
Programming
environment and

compilation

Zhengji Zhao
User Engagement Group

New User Training, Bekerley CA
Jan 25, 2019

This talk is about the basics of compilations on Cori

● Compilation overview
● Compile/link lines:

Compiler +
Compiler Flags +
–I/path/to/headers +
–L/path/to/library –l<library>

● Available libraries, and linking examples

 Users will need to apply the above info to their own build systems

- 2 -

Cori system configurations

● Cori KNL and Haswell – a Cray XC40
○ Cori has 9688 single-socket Intel® Xeon Phi™ Processor 7250 ("Knights

Landing") nodes @1.4 GHz with 68 cores (272 threads) per node, two 512 bit vector
units per core, and 16 GB high bandwidth on-package memory (MCDRAM) with 5X
the bandwidth of DDR4 DRAM memory (>400 GB/sec) and 96 GB DDR4 2400 MHz
memory per node

○ In addition, Cori has 2388 dual-socket 16-core Intel® Xeon™ Processor E5-2698 v3
("Haswell") nodes @2.3GHz with 32 cores (64 threads) per node, two 256 bit vector
units per core, 128 GB 2133 MHz DDR4 memory

○ Cori nodes are interconnected with Cray’s Aries network with Dragonfly topology

● Binary compatibility: Haswell binaries run on KNL, but not vise versa,
because KNL supports the extended instruction sets

● Separate builds for Haswell and KNL are recommended for optimal
performance

- 3 -

http://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
http://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

Compilations on Cori

● Three programming environments are supported on Cori

○ Intel, GNU and Cray compilers are available; Intel is the default

● The programming environment modules, “PrgEnv-intel”,
“PrgEnv-gnu”, and “PrgEnv-cray”, which include the compilers and
matching libraries, provide user friendly programming environments

● Use “module swap PrgEnv-Intel PrgEnv-cray” to switch compilers

● Using compiler wrappers provided by Cray, ftn, cc and CC for Fortran,
C and C++ respectively, the header and library paths and libraries can
be included in the compile/link line automatically.

Compilations on Cori (cont.)

● Cross compilation: compiling for compute nodes from login nodes
(haswell)

● Default environment loads craype-haswell module on Cori, which sets
“CRAY_CPU_TARGET=haswell” for Cori. Compilers build binaries
that are optimized for Haswell processors by default when compiling
with the compiler wrappers
Default programming environment on Cori:

To compile for Cori Haswell

● Intel programing environment is the default

Note, the compiler wrappers, ftn, cc, and CC, are not Cray compilers; they invoke the
Intel, GNU, or Cray compilers under the hood, depending on the loaded programming
environment module (PrgEnv-<compiler>)

#to use Intel compilers
ftn –O3 mycode.f90 # Fortran
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

#to use Cray compilers
module swap PrgEnv-intel PrgEnv-cray
ftn –O3 mycode.f90 # Fortran
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

#to use GNU compilers
module swap PrgEnv-intel PrgEnv-gnu
ftn –O3 mycode.f90 # Fortran
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

To compile for Cori KNL

● Applications are cross compiled for KNL nodes from the login nodes
(Haswell)

● Do “module swap craype-haswell craype-mic-knl” before compiling for
KNL to build binaries that are optimized for the KNL architecture

module swap craype-haswell craype-mic-knl
ftn –O3 mycode.f90 # Fortran
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

Compiler recommendations

● Will not recommend any specific compiler

○ Intel - better chance of getting processor specific optimizations, especially for KNL

○ Cray compiler – many new features and optimizations, especially with Fortran; useful
tools like reveal work with Cray compiler only

○ GNU - widely used by open software

● Start with the compilers that vendor/code developers used so to
minimize the chance to hit the compiler and code bugs, then explore
different compilers for optimal performance

- 8 -

Compiler flags

● Validity check after compilation
● Compilers’ default behavior could vary between compilers

○ Default number of OpenMP threads used is all CPU slots available for Intel and GNU
compilers; 1 for Cray compiler

○ use compiler man page for available compiler optimization flags, man ifort
- 9 -

Intel GNU Cray Description/
Comment

-O2 -O0 -O2 default

default , or –O3 -O2 or -O3,-Ofast default recommended

-qopenmp -fopenmp default, or –h omp OpenMP

-g -g -g debug

-v -v -v verbose

Header and library paths and libraries

● Manually:

○ find out the paths to the headers, and libraries, then add

 “–I <header path> -L<library path> -l<libraries>” to your compile/link lines

● Automatically:

