
Zhengji Zhao
NERSC User Engagement Group

NERSC New User Training,
March 21, 2018, Berkeley CA

Programming 
environment 
and 
Compilation



Many pre-compiled applications and 
libraries are available on Cori and Edison

• NERSC uses the module utility to manage software 
packages at NERSC
– Dynamically modify the user’s shell environment via loading 

and unload modules, e.g., module load <modulefile>
– A modulefile contains information to configure the shell 

environment, such as PATH, LD_LIBRARY_PATH, MANPATH, 
etc., for an application or a library 

• Use the module avail command to see all available 
software
– module avail lammps 
– module avail –S fftw; module avail -S hdf5
– MODULEPATH 

• Software modules are provided by Cray and NERSC 

- 2 -



Access to the pre-compiled applications 
and libraries

- 3 -

• Most of the pre-compiled applications and libraries 
are open to all users
– module load cray-petsc

– module load espresso

• Some of the software have access control
– VASP is open to users who have existing license by themselves. Users 

need to confirm their licenses as described at 
http://www.nersc.gov/users/software/applications/materials-science/
vasp#toc-anchor-2

– SIESTA is open  to researchers at academic or public (non-defense) 
labs. 
https://www.nersc.gov/users/software/applications/materials-science
/siesta/#toc-anchor-2

http://www.nersc.gov/users/software/applications/materials-science/vasp#toc-anchor-2
http://www.nersc.gov/users/software/applications/materials-science/vasp#toc-anchor-2
https://www.nersc.gov/users/software/applications/materials-science/siesta/#toc-anchor-2
https://www.nersc.gov/users/software/applications/materials-science/siesta/#toc-anchor-2


This talk will focus on 

• Cori (Haswell and KNL nodes) and Edison 
• Compile/link lines

Compiler    +  

Compiler Flags    + 

–I/path/to/headers   +  

–L/path/to/library –l<library>

• Available compilers, libraries, how to compile - a 
couple of tips, compile for Cori KNL, summary 

- 4 -



Separate builds for Cori Haswell, KNL and 
Edison are recommended

• Cori KNL and Haswell 
– Cori has 9688 single-socket Intel® Xeon Phi™ Processor 7250 ("Knights Landing") 

nodes @1.4 GHz with 68 cores (272 threads) per node, two 512 bit vector units per 
core, and 16 GB high bandwidth on-package memory (MCDRAM) with 5X the 
bandwidth of DDR4 DRAM memory (>400 GB/sec) and 96 GB DDR4 2400 MHz 
memory per node. 

– In addition, Cori has 2388 dual-socket 16-core Intel® Xeon™ Processor E5-2698 v3 
("Haswell") nodes @2.3GHz with 32 cores (64 threads) per node, two 256 bit 
vector units per core, 128 GB 2133 MHz DDR4 memory. 

– Cori nodes are interconnected with Cray’s Aries network with Dragonfly topology. 

• Edison 
– Edison has 5586 dual-socket 12-core Intel(R) Xeon(R) CPU E5-2695 v2 (“Ivy 

Bridge”) nodes @2.40GHz with 24 cores (48 threads) per node, two 256 bit vector 
units per core, 64 GB DDR3 1866 MHz memory. Edison nodes are interconnected 
with Cray’s Aries network with Dragonfly topology. 

• Compilations on Edison, Cori (Haswell and KNL) are very similar, and 
binaries can be built to be compatible. However, we recommend a 
separate build for each platform for optimal performance.

- 5 -

http://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
http://ark.intel.com/products/75281/Intel-Xeon-Processor-E5-2695-v2-30M-Cache-2_40-GHz?q=E5-2695%20v2
http://ark.intel.com/products/75281/Intel-Xeon-Processor-E5-2695-v2-30M-Cache-2_40-GHz?q=E5-2695%20v2


- 6 -

Building your application separately for each platform could be 
important to get optimal performance.

VASP built with the –xMIC-AVX512  
flag runs 35% faster than built with 
the –xCORE-AVX2 flag on Cori KNL.



Intel, GNU and Cray compilers are 
available on Cori and Edison

• Three programming environments are supported
– PrgEnv-intel, PrgEnv-gnu, and PrgEnv-cray loads the corresponding 

programming environment which includes the compilers and matching 
libraries

– Intel programming environment is the default on both Cori and Edison.
– module swap PrgEnv-Intel PrgEnv-cray to swap compilers and programing 

environment.

