
1

Programing
Environment and
Compilation

New User Training
June 16, 2020

Zhengji Zhao
NERSC User Engagement Group

2

Outline

● Cori compilation overview
● Compile/link lines:

Compiler +
Compiler Flags +
–I/path/to/headers +
–L/path/to/library –l<library>

● Available libraries, and linking examples
● Spack - a package manager
● Summary

2

Outline

Cori Compilation Overview

4

Compilations on Cori

● Three programming environments are supported on Cori

○ Intel, GNU and Cray compilers are available; Intel is the default

● The programming environment modules, “PrgEnv-intel”,
“PrgEnv-gnu”, and “PrgEnv-cray”, which include the compilers and
matching libraries, provide user friendly programming environments

● Use “module swap PrgEnv-Intel PrgEnv-cray” to switch compilers

● Use the compiler wrappers provided by Cray, ftn, cc and CC for
Fortran, C and C++ respectively, so that the header and library paths
and libraries can be added on the compile/link lines automatically.

Compilations on Cori

5

Cori system configurations

● Cori KNL and Haswell – a Cray XC40
○ Cori has 9688 single-socket Intel® Xeon Phi™ Processor 7250 ("Knights Landing")

nodes @1.4 GHz with 68 cores (272 threads) per node, two 512 bit vector units per
core, and 16 GB high bandwidth on-package memory (MCDRAM) with 5X the
bandwidth of DDR4 DRAM memory (>400 GB/sec) and 96 GB DDR4 2400 MHz
memory per node

○ In addition, Cori has 2388 dual-socket 16-core Intel® Xeon™ Processor E5-2698 v3
("Haswell") nodes @2.3GHz with 32 cores (64 threads) per node, two 256 bit vector
units per core, 128 GB 2133 MHz DDR4 memory

○ Cori nodes are interconnected with Cray’s Aries network with Dragonfly topology

● Binary compatibility: Haswell binaries run on KNL, but not vise versa,
because KNL supports the extended instruction sets

● Separate builds for Haswell and KNL are recommended for optimal
performance

5

Cori System Configurations

6

Compilations on Cori (cont.)

● Cross compilation: compiling for compute nodes from login nodes
(Haswell)

● Default environment loads the craype-haswell module on Cori, which
sets “CRAY_CPU_TARGET=haswell” for Cori. So, compilers build
binaries that are optimized for Haswell processors by default when
compiling with the compiler wrappers

 Default programming environment on Cori:

Compilations on Cori (Cont.)

7

To compile for Cori Haswell

● Intel programing environment is the default

Note: the compiler wrappers, ftn, cc, and CC, are not Cray compilers; They invoke the Intel,
GNU, or Cray compilers under the hood, depending on the loaded PE module
(PrgEnv-<compiler>)

#to use Intel compilers
ftn –O3 mycode.f90 # Fortran
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

#to use Cray compilers
module swap PrgEnv-intel PrgEnv-cray
ftn –O3 mycode.f90 # Fortran
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

#to use GNU compilers
module swap PrgEnv-intel PrgEnv-gnu
ftn –O3 mycode.f90 # Fortran
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

To Compile for Cori Haswell

8

To compile for Cori KNL

● Applications are cross compiled for KNL nodes from the login nodes
(Haswell)

● Do “module swap craype-haswell craype-mic-knl” before compiling for
KNL to build binaries that are optimized for the KNL architecture

module swap craype-haswell craype-mic-knl
ftn –O3 mycode.f90 # Fortran
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

To Compile for Cori KNL

Compile/Link Lines

10

Compiler recommendations

● Will not recommend any specific compiler

○ Intel - better chance of getting processor specific optimizations, especially for KNL

○ Cray compiler – many new features and optimizations, especially with Fortran; useful
tools like reveal work with Cray compiler only

○ GNU - widely used by open software

● Start with the compilers that vendor/code developers used so to
minimize the chance to hit compiler and code bugs, then explore
different compilers for optimal performance

