my_big_exe 
● https://docs.nersc.gov/jobs/examples/#large-memory

https://docs.nersc.gov/jobs/examples/#large-memory


  

KNL Process / Thread / Memory Affinity 
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Process / Thread / Memory Affinity
● Correct process, thread and memory affinity is the basis for 

getting optimal performance on Cori Haswell and KNL. It is also 
essential for guiding further performance optimizations. 
○ Process Affinity: bind MPI tasks to CPUs
○ Thread Affinity: bind threads to CPUs allocated to its MPI process
○ Memory Affinity: allocate memory from specific NUMA domains

● Our goal is to promote OpenMP standard settings for portability. 
○ OMP_PROC_BIND and OMP_PLACES are preferred to Intel 

specific KMP_AFFINITY and KMP_PLACE_THREADS settings. 
● https://docs.nersc.gov/jobs/affinity/

https://docs.nersc.gov/jobs/affinity/
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Can We Just Do a Naive srun?
Example: 16 MPI tasks x 8 OpenMP threads per task on a single 68-core KNL quad,cache 
node:

% export OMP_NUM_THREADS=8
% export OMP_PROC_BIND=spread    (other choice are “close”,”master”,”true”,”false”)
% export OMP_PLACES=threads          (other choices are: cores, sockets, and various ways to specify 
explicit lists, etc.)

% srun -n 16  ./xthi |sort -k4n,6n
         Hello from rank 0, thread 0, on nid02304. (core affinity = 0)
         Hello from rank 0, thread 1, on nid02304. (core affinity = 144)        (on physical core 8)
         Hello from rank 0, thread 2, on nid02304. (core affinity = 17)
         Hello from rank 0, thread 3, on nid02304. (core affinity = 161)        (on physical core 25)
         Hello from rank 0, thread 4, on nid02304. (core affinity = 34)
         Hello from rank 0, thread 5, on nid02304. (core affinity = 178)        (on physical core 42)
         Hello from rank 0, thread 6, on nid02304. (core affinity = 51)
         Hello from rank 0, thread 7, on nid02304. (core affinity = 195)        (on physical core 59)
         Hello from rank 1, thread 0, on nid02304. (core affinity = 0)
         Hello from rank 1, thread 1, on nid02304. (core affinity = 144)

    It is a mess!    thread 0 for rank 0, and thread 1 for rank 1 are on same physical core 0
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 Importance of -c and --cpu-bind Options
● The reason: 68 is not divisible by #MPI tasks!    

○ Each MPI task is getting 68x4/#MPI tasks of logical cores as the domain 
size

○ MPI tasks are crossing tile boundaries
● Set number of logical cores per MPI task (-c) manually by wasting extra 

4 cores on purpose: 256/#MPI_tasks_per_node.
○ Meaning to use 64 cores only on the 68-core KNL node, and spread the 

logical cores allocated to each MPI task evenly among these 64 cores.
○ Now it looks good!
○ % srun -n 16 -c 16 --cpu-bind=cores ./xthi

              Hello from rank 0, thread 0, on nid09244. (core affinity = 0)
              Hello from rank 0, thread 1, on nid09244. (core affinity = 136)       (on physical core 0)
              Hello from rank 0, thread 2, on nid09244. (core affinity = 1)
              Hello from rank 0, thread 3, on nid09244. (core affinity = 137)       (on physical core 1)
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Now It Looks Good!
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Essential Runtime Settings for Process/Thread Affinity

● Use srun -c and --cpu-bind flags to bind tasks to CPUs
○ -c <n> (or --cpus-per-task=n) allocates n CPUs per MPI task (process). 
○ It helps to evenly spread MPI tasks, can use up to n OpenMP threads per MPI 

task.
○ Use --cpu-bind=cores (no hyperthreads) or --cpu-bind=threads (if 

hyperthreads are used)
● Use OpenMP envs: OMP_PROC_BIND, OMP_PLACES to fine pin each 

thread to a subset of CPUs allocated to the host task
● Different compilers may have different implementations
● The following provide compatible thread affinity among Intel, GNU and Cray 

compilers:
○ OMP_PROC_BIND=true # Specify threads may not be moved between CPUs
○ OMP_PLACES=threads  # Specif a thread should be placed on a single CPU



39

Sample Job Script to Run on KNL Nodes

Illustration Courtesy of Zhengji Zhao, NERSC
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Affinity Verification Methods
● NERSC has provided pre-built binaries from a Cray code (xthi.c) to 

display process thread affinity: check-mpi.intel.cori, check-mpi.cray.cori, 
check-hybrid.intel.cori, etc.

