Migrating From Corl
to Perimutter:

December1 2022 Coi o iy
Aol GSMESSCh
e S

Muaaz Awan, Stephen Leak, Helen He

Outline

e GPU Nodes.

e Programming Environment.

e Hands on Exercises walk through:
o Launching Jobs

Building for GPUs

GPU Affinity

CUDA-Aware MPI

Other GPU Programing Models

O O O O

%] BERKELEY LAB
Bringing Science Solutions to the World

GPU Nodes

e Perlmutter has 1536 GPU Nodes and
3072 CPU nodes.

e Each GPU node has a 64 core AMD
Milan CPU (7763) and 4 NVIDIAA100

GPUs.

e Each CPU node has two 64 core AMD
Milan CPUs.

e Each Milan CPU core has two hardware
threads.

DOR 4
DOR 4

PCle-G4

w— PCle-G4
» Nvlink-3

2R, U.S. DEPARTMENT OF Ofﬁce of

{ @) ENERGY science

&l BERKELEY LAB

Bringing Science Solutions to the World

GPU Nodes

* A100 GPUs on Perimutter have 40 GBs of HBM each.
- Each A100 GPU can perform 9.7 TFlops (FP64).

« Each pair of GPUs have NVLink connections.

« CPUs and GPUs communicate with PCle Gen 4.

EEEEEEEEEEEE Ofﬁce of

NE 4 @il BERKELEY LAB ENERGY sciones

Bringing Science Solutions to the World

Programming Environment

*sc ~f| BERKELEY LAB ENERGY | S

p——

GPU Programming Environment

« By default module gpu is loaded in your environment.
* This sets up the environment for applications being built for GPUs.

« By default cudatoolkit and craype-accel-nvidia80 along with other
GPU accelerated math libraries are loaded.

* Do note that default programming environment has GNU compilers. If
NVIDIA compilers are required, switch to PrgEnv-nvidia.

NERSC 5) BERKELEY LAB
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

GPU Programming Environment

mgawan@perimutter:login37:~>

Currently Loaded Modules:
1) craype-x86-milan 4) perftools-base/22.06.0 7) craype/2.7.16 10) cray-libsci/21.08.1.2 13) darshan/3.4.0 16)
2) libfabric/1.15.0.0 5) xpmem/2.4.4-2.3_13.8 _ ¢ff0e1d9.shasta 8) cray-dsmml/0.2.2 11) 14) Nsight-Compute/2022.1.1 17)

3) craype-network-ofi 6) gcc/11.2.0 9) cray-mpich/8.1.17 12) xalt/2.10.2 15) Nsight-Systems/2022.2.1 18) gpu/1.0

. U.S. DEPARTMENT OF Office of

ziil BERKELEY LAB \ 'ENERGY science

Bringing Science Solutions to the World

GPU Programming Environment

mgawan@perimutter:login37:~>

Currently Loaded Modules:

1) craype-x86-milan 4) perftools-base/22.06.0 7) craype/2.7.16 10) cray-libsci/21.08 1.2_13) darshan/3.4.0 16) cudatoolkit/11.7

2) libfabric/1.15.0.0 5) xpmem/2.4.4-2.3_13.8__¢ff0e1d9.shasta 8) cray-dsmml/0.2.2 |11) PrgEnv-gnu/8.3.3 14) Nsight-Compute/2022.1.1 17)
craype-accel-nvidia80

3) craype-network-ofi 6) gcc/11.2.0 9) cray-mpich/8.1.17 12) xalt/2.10.2 15) Nsight-Systems/2022.2.1 18) gpu/1.0

awan@perimutter:login37:~>
. (GCC) 11.2.0 20210728 (Cray Inc.)
opyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
arranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

mgawan@perimutter:login37:~>
(GCC) 11.2.0 20210728 (Cray Inc.)
opyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
arranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