10

Compiler Recommendations

11

Compiler flags

 *) Starting from CCE 9.0 version, Cray C/C++ compilers use LLVM as backend

● Validity check after compilation
● Compilers’ default behavior could vary between compilers

○ Default number of OpenMP threads used is all CPU slots available for Intel and GNU
compilers; 1 for Cray compiler

○ Use compiler man page for available compiler optimization flags, e.g., man ifort

11

Intel GNU Cray* Description/ Comment

-O2 -O0 -O2 Default Optimization Level

default , or –O3 -O2 or -O3,-Ofast default Recommended Compiler Flags

-qopenmp -fopenmp –h omp for Fortran;
-fopenmp for C/C++

OpenMP Flag

-g -g -g Debug

-v -v -v Verbose

Compiler Flags

12

Header and library paths and libraries

● Manually:

○ Find out the paths to the headers, and libraries, then add

 “–I <header path> -L<library path> -l<libraries>” to your compile/link lines

● Automatically:

○ Using the compiler wrappers, which can do this for you

○ Compiler wrappers are strongly recommended

Header and Library Paths and Libraries

13

Compiler wrappers, ftn, cc and CC

● Use ftn, cc, and CC to compile Fortran, C and C++ codes, respectively,
instead of invoking the native compilers directly, such as ifort, icc,
icpc, gfortran, gcc, g++, etc.
○ The compiler wrappers wraps the underlying compilers with additional compiler and

linker flags depending on the modules loaded in the environment
○ The same compiler wrapper command (e.g. ftn) is used to invoke any compilers

supported on the system (Intel, GNU, Cray)

● Compiler wrappers do cross compilations
○ Compiling applications on login nodes to run on compute nodes
○ For some applications, may need to set the –host=x86_64 configure option (if

available) when compiling for KNL from a login node
○ If compiling on a KNL node is needed, do “salloc –N 1 –q interactive –C knl
–t 4:00:00” to get on to a compute node

13

Compiler Wrappers, ftn, cc and CC

14

Compiler wrappers, ftn, cc and CC (cont.)

● Compiler wrappers link dynamically by default on Cori
○ May need to load the same set of modules at run time or set the

LD_LIBRARAY_PATH env so that shared libraries can be found. Alternatively,
consider using the “-Wl,–rpath=<library path>” option when compiling

○ A dynamically linked executable may take some time to load shared libraries when
running with a large number of processes

● Use the -static option of the compiler wrappers or set the environment
variable “CRAYPE_LINK_TYPE=static” to link statically
○ Preferred for performance at scale

14

Compiler Wrappers, ftn, cc and CC (Cont.)

15

Why compiler wrappers?

● They include the architecture specific compiler flags into the
compilation/link lines automatically

● Automatically add header and library paths and libraries on the
compilation/link lines
○ Compiler wrappers use the pkg-config tools to dynamically detect paths and libs from

the environment (working with cray modules and some NERSC modules)
○ The architecture specific builds of libraries will be linked into

● Allow user provided options to take precedence

15

Intel* GNU Cray Required Module
Cori KNL -xMIC-AVX512 -march=knl -h cpu=mic-knl craype-mic-knl
Cori Haswell -xCORE-AVX2 -march=core-avx2 -h cpu=haswell craype-haswell

*) for the latest Intel compilers, -march=knl,haswell can be used instead of -xcode.

Why Compiler Wrappers?

16

Verbose output from compiler wrappers

● Depending on the modules loaded, compiler wrappers link to the
MPI, LAPACK/BLAS/ScaLAPACK libraries, and more automatically

● Library names on Cori could be different from what you used before

16

Verbose Output from Compiler Wrappers

17

Verbose output from compiler wrappers (cont.)

17

Verbose Output from Compiler Wrappers (Cont.)