○ Using the compiler wrappers, which can do this for you

○ Compiler wrappers are strongly recommended

Compiler wrappers, ftn, cc and CC

● Use ftn, cc, and CC to compile Fortran, C and C++ codes, respectively,
instead of invoking the native compilers directly, such as ifort, icc, icpc,
gfortran, gcc, g++, etc.
○ The compiler wrappers wraps the underlying compilers with additional compiler and

linker flags depending on the modules loaded in the environment
○ The same compiler wrapper command (e.g. ftn) is used to invoke any compilers

supported on the system (Intel, GNU, Cray)

● Compiler wrappers do cross compilation
○ Compiling applications on login nodes to run on compute nodes
○ For some applications, may need to set the –host=x86_64 configure option (if

available) when compiling for KNL from a login node
○ If compiling on a KNL node is needed, do “salloc –N 1 –q interactive –C knl –t 4:00:00”

to get on to a compute node
- 11 -

Compiler wrappers, ftn, cc and CC (cont.)

● Compiler wrappers link statically by default
○ Preferred for performance at scale

○ This default will be “dynamic” when Cori is upgraded to CLE7 (end of July)

● Use the -dynamic option of the compiler wrappers or set the
environment variable “CRAYPE_LINK_TYPE=dynamic” to link
dynamically
○ May need to load the same set of modules at run time or set the

LD_LIBRARAY_PATH env so that shared libraries can be found. Alternatively,
consider using the “-Wl,–rpath=<library path>” option when compiling

○ A dynamically linked executable may take some time to load shared libraries when
running with a large number of processes

- 12 -

Why compiler wrappers?

● They include the architecture specific compiler flags into the
compilation/link lines automatically

● Automatically add header and library paths and libraries on the
compilation/link lines
○ Compiler wrappers use the pkg-config tools to dynamically detect paths and libs from

the environment (working with cray modules and some NERSC modules)
○ The architecture specific builds of libraries will be linked into

● Allow user provided options to take precedence

- 13 -

Intel*) GNU Cray Module
Cori KNL -xMIC-AVX512 -march=knl -h cpu=mic-knl craype-mic-knl

Cori Haswell -xCORE-AVX2 -march=core-avx2 -h cpu=haswell craype-haswell

*) for the latest Intel compilers, -march=knl,haswell can be used instead of –xcode.

Verbose output from compiler wrappers

● Depending on the modules loaded, compiler wrappers link to the MPI,
LAPACK/BLAS/ScaLAPACK libraries, and more automatically

● Library names on Cori could be different from what you used before

- 14 -

Verbose output from compiler wrappers (cont.)

- 15 -
Note, “-Wl,--start-group” … “-Wl,--end-group” for static linking

Available libraries

● Cray supports many software packages – Cray Developer Toolkits
(CDT)
○ Modules from /opt/cray/pe/modulefiles, etc.

○ Access via modules, type “module avail” or “module avail –S < your string>” to see
the available modules

○ There are different builds for different compilers

○ Programming environment modules allow the libraries built with the matching
compilers to be linked to

● NERSC staff also supports many libraries
○ Modules from /usr/common/software/modulefiles, etc.

○ Some of them interact with the Cray compiler wrappers while many of them do not
- 16 -

Available libraries (cont.)

● Where are the libraries and header files ?

○ Use “module show <module name>” to see the installation paths

○ Run “ls –l <installation_path>/include” and “ls –l <installation_path>/lib” to see the
library files

○ e.g., Cray MPICH library:

cori01:~> module show cray-mpich

/opt/cray/pe/modulefiles/cray-mpich/7.7.3:
…
setenv CRAY_MPICH_DIR /opt/cray/pe/mpt/7.7.3/gni/mpich-intel/16.0
Setenv MPICH_DIR /opt/cray/pe/mpt/7.7.3/gni/mpich-intel/16.0
…

cori01:~> ls –l $CRAY_MPICH_DIR
drwxr-xr-x 2 root root 628 Mar 15 14:46 include
drwxr-xr-x 3 root root 1743 Mar 15 14:46 lib

Examples of linking to the Cray provided libraries

● Linking to Cray MPI and Cray Scientific libraries are automatic by
default if compiler wrappers are used

● Linking to HDF5 and NETCDF libraries are automatic, user just need to
load the cray-hdf5 or cray-netcdf modules

● Note the library name could be different. Using the –v option to see the
library names and other detail about the linking

- 18 -

CC parallel_hello.cpp #or ftn dgemmx1.f90

module load cray-hdf5

cc h5write.c

Examples of linking to the Cray provided libraries

● Linking to PETSc libraries are automatic, but users need to choose a
proper module (e.g., real/complex, 32 or 64 bit integer builds)

○ E.g., “module load cray-petsc-complex-64”

○ Use “cc –v test1.c” to see the linking detail (test1.c can be any skeleton C code)