. U.S. DEPARTMENT OF Office of

ziil BERKELEY LAB &) ENERGY science

Bringing Science Solutions to the World

GPU Programming Environment

mgawan@perimutter:login37:~>

Lmod is automatically replacing "gcc/11.2.0" with "nvidia/22.5".
Lmod is automatically replacing "PrgEnv-gnu/8.3.3" with "PrgEnv-nvidia/8.3.3".
Due to MODULEPATH changes, the following have been reloaded:

1) cray-mpich/8.1.17

mgawan@perimutter:login37:~>
22.5-0 64-bit target on x86-64 Linux -tp zen3-64

A Compilers and Tools
Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

mgawan@perimutter:login37:~>

22.5-0 64-bit target on x86-64 Linux -tp zen3-64
DIA Compilers and Tools
Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

%l BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Office of

y EN ERGY Science

Recommended Environment

Programming Environment Programming Model
PrgEnv-nvidia/PrgEnv-gnu CUDA
PrgEnv-nvidia/PrgEnv-gnu Kokkos
PrgEnv-nvidia/PrgEnv-cray OpenMP offload
PrgEnv-nvidia OpenACC
PrgEnv-nvidia stdpar

Office of
Science

il BERKELEY LAB

e Solutions to the World

Compiling

* *.c, *.cpp, *.f90 => CPU source code
o may include MPI
o may use directives for GPU
o compile with regular compilers (Cray wrappers)
« CC for C++
« ccforC
* ftn for Fortran

« *.cu => CUDA kernels
o compile with nvcc

* (Note: With PrgEnv-nvidia, CUDA can be incorporated into same
source files as CPU code, add "-cuda" or "-gpu" flag at compile time)

NERSC ” 2l BERKELEY LAB

Office of

fwmﬁ’t U.S. DEPARTMENT OF
& ENERGY science

Hands on Exercises

s*’sc ~f| BERKELEY LAB ENERGY | S

p——

Hands on Exercises

- EXxercises along with instructions are available at:
https://qgithub.com/NERSC/Migrate-to-Perimutter

* For GPU examples, move to the GPU folder.

- The README.md file details seven exercises and list
steps to build and run them.

It is suggested to go through these examples during the
hands-on session to understand usage of different
programming environments.

Office of

S, j‘f\‘-‘ U.S. DEPARTMENT OF
2ol BERKELEY LAB @@ ENERGY scionco
Bringing Science Solutions to the World -

https://github.com/NERSC/Migrate-to-Perlmutter

Hands on Exercises

What's covered:

 Building and running CUDA, OpenACC and OpenMP
codes for GPUs.

 Building and running GPU + MPI codes using NVIDIA and
GNU programming environment.

 Building and running a CUDA-Aware MPI| example.

» Understanding GPU affinity with an example.

Office of

eeeeee

Hands on Exercises

* For all the examples, build steps are provided in a
Makefile within each exercise’s directory.

« Each exercise’s directory also contains a batch.sh file
which the users can use to run.

e“‘\«‘ EEEEEEEEEEEEEE Offlce Of

i ENERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Necessary SBATCH options (1)

#!/bin/bash

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

-q regular # "regular" QOS for most jobs

-N 2 # number of Nodes requested

-t 5 # max wallclock time (5 minutes)
-n 8 # number of MPI tasks

-c 32 # reserve 32 cpus per task

--ntask =4 # 8 tasks / 4 per node = 2 nodes

Each GPU node has 64 cores x 2 task

hyperthreads, so 128 CPUs => 32 project/repo
cpus is 1/4th of a node

-A ntrain?2

-C gpu

—-reservation=pm gpu decl +# reservation

U.S. DEPARTMENT OF Offlce of

i ENERGY Science

22| BERKELEY LAB

Bringing Science Solutions to the World

16

Necessary SBA

#!/bin/bash

#SBATCH -gq regular

#SBATCH -N 2

#SBATCH -t 5

#SBATCH -n 8

#SBATCH -c 32

#SBATCH --ntasks-per-node=4

#SBATCH --gpus-per-task=1l
#SBATCH -A ntrain2

CH options (2)

regular QOS
number of Nodes requested
max wallclock time (5 minutes)
number of MPI tasks

reserve 32 cpus per task

2 nodes

GPUs per task

8 tasks / 4 per node

reserve 1 (of four)

i Specify a constraint of "run only on PO

#SBATCH -C gpu

Ne R

~——___________________j\gpunodes"