• Other available compilers, such as bupc, llvm, etc, will not be 
covered in this presentation.

- 7 -

Modules loaded by default on Cori – default programming environment:



 Use of the compiler wrappers, ftn, cc and CC, 
is recommended when compiling codes

• Use ftn, cc, and CC to compile Fortran, C and C++ codes, respectively, 
instead of the underlying native compilers, such as ifort, icc, icpc, gfortran, 
gcc, g++, etc.
– The compiler wrappers wraps the underlying compilers with the additional compiler 

and linker flags depending on the modules loaded in the environment
– The same compiler wrapper command (e.g. ftn) is used to invoke any compilers 

supported on the system (Intel, GNU, Cray) 

• Compilers wrappers link statically by default 
– Preferred for performance at scale

• Use –dynamic or set an environment variable CRAYPE_LINK_TYPE=dynamic 
to link dynamically
– A dynamically linked executable may take a some time to load shared libraries when 

running with a large number of processes

• Compiler wrappers do cross compilation
– Compiling on login nodes to run on compute nodes
– Use the –host=x86_64 configure option when compiling for KNL from a login nodes
– To compile on a KNL node, do salloc –N 1 –q interactive –C knl –t 4:00:00 to get on a 

compute node

- 8 -



Why compiler wrappers?

• They include the architecture specific compiler flags into the compilation/link 
line automatically.

• They automatically add the header and library paths and libraries on the 
compilation/link lines, so you do not have to explicitly provide them. 
– Compiler wrappers use the pkg-config tools to dynamically detect paths and libs from 

the environment (loaded cray modules and some NERSC modules) 
– The architecture specific builds of libraries will be linked into

• Yet allow user provided options to take the precedence 
– You may need to remove –xHost option in your compilation/link line

- 9 -

Intel*) GNU Cray Module

Cori KNL -xMIC-AVX512 -march=knl -h cpu=mic-knl craype-mic-knl

Cori Haswell -xCORE-AVX2 -march=core-avx2 -h cpu=haswell craype-haswell

Edison Ivy Bridge -xCORE-AVX-I -march=corei7-avx -h cpu=ivybridge craype-ivybridge

*) for the latest Intel compilers, -march=knl,haswell,ivybridge can be used instead of –xcode.



What do compiler wrappers link by 
default?

• Depending on the modules loaded, MPI, LAPACK/BLAS/ScaLAPACK 
libraries, and more

• Library names could be different from what you used before

- 10 -



Compiler recommendations

• Will not recommend any specific compiler
– Intel - better chance of getting processor specific 

optimizations, especially for KNL

– Cray compiler – many new features and optimizations, 
especially with Fortran 

– GNU - widely used by open software

• Start with the compilers that vendor/code 
developers used so to minimize the chance to hit 
the compiler and code bugs, then explore different 
compilers if you care the performance.

- 11 -



Compiler flags

• Validity check after compilation
– Run tests and check with the references if provided
– When higher optimizations used, compare with the debug version to check the 

validity

• Compilers’ default behavior could vary between compilers
– Default number of OpenMP threads used is all CPU slots available for Intel and GNU 

compilers; 1 for Cray compiler.
– * -g: Cray compiler disables all optimizations, try –G2; 

- 12 -

Intel GNU Cray Description/ 
Comment

-O2 -O0 -O2 default

default , or –O3 -O2 or -O3,-Ofast default recommended

-qopenmp -fopenmp default, or –h omp OpenMP

-g -g -g* debug

-v -v -v verbose



Verbose output from compiler wrappers 
contains many useful information

- 13 -



Available libraries

• Cray supports many software packages – Cray Developer Took kits 
(CDT)
– Access via modules, type “module avail” or “module avail –S” to see the 

available modules 
– There are different builds for different compilers 
– Programming environment modules allow the libraries built with the 

matching compilers to be linked to

• NERSC also supports many libraries
–  Many of them interact with the Cray compiler wrappers while some of 

them do not. 