Available Libraries, and Linking Examples

19

Available libraries

● Access via modules, type “module avail” or “module avail –S <
your string>” to see the available modules

● Cray supports many software packages – Cray Developer Toolkits
(CDT)
○ Modules from /opt/cray/pe/modulefiles, etc.

○ There are different builds for different compilers

○ Programming environment modules allow the libraries built with the matching
compilers to be linked to

● NERSC staff also supports many libraries
○ Modules from /usr/common/software/modulefiles, etc.

○ Some of them interact with the Cray compiler wrappers while many of them do not
19

Available Libraries

20

Available libraries (cont.)

● Where are the libraries and header files ?

○ Use “module show <module name>” to see the installation paths

○ Run “ls –l <installation_path>/include” and “ls –l
<installation_path>/lib” to see the library files

○ e.g., Cray MPICH library:
zz217@cori06:~> module show cray-mpich

/opt/cray/pe/modulefiles/cray-mpich/7.7.10:
…
setenv CRAY_MPICH_DIR /opt/cray/pe/mpt/7.7.10/gni/mpich-intel/16.0
setenv MPICH_DIR /opt/cray/pe/mpt/7.7.10/gni/mpich-intel/16.0
...

zz217@cori06:~> ls -l $CRAY_MPICH_DIR
total 0
drwxr-xr-x 2 root root 628 Nov 14 2019 include
drwxr-xr-x 3 root root 1239 Nov 14 2019 lib

Available Libraries (Cont.)

21

Examples of linking to the Cray provided libraries

● Linking to the Cray MPI and Cray Scientific libraries are automatic by
default if compiler wrappers are used

● Linking to HDF5 and NETCDF libraries are automatic, user just need to
load the cray-hdf5 or cray-netcdf modules

● Note the library name could be different. Using the -v option to see
the library names and other detail about the linking

21

CC parallel_hello.cpp #or ftn dgemmx1.f90

module load cray-hdf5

cc h5write.c

Example: Linking to Cray Provided Libraries

22

Examples of linking to the Cray provided libraries

● Linking to PETSc libraries are automatic, but users need to choose a
proper module (e.g., real/complex, 32 or 64 bit integer builds)

○ E.g., “module load cray-petsc-complex-64”

○ Use “cc –v test1.c” to see the linking detail (test1.c can be any skeleton C code)

● Linking to fftw libraries

○ module load cray-fftw

○ Loading the cray-fftw module links to the pthread version of the library,
“-lfftw3f_mpi -lfftw3f_threads -lfftw3f -lfftw3_mpi -lfftw3_threads -lfftw3”,

○ Use -qopenmp to link with the OpenMP version of FFTW

22

Example: Linking to Cray Provided Libraries

23

Examples of linking to the NERSC provided library modules

● Some of the NERSC provided modulefiles are written to interact with the
Cray compiler wrappers, e.g., elpa module on Cori

○ Type “module show <module name>” to check if the envs “<libname>_PKGCONFIG_LIBS”,
“PE_PKGCONFIG_PRODUCTS”, and “PKG_CONFIG_PATH” are defined in the modulefiles, which
compiler wrappers look for

● Most of the NERSC provided modulefiles do not interact with the
compiler wrappers, user need to provide the include and library paths
and libraries manually, e.g., GSL

23

module load elpa
#automatically link to elpa and MKL ScaLAPACK libraries
ftn –qopenmp –v test2.f90

module load gsl
ftn test3.f90 $GSL
#where GSL=-I/global/common/sw/cray/cnl7/haswell/gsl/2.5/intel/19.0.3.199/7twqxxq/include
-L/global/common/sw/cray/cnl7/haswell/gsl/2.5/intel/19.0.3.199/7twqxxq/lib -lgsl -lgslcblas

Linking to the NERSC Provided Libraries

24

Linking to Intel MKL library

● Resource:
○ Intel® Math Kernel Library Link Line Advisor,

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
○ Learn from Intel compiler verbose output using the

“-mkl={parallel,sequential,cluster}” flag

● For intel compiler, use -mkl flag
○ ftn test1.f90 –mkl # default to parallel, the multi-threaded MKL

 # the cray-libsci will be ignored if -mkl is used.

24

Linking to Intel MKL Library

25

Linking to Intel MKL library (cont.)