#SBATCH -reservation=pm gpu decl

t reservdUtIOIl

22| BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Offlce of

a» ENERGY Science

17

Useful Runtime Environment Variables

* Generates runtime debug info such as kernel launch and data
transfers between host and device.
* PrgEnv-gnu (upcoming gcc/12 compiler)
o % export GOMP_DEBUG=1
* PrgEnv-nvidia (Nvidia compiler)
o % export NVCOMPILER_ACC_NOTIFY=<value>
o where value can be: 1: kernel launches 2: data transfers
o 4:region entry/exit 8: wait operations or synchronizations with the device
o 16: device memory allocates and deallocates
* PrgEnv-cray (CCE compiler)

o % export CRAY _ACC_DEBUG=<value>
where value can be 1, 2, 3

Office of
Science

NER 18 @il BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnn to the World

Exercise-1: Simple CUDA Kernel

* The source file contains a simple CUDA kernel that adds
two vectors and stores the sum in third.
* nvcc by default identifies .cu files as containing CUDA.

O nvcc —arch=sm_80 vecAdd.cu -o vec_add

o CC -cuda vecAdd.cpp -o vec_add

- But this practice may not work for larger projects where
rest of the code relies on a different compiler.

P> ‘\« oooooooooooooo Office of

i 2 g ENERGY Science

19 %] BERKELEY LAB
Bringing Science Solutions to the World

Exercise-2: CUDA separate compilation

* For complex projects where the host compiler does not

recognize CUDA.
« Compile CUDA code separately (in separate files) and

link to it later.

NVCCFLAGS = -arch=sm 80

vec add: kernels.o kernels.h vecAdd.cpp

CC -o $@ vecAdd.cpp kernels.o

kernels.o: kernels.cu kernels.h

nvce $ (NVCCFLAGS) -c¢ kernels.cu -o $Q@

Office of

gy‘“"‘e-,‘; U.S. DEPARTMENT OF
@ ENERGY scicnoe

NERSC 20 2l BERKELEY LAB

Exercise-3: simple MPI + CUDA

» A simple example of MPI + CUDA in same source file is
best built with “PrgEnv-nvidia”.

- The CC wrappers link with the MPI specifically built for
“PrgEnv-nvidia”.

* When using “PrgEnv-nvidia” wrappers, —gpu flags need to
be mentioned:

NVCCFLAGS = -arch=sm 80

NVCFLAGS = -cuda —-gpu=cc80
vec add: vecAdd.cu

CC $ (NVCFLAGS) vecAdd.cu -o S$S@

NERSC 21 2l BERKELEY LAB

Office of

gy"“"‘c.,‘; U.S. DEPARTMENT OF
&y EN ERGY Science

Exercise-4: separate compilation (MP| + CUDA)

* When using a programming environment other than
“PrgEnv-nvidia”, device code needs to be built separately.

- Load the programming environment of your choice, build the
CUDA code separately and then link it with MPI wrappers.

 In such a scenario “cudart” library needs to be linked in as
well

NVCCFLAGS = -arch=sm 80

NVCFLAGS = —-gpu=cc80

vec add: kernels.o kernels.h vecAdd.cpp

CC -o $@ vecAdd.cpp kernels.o
kernels.o: kernels.cu kernels.h

nvce $ (NVCCFLAGS) -c kernels.cu -o S@

NERSC 29 2l BERKELEY LAB

Office of

gy"“"‘c.,‘; U.S. DEPARTMENT OF
&y EN ERGY Science

Compute Nodes Comparison for CPU Affinity
. i Perilmutter CPU on
Cori Haswell Cori KNL CPU Perlmutter GPU
Physical cores 32 68 128 64
Logicall CPUs per 5 4 5 5
physical core
Logical CPUs per node 64 272 256 128
NUMA domains 2 1 8 4
floor(272/tpn),
-c value for srun floor(64/tpn) usually do floor(256/tpn) floor(128/tpn)
floor(256/tpn)

ton = Number of MPI tasks per node

e ‘\«‘ EEEEEEEEEEEEEE Offlce Of

i ENERGY Science

NER 23 e BERKELEY LAB

s to the World

Launch options and affinity (GPUs)