       % srun -n 32 -c 8 --cpu-bind=cores check-mpi.intel.cori | sort -nk 4 
         Hello from rank 0, on nid02305. (core affinity = 0,1,68,69,136,137,204,205)
         Hello from rank 1, on nid02305. (core affinity = 2,3,70,71,138,139,206,207)

● OpenMP 5.0 has OMP_DISPLAY_AFFINITY and 
OMP_AFFINITY_FORMAT
○ Available in Intel compiler >= 18.0.5, gcc >= 9.0,  and CCE >= 9.0.0

    % export OMP_DISPLAY_AFFINITY=true
    % export OMP_AFFINITY_FORMAT="host=%H, pid=%P, thread_num=%n, thread 
affinity=%A”
    host=nid02496, pid=150147, thread_num=0, thread affinity=0

           host=nid02496, pid=150147, thread_num=1, thread affinity=4
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NERSC Job Script Generator
https://my.nersc.gov/script_generator.php



  

Monitoring Jobs
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Monitoring Your Jobs
● Once your job is submitted, it enters the queue and will start when 

resources are available
● Overall job priorities are a combination of QOS, queue wait time, job size, 

wall time request (and fair share). 
● You can monitor with

○ sqs 
○ squeue 
○ sacct

● On the web
○ https://my.nersc.gov

■ Cori Queues, Queue backlogs, Queue Wait Times (statistics data)
○ https://www.nersc.gov/users/live-status/ 🡺 Queue Look
○ https://iris.nersc.gov  the “Jobs” tab

https://my.nersc.gov/
https://www.nersc.gov/users/live-status/
https://iris.nersc.gov
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squeue: Slurm Batch Queue Display 

● By default, “squeue” displays all users jobs.  
● Use “squeue -u" to display your own jobs.
● See “squeue --help” or “man squeue” for more details.

yunhe@cori09:~> squeue -a |more
             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)
          31593007 regular_k allHSQf2    detar CG    5:46:29     13 nid[02568-02569,03678,03816,03888-03889,0726
5,07806,07811,09911-09912,10697,10806]
          31611508    shared run_each  cemitch CG       3:12      1 nid00553
          31611509    shared run_each  cemitch CG       3:12      1 nid00552
          31146718 regular_k hello_up bonachea PD       0:00      1 (ReqNodeNotAvail, UnavailableNodes:nid[02655
,02994,03002,03446,03465,03818,03912,04028-04029,04202,04219,04408,04466,04950,05087,05152,05163,05444,05689,060
96-06099,06580,06662,06902,06948,07462,07813,08029,08215,08251,08562,08603,08815,09133,09408-09419,09424-09487,0
9492-09547,09552-09599,09762,11062,11247,11557,11835,11905])
          31612924  genepool align-70  qc_user PD       0:00      1 (Resources)
          31612927  genepool filter-7  qc_user PD       0:00      1 (Priority)
          31612929  genepool align-70  qc_user PD       0:00      1 (Priority)
          31611879 debug_knl benchmar   junmin PD       0:00      8 (Dependency)
          31611883 debug_knl benchmar   junmin PD       0:00    128 (Dependency)
          31611888 debug_knl benchmar   junmin PD       0:00     16 (Dependency)
          31611897 debug_hsw     test startsev PD       0:00     32 (Dependency)
          31611902 debug_knl benchmar   junmin PD       0:00     32 (Dependency)
    31612757_[3-5] debug_hsw runme.sh  kkrizka PD       0:00      1 (QOSMaxJobsPerUserLimit)
...
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sqs: NERSC Custom Batch Queue Display 

yunhe@cori05:~> sqs2 
JOBID          ST USER     NAME         NODES TIME_LIMIT       TIME  SUBMIT_TIME          QOS             START_TIME           FEATURES       
NODELIST(REASON)
31567887       PD fxxx     wrxx         512        15:00       0:00  2020-06-09T23:11:27  debug_knl       2020-06-10T00:56:00  knl&quad&cache (Resources)

31438456       PD fxxx     mpixxx       150        30:00       0:00  2020-06-07T12:42:04  regular_1       N/A                  haswell        (Resources)        
31543103       PD fxxx     mpixxx       3          30:00       0:00  2020-06-09T00:22:12  regular_1       N/A                  haswell        (Priority)    
31402334       R  fxxx     Nxxxxx       1       12:00:00    4:27:45  2020-06-05T23:59:19  regular_1       2020-06-09T19:28:54  knl&quad&cache nid10273    
<omitted….>