● For GNU compiler (e.g., to link to 32-bit integer build statically):
○ Save the $MKLROOT from the Intel compiler module, and then

○ Threaded: “-L$MKLROOT/lib/intel64 –Wl,--start-group -lmkl_gf_lp64
-lmkl_gnu_thread -lmkl_core -lgomp -Wl,--end-group –lpthread
–lm –ldl”

○ ScaLAPACK: “-L$MKLROOT/lib/intel64 -Wl,--start-group
-lmkl_gf_lp64 -lmkl_gnu_thread -lmkl_scalapack_lp64
-lmkl_blacs_intelmpi_lp64 -lmkl_core -Wl,--end-group -lgomp
–lpthread –lm –ldl”

25

Note, “-Wl,--start-group” … “-Wl,--end-group ” for static linking

Linking to Intel MKL Library (Cont.)

26

Linking to Intel MPI library: use native Intel compilers

● Cray MPICH libraries are recommended for performance especially at
scale

● Compiler wrappers link to Cray MPICH libraries by default

● However, if you need to link to Intel MPI library, do

○ Note that the binaries linked to the Intel MPI need to run with srun instead of mpirun
to get a proper process/thread affinity, https://docs.nersc.gov/jobs/examples/#intel-mpi

26

module load impi
mpiifort test1.f90 #or mpiicpc test1.C

Linking to Intel MPI library

Spack - A Package Manager

28

Spack module on Cori

● Simple package installations
○ Spack installs the latest version of a package and its dependencies by default.

● Custom versions and configurations
○ Spack allows installation to be customized using a simple spec syntax to specify the version,

build compiler, compile-time options, cross-compile platform, and dependencies, etc.

● Non-destructive installs
○ Uses hash from package/dependency configuration in the installation prefix

● Peaceful coexistence of packages
○ Uses RPATH to link dependencies; no need to manipulate LD_LIBRARY_PATH at runtime

● Easy package creation
○ package files are written in pure Python; one file for different builds

Spack - A Package Manager

29

Spack module on Cori

● NERSC provides Spack modules for users
○ Allows access to NERSC’s recommended, up-to-date configuration files
○ Configured to make use of the NERSC staff installed software, so no need to build

each dependent package by themselves redundantly, saving compilation time and
storage space

● To access, module load spack #currently spack 0.14.2 is made available

○ Create a directory (at the first time invocation only), $HOME/sw, and a few
subdirectories under it on your account to build and install software on. E.g,
software will be installed on your $HOME/sw/opt/spack directory, and the Spack
generated modulefiles will be available at the
$HOME/sw/share/spack/modules directory. You can create your own package
files under the directory $HOME/sw/var/spack/repos/$USER/packages.

● Users can overwrite these global setting with config files at ~/.spack

Spack Modules on Cori

30

how to use the module

module load spack
spack list # to see Spack supported packages
spack find -p # to see the software installed by Spack

cd ~/sw/build
spack install <package name> #to install a package

e.g.,
spack install wannier90@2.1.0 %intel@19.0.3.199 ^intel-mkl@19.0.3.199
spack install autoconf@2.69%intel@19.0.3.199 arch=cray-sles15-x86_64
spack install cp2k %intel blas=mkl +mpi ^intel-mkl
arch=cray-cnl7-haswell