#!/bin/bash
#SBATCH --account=mxxx
#SBATCH --gos=regular

#SBATCH --nodes=2

#SBATCH --time=60 c = 2*(64/k)
#SBATCH --constraint=gpu

#SBATCH --jobname=myjob where:

#SBATCH --ntasks-per-node=64 k = ntasks-per-node

#SBATCH --cpus-per-task=2
#SBATCH --gpus-per-node=4

export OMP NUM THREADS=1
srun -n 128 —cpu-bind=cores -gpus-bind=closest <executable>

By default all processes will have access to all GPUs.

A round robin assignment does not guarantee affinity.

To guarantee that closest GPU is assigned: -gpus-bind=closest
To bind ranks to individual cores: -cpu-bind=cores

22| BERKELEY LAB

Bringing Science Solutions to the World

R U.S. DEPARTMENT OF Offlce of

EN ERGY Science

Affinity and binding

Perlmutter GPU nodes are configured as "NPS4" =>4 NUMA
nodes per socket. Each GPU is "closest" to certain cores

NVLink
E I < l > I o l Socket 0
\
‘ Nvidia A100 Nvidia A100 Nvidia A100 Nvidia A100 ‘ NUMA #0 NUMA #1
! XL ! L L A Core 0/64 Core 16/30
DDR DDR Core 1/65 Core 17/31
Ei—i.-i._[i Fl—;'———t-ﬂ DRAM Core 2/66 Core 18/32 DRAM
LULLLE L TR e
Core 14/78 Core 30/94
1 Core 15/79 Core 31/95
1
CCD | |CCD : CCD | |CCD NUMA}#2 NUMA#3
PCle ' PCle [Core32/96 | 1
.......... r - - Core 33/97 core 49,11 3
1 Core 34/98 Core 50/114 DRAM
1
DRAM —
CCD| |[CCD| + [CCD| |CCD
/,—\ '
e N Core 46/110 Core 62/126
Zend | B = Zen3 Core 47/111 Core 63/127
|' Zens |2 G [zens \
\ Zen3 |@ 5[Zen3d)
] Zon3 5 i | Zon3 £ZERD, U-S. DEPARTMENT OF Office of
N'ERN # (ELEY LAB Y ENERGY science
o o ence Solutions to the World

Exercise-5: Rank to GPU binding

« This example prints out the cores each MPI rank is residing on
along with the GPUs that are visible to each rank.

- By default all the MPI ranks will be able to view all the GPUs.

- Build and test the example by first running with script reg.sh
sbatch script.

» Then test with script_close.sh sbatch script.

* Notice that using the latter sbatch script each MPI rank can view
only the GPU located closest to the corresponding NUMA node.

* The only difference was usage of --gpu-bind=closest flag. You can
explore other ways this binding can be done, refer to:
https://slurm.schedmd.com/srun.html

Office of

s“"'&%"‘., U.S. DEPARTMENT OF
& ENERGY science

%] BERKELEY LAB
Bringing Science Solutions to the World

Launch options and affinity (GPUs)
srun -n8 --cpu-bind=cores ./vec_add

Rank 1/8 (PID:73658 on Core: 16) from nid003497 sees 4 GPUs, GPU assigned to me is:
Other 3 GPUs are:

**rank = 0: 0000:03:00.0 **

rank 2: 0000:81:00.0 =

**rank = 3: 0000:C1:00.0 **

Rank 5/8 (PID:73662 on Core: 17) from nid003497 sees 4 GPUs, GPU assigned to me is:
Other 3 GPUs are:

**rank = 0: 0000:03:00.0 **

rank 2: 0000:81:00.0 =

**rank = 3: 0000:C1:00.0 **

Rank 0/8 (PID:73657 on Core: 0) from nid003497 sees 4 GPUs, GPU assigned to me is: = 0000:03:00.0
Other 3 GPUs are:

**rank = 1: 0000:41:00.0 **

**rank = 2: 0000:81:00.0 **

**rank = 3: 0000:C1:00.0 **

Rank 2/8 (PID:73659 on Core: 32) from nid003497 sees 4 GPUs, GPU assigned to me is: = 0000:81:00.0
Other 3 GPUs are:

**rank = 0: 0000:03:00.0 **

**rank 1: 0000:41:00.0 *~*

**rank = 3: 0000:C1:00.0 **

0000:41:00.0

0000:41:00.0

U.S. DEPARTMENT OF Ofﬂce Of

BERKELEY LAB ENERGY | science

Bringing Science Solutions to the World

.

Launch options and affinity (GPUs)

NUMA node (s) : 4

NUMA nodeO CPU(s) : 0-15,64-79

NUMA nodel CPU(s) : 16-31,80-95
1

NUMA node3 CPU(s) : 48-63,112-127
NUMANode L#0 (P#0 62GB)

PCI ¢1:00.0 (3D)
NUMANode L#1 (P#1 63GB)

PCI 82:00.0 (3D)

NUMANode L#3 (P#3 63GB)
PCI 03:00.0 (3D)

Rank 1/8 (PID:102481 on Core: 1) from nid001364 sees 1 GPUs,

Other 0 GPUs are:

Rank 0/8 (PID:102480 on Core: 0) from nid001364 sees 1 GPUs,

Other 0 GPUs are:

GPU assigned to me is:

GPU assigned to me is:

0000

0000

:C1:00.0

:C1:00.0

—.o

Rank 2/8 (PID:102482 on Core: 16) from nid001364 sees 1 GPUs,

Other 0 GPUs are:

GPU assigned to me is: = 0000:82:00.0

—.o

28

] BERKELEY LAB @

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Offlce of

ENERGY Science

CUDA-aware MPI

NV|d|a UVA presents GPU deVICe No UVA: Multiple Memory Spaces UVA: Single Address Space
memory as part of the same address ke e e
) oD --

space as CPU main memory

* Allows a CUDA-aware MPI |
|m plementat|0n (eg Cray-M P I CH) (from https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/)

to send and receive messages)

directly from/to GPU memory - =

no copy-to-main-memory needed s 2
/

Office of

a 7‘ ENERGY Science

NER 29 e BERKELEY LAB

e Solutions to the World

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/

Example-6: CUDA-aware MPI

Make sure gpu module is loaded before trying this example
as CUDA-aware MPI requires certain environment setup.

If your executable uses CUDA-aware MPI, 1dd should show
libmpi gtl cuda.so.0, eg:

libmpi gtl cuda.so.0 =>
/opt/cray/pe/l1ib64/libmpi gtl cuda.so.0

&l BERKELEY LAB @
Bringing Science Solutions to the World

Exercise-7: OpenACC and OpenMP offload

* This example demonstrates building OpenACC and OpenMP

offload codes.

* The example implements the same kernel from previous
examples but this time using different programming models.

- Make sure that you have PrgEnv-nvidia loaded before trying out

the example.

ifeq ($(OPENMP),y)

CXXFLAGS += -mp=gpu -gpu=cc80 -Minfo

EXE = vec add.openmp

else ifeqg ($ (OPENACC),y)
CXXFLAGS += —-acc -Minfo=accel

EXE = vec_ add.openacc

Office of

fo“'m'*ﬁ,‘; U.S. DEPARTMENT OF
&P EN ERGY Science

NEeF 31 %] BERKELEY LAB
Bringing Science Solutions to the World