● By default, “sqs” displays your own jobs.  Use “sqs -a" to display all users jobs.
● See “sqs --help” for more details.
● sqs2 is a simplified NERSC wrapper for the Slurm "squeue" command with a 

chosen default format.  It is more flexible, takes all allowed flags in “squeue”. 
● “sqs2” will be renamed to “sqs” in July.

yunhe@cori05:~> sqs
JOBID       ST  USER   NAME       NODES  REQUESTED   USED  SUBMIT               QOS        SCHEDULED_START      FEATURES        REASON      
110901xx    PD  fxxxx  mxxx       1536     5:00      0:00  2018-03-20T10:49:23  regular_0  2018-03-22T06:30:00  haswell         Resources  
110901xx    PD  fxxxx  run.xxx*   1537    20:00      0:00  2018-03-20T10:51:03  regular_0  2018-03-22T06:30:00  haswell         Resources  
110823xx    PD  fxxxx  gxxx        300    30:00      0:00  2018-03-19T23:05:24  regular_1  avail_in_~1.6_days   haswell         Priority   
110823xx    PD  fxxxx  run-xx      768    20:00      0:00  2018-03-19T23:05:33  regular_1  avail_in_~1.6_days   haswell         Priority   
110823xx    PD  fxxxx  rxxxx      1536    20:00      0:00  2018-03-19T23:05:04  regular_0  N/A                  haswell         JobHeldUser
110823xx    PD  fxxxx  axxxxxxxx* 1536    30:00      0:00  2018-03-19T23:05:16  regular_0  N/A                  haswell         JobHeldUser
111152xx    PD  fxxxx  run.xxx     769  2:00:00      0:00  2018-03-21T09:39:29  regular_1  avail_in_~3.0_days   knl&quad&cache  None
<omitted…>
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scontrol: Show Job Details
% scontrol show job <jobid>  for details of a job
  yunhe@cori10:~> scontrol show job 31610730
JobId=31610730 JobName=mpi4py-import-cori-haswell-scratch-003
   UserId=fbench(42034) GroupId=fbench(42034) MCS_label=N/A
   Priority=66295 Nice=0 Account=nstaff QOS=regular_1
   JobState=PENDING Reason=Nodes_required_for_job_are_DOWN,_DRAINED_or_reserved_for_jobs_in_higher_priority_partitions Dependency=(null)
   Requeue=0 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
   RunTime=00:00:00 TimeLimit=00:30:00 TimeMin=N/A
   SubmitTime=2020-06-11T08:22:13 EligibleTime=2020-06-11T08:22:13
   AccrueTime=2020-06-11T10:17:54
   StartTime=Unknown EndTime=Unknown Deadline=N/A
   SuspendTime=None SecsPreSuspend=0 LastSchedEval=2020-06-11T11:16:50
   Partition=regular_hsw AllocNode:Sid=cori03:23877
   ReqNodeList=(null) ExcNodeList=(null)
   NodeList=(null)
   NumNodes=3-3 NumCPUs=96 NumTasks=96 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
   TRES=cpu=96,node=3,billing=96
   Socks/Node=* NtasksPerN:B:S:C=32:0:*:* CoreSpec=*
   MinCPUsNode=32 MinMemoryNode=0 MinTmpDiskNode=0
   Features=haswell DelayBoot=2-00:00:00
   OverSubscribe=NO Contiguous=0 Licenses=cscratch1:1 Network=(null)
   Command=/global/cscratch1/sd/fbench/nersc-python-bench/scripts/mpi4py-import-cori-haswell-scratch-003.sh
   WorkDir=/global/cscratch1/sd/fbench/nersc-python-bench/scripts
   StdErr=/global/cscratch1/sd/fbench/nersc-python-bench/scripts/logs/mpi4py-import-cori-haswell-scratch-003-31610730.out
   StdIn=/dev/null
   StdOut=/global/cscratch1/sd/fbench/nersc-python-bench/scripts/logs/mpi4py-import-cori-haswell-scratch-003-31610730.out
   Power=
   TresPerNode=craynetwork:1
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sacct: Query Completed and Pending Jobs

● Maximum query duration is one month (subject to change)
● Detailed job steps info will be displayed without “-X”  flag
● Many more job fields can be queried. See “sacct --help” or “man 

sacct” for more details.