Building Software with Spack Modules

31

train467@cori09:~/sw/build> spack install xerces-c
[+] /global/common/sw/cray/cnl7/haswell/libiconv/1.16/intel/19.0.3.199/vr7hfhz
[+] /global/common/sw/cray/cnl7/haswell/libiconv/1.16/intel/19.0.3.199/vr7hfhz
==> 41416: Installing xerces-c
==> Fetching https://archive.apache.org/dist/xerces/c/3/sources/xerces-c-3.2.2.tar.bz2
###
################################### 100.0%
==> Staging archive:
/global/cscratch1/sd/train467/sw/spackbuild/spack-stage-xerces-c-3.2.2-ggdbuk52jm72rebq67s3ro2vxzaeozg4/xerce
s-c-3.2.2.tar.bz2
==> Created stage in
/global/cscratch1/sd/train467/sw/spackbuild/spack-stage-xerces-c-3.2.2-ggdbuk52jm72rebq67s3ro2vxzaeozg4
==> No patches needed for xerces-c
==> 41416: xerces-c: Building xerces-c [AutotoolsPackage]
==> 41416: xerces-c: Executing phase: 'autoreconf'
==> 41416: xerces-c: Executing phase: 'configure'
==> 41416: xerces-c: Executing phase: 'build'
==> 41416: xerces-c: Executing phase: 'install'
==> 41416: xerces-c: Successfully installed xerces-c
 Fetch: 2.30s. Build: 2m 34.05s. Total: 2m 36.35s.
[+] /global/homes/t/train467/sw/opt/spack/cray-cnl7-haswell/intel-19.0.3.199/xerces-c-3.2.2-ggdbuk5

Building Software with Spack Modules (Cont.)

32

Using spack to build software by yourself

● Open an issue at https://github.com/spack/spack/issues

● Copy the failed package.py to your local repo to modify:
cp -pr $SPACK_ROOT/var/spack/repos/builtin/packages/<package name>
$HOME/sw/var/spack/repos/$USER/packages
spack edit <package name>
cd $HOME/sw/build
spack install <package name> ...

train467@cori02:~/sw/build> spack config get repos
repos:
- $HOME/sw/var/spack/repos/$USER
- /global/common/sw/spack/0.14.2/var/spack/repos/nersc
- /global/common/sw/spack/0.14.2d/var/spack/repos/builtin

If “spack install” fails

Modify package.py files here

NERSC modified
pakcage.py files are here

Summary

34

Summary

● Three supported programming environments: Intel, GNU, and Cray

● Use compiler wrappers where possible,
○ Add architecture specific optimization flags
○ Automatically add the header and library paths in to the compile/link lines, and

link to the Cray MPI, LibSci and other Cray provided libraries if the modules are
loaded

● To compile for Cori KNL, do
○ module swap craype-haswell craype-mic-knl

Summary

35

Summary (cont.)

● There are many libraries available, use them where possible
○ Use “module avail” command to check available libraries
○ Use “module show <module name>” to see the installation paths if needed

● Most NERSC staff supported modules do not interact with the
compiler wrappers
○ Users need to provide the header and library paths and libraries manually

● On Cori, applications are linked dynamically by default
○ Use of rpath is recommended

○ Use /global/common/software/<project name> directory to store your
shared libraries and python modules as well as the dynamically linked applications

Summary (Cont.)

36

Summary (cont.)

● To link applications statically, use the “-static” compiler wrapper
option or set the env “CRAYPE_LINK_TYPE=static” before
compiling
○ Static linking is recommended for large scale applications

● Learn from the compiler verbose output (-v)

● Spack is recommended to build your software

Summary (Cont.)

37

Recommended readings

● NERSC website, especially,
○ Programming page at http://docs.nersc.gov,
○ https://docs.nersc.gov/programming/performance-debugging-tools/build-tools/#spack

● Compiler and linker man pages:
○ ifort, icc, icpc, crayftn, etc.
○ man ld (“-Wl,-zmuldefs”, “-Wl,-y<symbol>”)

● Spack
○ https://spack.readthedocs.io/en/latest/basic_usage.html#
○ https://docs.nersc.gov/development/build-tools/spack/

37

Recommended Readings

38

Thank You and
Welcome to

NERSC!