• Where are the libraries ?
– Use “module show <module name> “ to see the installation paths

- 14 -

More examples of module commands:
module avail netcdf; module avail –S netcdf
module list
Module load cray-petsc ; module unload cray-petsc; module load cdt/18.03
Module swap PrgEnv-intel PrgEnv-gnu; 
Module help cray-tpsl



Examples of linking to the Cray provided 
libraries using compiler wrappers 

• Linking to Cray MPI and Cray Scientific libraries are automatic if compiler 
wrappers are used

CC parallel_hello.cpp
ftn dgemmx1.f90

• Linking to HDF5 and NETCDF libraries are automatic, user just need to load 
the cray-hdf5 or cray-netcdf modules

module load cray-hdf5
cc h5write.c 

– Note The library name could be different. Using the –v option to see the library 
names and other details link line information. 

• Linking to PETSc libraries are automatic, but users need to choose a proper 
module (real/complex,32/64 bit integer)
– E.g., module load cray-petsc-complex-64
– Use cc –v test1.c to see the linking detail

• Linking to fftw libraries – fftw 3 are now the default
– module load cray-fftw
– Loading the cray-fftw module always links to the pthread version of the library, 

-lfftw3f_mpi -lfftw3f_threads -lfftw3f -lfftw3_mpi -lfftw3_threads -lfftw3, to link 
with OpenMP implementation, need to manually provide the libraries. 

- 15 -



Examples of linking to the NERSC 
provided library modules

• Some of the NERSC provided modulefiles are written to be 
recognized by the compiler wrappers, e.g., elpa module on Cori

module load elpa
ftn –qopenmp –v test2.f90   # this  will automatically link to elpa and 
MKL ScaLAPACK libraries

– Type module show <module name> to check if the envs 
<libname>_PKGCONFIG_LIBS, PE_PKGCONFIG_PRODUCTS, and 
PKG_CONFIG_PATH are defined in the modulefile, which compiler 
wrappers look for. 

• Most of the NERSC provided modulefiles do not interact with the 
compiler wrappers, user need to provide the include path and 
library path and libraries manually, e.g. GSL

Module load gsl
ftn test3.f90 $GSL

– GSL is set as  -I/usr/common/software/gsl/2.1/intel/include 
-L/usr/common/software/gsl/2.1/intel/lib -lgsl -lgslcblas

- 16 -



Linking to Intel MKL library

• Resource:
– Intel® Math Kernel Library Link Line Advisor, 

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
– Learn from Intel compiler verbose output,                                       

-mkl={parallel,sequential,cluster}

• For intel compiler, use –mkl flag
– ftn test1.f90 –mkl  # default to parallel –multi-threaded lib
– The loaded cray-libsci will be ignored if –mkl is used.

• For GNU compiler (e.g., to link to 32-bit integer build):
– Save the MKLROOT from the Intel compiler module, and then 
– Threaded:  -L$MKLROOT/lib/intel64 –Wl,--start-group -lmkl_gf_lp64 

-lmkl_gnu_thread -lmkl_core -liomp5 -Wl,--end-group –lpthread –lm –ldl

– ScaLAPACK: -L$MKLROOT/lib/intel64 -Wl,--start-group -lmkl_gf_lp64 
-lmkl_gnu_thread -lmkl_scalapack_lp64 -lmkl_blacs_intelmpi_lp64 -lmkl_core 
-Wl,--end-group -lgomp –lpthread –lm -ldl

– Note that mkl modules could be out-dated

- 17 -

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/


Dynamic linking examples with compiler 
wrappers

• Some of the libraries are available only in shared 
library format, e.g., TBB, use –dynamic in the link 
line or use CRAYPE_LINK_TYPE=dynamic

• Linking to Intel TBB library 
module load tbb

CC –dynamic test4.C –tbb

or
module load tbb

Export CRAYPE_LINK_TYPE=dynamic

CC test4.C –tbb

- 18 -



Linking to Intel MPI library – Use native 
compilers

• Cray MPICH libraries are recommended for 
performance especially at scale. 

• Compiler wrappers links to Cray MPICH libraries. 