  

Running Jobs Best Practices
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Where to Run My Jobs?
● Queue configuration and policies are subject to further tuning for max 

throughput and system utilization
● Factors to consider: queue wait time (much shorter on KNL than on 

Haswell), throughput, charging, code readiness on KNL
○ Cori Haswell (also known as the "Cori Data Partition") system is designed 

to accelerate data-intensive applications; 2388 total compute nodes
○ Cori KNL: Large capability and performance; 9688 total compute nodes
○ Smaller KNL charging factor (80) than Haswell (140)
○ Jobs use 1024+ nodes on Cori KNL get 20% charging discount
○ “flex” and “low” qos with discounts only available on Cori KNL
○ “shared” and ”realtime” available on Cori Haswell only
○ “interactive” nodes available on Cori Haswell and KNL
○ “bigmem” and “xfer” available on Cori (run on external login nodes)
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Cori Haswell Queue Policy (as of June 2020)
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Cori KNL Queue Policy (as of June 2020)
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Charging (1)
● Unit: NERSC Hours
● Each architecture has a base charge per node hour used: 

○ Cori Haswell: 140
○ Cori KNL: 80

● Modification to base charge by QOS used:
○ premium: 2.0
○ regular: 1.0 (default)
○ low: 0.5
○ flex: 0.25
○ overrun:  0
○ shared: fraction of the node used

● On Cori KNL
○ Jobs requesting 1024 or more nodes get a 20% discount
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Charging (2)
● Your project is charged for each node your job was allocated for the 

entire duration, (i.e. used time, not wall request time), of your job
○ The minimum allocatable unit is a node (except for the “shared” QOS). 
○ Example:  4 Cori Haswell nodes, run for 1 hour with “premium” QOS

NERSC hours = 4 * 1 hour * 140 * 2 = 1120 
○ “shared” jobs are charged with # of physical cores used instead of the 

entire node.
● If you have access to multiple projects, pick which one to charge in 

your batch script
 #SBATCH –A project_name
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Jobs Scheduling 
● Each job has its priority value, composed of qos, job age, and a small 

value of fairshare. 
● There are two Slurm schedulers: main and backfill.
● Every few minutes, the main scheduler schedules jobs in the order of 

priority list for a few days into the future. 
○ Jobs are only eligible to be scheduled if they've reached a priority 

threshold. 
○ Currently only 2 jobs per qos per user are considered for scheduling. 

● The backfill scheduler then schedules small and short jobs to run if 
they will not affect the start time of those jobs that are already 
scheduled by the main scheduler.
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Tips for Getting Better Throughput
● Line jumping is allowed, but it may cost more (with “premium” QOS)
● Submit shorter jobs, they are easier to schedule

○ Checkpoint to break up long jobs, use variable time
○ Short jobs can take advantage of “backfill” opportunities
○ Run short jobs just before maintenance
○ Run variable-time jobs; use “flex” QOS

● Make sure the wall clock time you request is accurate
○ Larger shorter jobs are easier to schedule than long smaller jobs
○ Many users unnecessarily request the largest wall clock time possible 

as default
● Check queue backlogs and queue wait times

○ https://my.nersc.gov/backlog.php
○ https://my.nersc.gov/queuewaittimes.php

https://my.nersc.gov/backlog.php
https://my.nersc.gov/queuewaittimes.php
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Large Jobs Considerations
● sbcast your executable to compute nodes before srun:

sbcast --compress=lz4 /path/to/exe /tmp/exe

srun /tmp/exe

https://docs.nersc.gov/jobs/best-practices/#large-jobs
● Consider to build statically to run large jobs.  

○ There may be considerable startup delays for running large jobs of 
dynamic executables. 

● Consider to use shifter for large jobs using shared libraries.  
● Consider to use burst buffer for jobs doing large IO. 

https://docs.nersc.gov/jobs/best-practices/#large-jobs
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Other Running Jobs Considerations
● Remember to compile separately for each type of compute nodes 
● Running jobs from global homes is strongly discouraged

○ IO is not optimized
○ The global homes file system access on compute nodes is much slower than 

from $SCRATCH
○ It may also cause negative impact for other users interactive response on the 

system

● Consider to put your project’s shared software in 
/global/common/software/<project>
○ It is mounted read-only on compute nodes, so has less impact than other 

GPFS file systems (global homes or community file system)

● Consider to adopt workflow tools for better managing your jobs
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More Information

● NERSC Web pages:
○ https://docs.nersc.gov/jobs/
○ https://docs-dev.nersc.gov 

■ Using Cori GPU nodes, not covered in this talk

● Contact NERSC Consulting:
○ File a service ticket via Help Portal

https://help.nersc.gov

https://docs.nersc.gov/jobs/
https://docs-dev.nersc.gov
https://my.nersc.gov/queuewaittimes.php
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Thank You and 
Welcome to 

NERSC!