● Linking to fftw libraries – fftw 3 is the default

○ module load cray-fftw

○ Loading the cray-fftw module always links to the pthread version of the library,
“-lfftw3f_mpi -lfftw3f_threads -lfftw3f -lfftw3_mpi -lfftw3_threads -lfftw3”, to link with
the OpenMP version of FFTW, you need to manually provide the libraries

- 19 -

Examples of linking to the NERSC provided library modules

● Some of the NERSC provided modulefiles are written to interact with the
Cray compiler wrappers, e.g., elpa module on Cori

○ Type “module show <module name>” to check if the envs “<libname>_PKGCONFIG_LIBS”,
“PE_PKGCONFIG_PRODUCTS”, and “PKG_CONFIG_PATH” are defined in the modulefiles, which
compiler wrappers look for

● Most of the NERSC provided modulefiles do not interact with the compiler
wrappers, user need to provide the include and library paths and libraries
manually, e.g., GSL

- 20 -

module load elpa
#automatically link to elpa and MKL ScaLAPACK libraries
ftn –qopenmp –v test2.f90

module load gsl
ftn test3.f90 $GSL
#where GSL=-I/usr/common/software/gsl/2.1/intel/include -L/usr/common/software/gsl/2.1/intel/lib -lgsl -lgslcblas

Linking to Intel MKL library

● Resource:
○ Intel® Math Kernel Library Link Line Advisor,

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
○ Learn from Intel compiler verbose output using the “-mkl={parallel,sequential,cluster}” flag

● For intel compiler, use –mkl flag
○ ftn test1.f90 –mkl #default to parallel, the multi-threaded MKL

 #the loaded cray-libsci will be ignored if –mkl is used.

- 21-

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Linking to Intel MKL library (cont.)

● For GNU compiler (e.g., to link to 32-bit integer build):
○ Save the $MKLROOT from the Intel compiler module, and then

○ Threaded: “-L$MKLROOT/lib/intel64 –Wl,--start-group -lmkl_gf_lp64 -lmkl_gnu_thread
-lmkl_core -lgomp -Wl,--end-group –lpthread –lm –ldl”

○ ScaLAPACK: “-L$MKLROOT/lib/intel64 -Wl,--start-group -lmkl_gf_lp64
-lmkl_gnu_thread -lmkl_scalapack_lp64 -lmkl_blacs_intelmpi_lp64 -lmkl_core
-Wl,--end-group -lgomp –lpthread –lm –ldl”

○ Notice that the NERSC provided mkl modules could be outdated

- 22-

Linking to Intel MPI library: use native Intel compilers

● Cray MPICH libraries are recommended for performance especially at
scale

● Compiler wrappers links to Cray MPICH libraries

● However, if you need to link to Intel MPI library, do

○ Note that the binaries linked to the Intel MPI need to run with srun instead of mpirun
to get a proper process/thread affinity, https://docs.nersc.gov/jobs/examples/#using-intel-mpi

○ Native Intel compilers link dynamically

- 23 -

module load impi
mpiifort test1.f90 #or mpiicpc test1.C

https://docs.nersc.gov/jobs/examples/#using-intel-mpi

Summary

● Three supported programming environments: Intel, GNU, and Cray

● Use compiler wrappers where possible,
○ Add architecture specific optimization flags
○ Automatically add the header and library paths in to the compile/link lines, and

link to the Cray MPI, LibSci and other Cray provided libraries if the modules are
loaded

● To compile for Cori KNL, do
○ module swap craype-haswell craype-mic-knl

● There are many libraries available, use them where possible
○ Use “module avail” command to check available libraries
○ Use “module show <module name>” to see the installation paths if needed

Summary (cont.)

● Most NERSC staff support modules do not interact with the compiler
wrappers
○ Users need to provide the header and library paths and libraries manually

● To link applications dynamically, use the “–dynamic” compiler
wrapper option or set the env “CRAYPE_LINK_TYPE=dynamic”
before compiling

● Learn from the compiler verbose output (-v)

Recommended readings

● NERSC website, especially,
○ http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-

on-cori/
○ We are moving user documentation pages to http://docs.nersc.gov,
○ https://docs.nersc.gov/development/compilers/
○ For further compiler optimizations read intel slides: e.g.,

https://www.nersc.gov/users/training/events/intel-compilers-tools-and-libraries-training-
march-6-2018/

● Compiler and linker man pages:
○ ifort, icc, icpc, crayftn, etc.
○ man ld (“-Wl,-zmuldefs”, “-Wl,-y<symbol>”)

- 26 -

http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-on-cori/
http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-on-cori/
http://docs.nersc.gov/
https://docs.nersc.gov/development/compilers/

Thank You!