• However, if you need to link to Intel MPI library, do
Module load impi

mpiifort test1.f90

– Note that the binaries linked to the Intel MPI need to run with srun 
instead of mpirun to get a proper process/thread affinity, 
http://www.nersc.gov/users/computational-systems/cori/running-jo
bs/advanced-running-jobs-options/#toc-anchor-6

– Native Intel compilers link dynamically

- 19 -

http://www.nersc.gov/users/computational-systems/cori/running-jobs/advanced-running-jobs-options/#toc-anchor-6
http://www.nersc.gov/users/computational-systems/cori/running-jobs/advanced-running-jobs-options/#toc-anchor-6


Resolving missing libraries and 
unresolved symbols

• Only shared libraries available
– E.g., /usr/bin/ld: cannot find –ldl 
– Try -dynamic

• Static library linking order, try -Wl,--start-group … 
-Wl,--end-group, e.g.,
LLIBS      =      -Wl,--start-group $(MKLROOT)/lib/intel64/libmkl_intel_lp64.a \

                       $(MKLROOT)/lib/intel64/libmkl_scalapack_lp64.a 
$(MKLROOT)/lib/intel64/libmkl_blacs_intelmpi_lp64.a \

                       $(MKLROOT)/lib/intel64/libmkl_intel_thread.a $(MKLROOT)/lib/intel64/libmkl_core.a 
-Wl,--end-group \

                       /usr/common/software/wannier90/1.2/knl/intel/lib/libwannier.a \

                       -Wl,-zmuldefs

• Use grep –R and readelf –s |grep <symbol> to 
search for the unresolved symbols.

- 20 -



How to compile for Cori KNL

• The craype-* module sets the target that the compiler wrappers 
(cc, CC, ftn) build for
– craype-haswell: -xCORE-AVX2 (Intel compiler);-mhaswell (GNU); 

-hhaswell (Cray)
– craype-mic-knl: -xMIC-AVX512 (Intel compiler); -mknl (GNU); 

-hmic-knl (Cray)
• craype-haswell is default on login nodes

• craype-mic-knl is for KNL nodes, JUST do module swap 
craype-haswell craype-mic-knl before compiling for Cori KNL 
nodes



How to compile for Cori KNL

Best: Compiler settings to target KNL
Alternate:
CC -axMIC-AVX512,CORE-AVX2 <more-options> mycode.c++

• Only valid when using Intel compilers (cc, CC or ftn)
• -ax<arch> adds an “alternate execution paths” optimized 

for different architectures
– Makes 2 (or more) versions of code in same object file

•NOT AS GOOD as the craype-mic-knl module
– (module causes versions of libraries built for that 

architecture to be used – e.g. MKL)



How to compile for Cori KNL

Recommendations: 
• For best performance, use the craype-mic-knl 

module
module swap craype-haswell craype-mic-knl
CC -O3 -c myfile.c++

• If the same executable must run on KNL and 
Haswell nodes, use craype-haswell but add 
KNL-optimized execution path
CC -axMIC-AVX512,CORE-AVX2 -O3 -c myfile.c++



What to link

Utility libraries
•Not performance-critical (by definition)

– KNL can run Xeon binaries .. can use Haswell-targeted 
versions

• I/O libraries (HDF5, NetCDF, etc) should fit in this 
category too
– (for Cray-provided libraries, compiler wrapper will use 

craype-* to select best build anyway)



What to link

Performance-critical libraries
•MKL: has KNL-targeted optimizations
•PETSc, SLEPc, Caffe, Metis, etc: 

– (soon) has KNL-targeted builds

•Modulefiles will use craype-{haswell,mic-knl} to 
find appropriate library
– Currently FFTW,LibSci,PETSc, TPSL have separate builds 

for KNL

•Key points:
– Someone else has already prepared libraries for KNL
– No need to do-it-yourself 
– Load the right craype- module



Saving and restoring the programming 
environment on Cori and Edison

• Module snapshot - capture the currently loaded module 
environment for later restore.
– module snapshot [-f|--force] filename
– module restore filename
– The filename is saved at ${HOME}/.module_snapshots by default; 

use MODULE_SNAPSHOT_DIR for alternative location

• cdt modules – allows a clean switch to previous CDT version
• Using shifter - preserve both system and user software

– Shifter is a software package that allows user-created images to run 
at NERSC. More info at 
http://www.nersc.gov/users/software/using-shifter-and-docker/usin
g-shifter-at-nersc/

• ALTD can provide your binary linking info
– https://my.nersc.gov/libraryusage-cs.php
– link_info.sh /path/to/your/binary/<binary name>

- 26 -

http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/
http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/
https://my.nersc.gov/libraryusage-cs.php


Frequency of Programming Environment 
Software Default Changes

• CDT Update Policy:
– New software will be installed every 3 months, usually in December, March, September, 

and June. The new versions will not be made the defaults when installed. 
– New software defaults will be set twice a year: Once in January at the Allocation Year 

Rollover (the previous year's September release) and once in June (the March release). 
The actual versions may vary subject to software verification and security or urgent 
fixes.

– Only three CDT versions, the current default, the previous default, and the newest, will 
be made available on the system at any given time. If you need a CDT version that we 
have removed from the system, please contact consult at nersc.gov.   Note: Cray CDT 
(Cray Developer Toolkit) contains Programming Environment Software release including 
Cray compiling, message passing interface, performance, debugging, third party 
libraries, etc. Note some of the software packages may have more than three versions 
unintentionally. We will delete the extra versions in next maintenance. 

• Timelines:
– Cori, https://www.nersc.gov/users/computational-systems/cori/cori-timeline/
– Edison, 

https://www.nersc.gov/users/computational-systems/edison/updates-and-status/timeli
ne-and-updates/

- 27 -



Sharing your software installations with 
others

• Install your applications/libraries in the 
/global/common/software/<your repo> directory
– This is a read-only file system on compute nodes.
–  Shared library applications may get performance benefit.

• Add a modulepath to your environment, 
– module use /global/common/software/<your repo>/modulefiles, or export MODULEPATH= 

/global/common/software/<your repo>/modulefiles:$MODULEPATH

• Write a modulefile for your application or library
• Use the craypkg-gen module to generate a modulefile for your library 

installation so that compiler wrappers can automatically pickup the 
paths and libraries

module load craypkg-gen
craypkg-gen -p installation_dir   to generate the package config file
craypkg-gen –m installation_dir –o /global/common/software/<your repo>  to 
generate the modulefile that can interact with the compiler wrappers

• Use env SITE_MODULE_NAMES for library modules to swap 
modules PrgEnv-* modules switch. 
– Type “module show darshan” for an example

- 28 -



Using Spack to install your software

• Spack is a flexible package manager that builds and 
installs multiple versions and configurations of 
software.

• NERSC is transition to using Spack to build our software 
– Most of the NERSC staff supported software on Edison have 

been bbuilt with Spack
– Cori will be next to use Spack

• Try to install your software, especially the dependent 
software with Spack - ask NERSC consultant for help
– git clone https://github.com/spack/spack.git
– Spack list
– Spack install <package-name>
– Tutorial: http://spack.readthedocs.io/en/latest/getting_started.html

- 29 -

https://github.com/spack/spack.git
http://spack.readthedocs.io/en/latest/getting_started.html


Summary

•Use compiler wrappers where possible, which 
allows to include architecture specific optimization 
flag and link to the libraries
– Check for the –xHost option

•Explore available compilers, Intel, Cray, GNU
– Validity check after builds is important 

•Use provided libraries where available
– Use module show <module name> to see the paths if 

needed



Summary -continued

• For Cori KNL, do
– module swap craype-haswell craype-mic-knl

• Build on login nodes whenever possible
• Learn from the compiler verbose output
• Read compiler and linker man pages
• Use module snapshots, shifter to preserve and 

restore your build environment
• Consider creating a modulefile for your software 

install for yourself and to share with others.
• Try out Spack 

- 31 -



Recommended readings

• NERSC website, especially,
– http://www.nersc.gov/users/computational-systems/cori/programming/compiling-code

s-on-cori/
– http://www.nersc.gov/users/computational-systems/edison/programming/
– We are moving user documentation pages to http://docs.nersc.gov,
– https://docs.nersc.gov/development/compilers/
– For further compiler optimizations read intel slides: e.g., 

https://www.nersc.gov/users/training/events/intel-compilers-tools-and-libraries-trainin
g-march-6-2018/

•  Compiler and linker man pages: 
– ifort, icc, icpc, crayftn,etc
– man ld (-Wl,-zmuldefs, -Wl,-y<symbol>)

• To save and restore build environment:
– man module, subcommand snapshot/restore; also 

http://www.nersc.gov/users/software/nersc-user-environment/modules/#toc-anchor-3
– Shifter, http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/

- 32 -

http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-on-cori/
http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-on-cori/
http://www.nersc.gov/users/computational-systems/edison/programming/
http://docs.nersc.gov/
https://docs.nersc.gov/development/compilers/
http://www.nersc.gov/users/software/nersc-user-environment/modules/#toc-anchor-3
http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/


Acknowledgement

• Steve Leak for providing some of the slides used in 
this talk. 

Thank you!

- 33 -


