
1

Migrating From Cori
to Perlmutter:
GPU Codes

December 1, 2022 Muaaz Awan, Stephen Leak, Helen He

2

Outline

● GPU Nodes.
● Programming Environment.
● Hands on Exercises walk through:

○ Launching Jobs
○ Building for GPUs
○ GPU Affinity
○ CUDA-Aware MPI
○ Other GPU Programing Models

3

GPU Nodes
● Perlmutter has 1536 GPU Nodes and

3072 CPU nodes.
● Each GPU node has a 64 core AMD

Milan CPU (7763) and 4 NVIDIA A100
GPUs.

● Each CPU node has two 64 core AMD
Milan CPUs.

● Each Milan CPU core has two hardware
threads.

4

GPU Nodes

• A100 GPUs on Perlmutter have 40 GBs of HBM each.
• Each A100 GPU can perform 9.7 TFlops (FP64).
• Each pair of GPUs have NVLink connections.
• CPUs and GPUs communicate with PCIe Gen 4.

Programming Environment

6

GPU Programming Environment
• By default module gpu is loaded in your environment.

• This sets up the environment for applications being built for GPUs.

• By default cudatoolkit and craype-accel-nvidia80 along with other
GPU accelerated math libraries are loaded.

• Do note that default programming environment has GNU compilers. If
NVIDIA compilers are required, switch to PrgEnv-nvidia.

7

GPU Programming Environment
mgawan@perlmutter:login37:~> ml

Currently Loaded Modules:
 1) craype-x86-milan 4) perftools-base/22.06.0 7) craype/2.7.16 10) cray-libsci/21.08.1.2 13) darshan/3.4.0 16) cudatoolkit/11.7
 2) libfabric/1.15.0.0 5) xpmem/2.4.4-2.3_13.8__gff0e1d9.shasta 8) cray-dsmml/0.2.2 11) PrgEnv-gnu/8.3.3 14) Nsight-Compute/2022.1.1 17)
craype-accel-nvidia80
 3) craype-network-ofi 6) gcc/11.2.0 9) cray-mpich/8.1.17 12) xalt/2.10.2 15) Nsight-Systems/2022.2.1 18) gpu/1.0

8

GPU Programming Environment
mgawan@perlmutter:login37:~> ml

Currently Loaded Modules:
 1) craype-x86-milan 4) perftools-base/22.06.0 7) craype/2.7.16 10) cray-libsci/21.08.1.2 13) darshan/3.4.0 16) cudatoolkit/11.7
 2) libfabric/1.15.0.0 5) xpmem/2.4.4-2.3_13.8__gff0e1d9.shasta 8) cray-dsmml/0.2.2 11) PrgEnv-gnu/8.3.3 14) Nsight-Compute/2022.1.1 17)
craype-accel-nvidia80
 3) craype-network-ofi 6) gcc/11.2.0 9) cray-mpich/8.1.17 12) xalt/2.10.2 15) Nsight-Systems/2022.2.1 18) gpu/1.0

mgawan@perlmutter:login37:~> CC --version
g++ (GCC) 11.2.0 20210728 (Cray Inc.)
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

mgawan@perlmutter:login37:~> cc --version
gcc (GCC) 11.2.0 20210728 (Cray Inc.)
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9

GPU Programming Environment
mgawan@perlmutter:login37:~> module load PrgEnv-nvidia

Lmod is automatically replacing "gcc/11.2.0" with "nvidia/22.5".
Lmod is automatically replacing "PrgEnv-gnu/8.3.3" with "PrgEnv-nvidia/8.3.3".
Due to MODULEPATH changes, the following have been reloaded:
 1) cray-mpich/8.1.17

mgawan@perlmutter:login37:~> CC --version

nvc++ 22.5-0 64-bit target on x86-64 Linux -tp zen3-64
NVIDIA Compilers and Tools
Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

mgawan@perlmutter:login37:~> cc --version

nvc 22.5-0 64-bit target on x86-64 Linux -tp zen3-64
NVIDIA Compilers and Tools
Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

10

Recommended Environment

Programming Environment Programming Model

PrgEnv-nvidia/PrgEnv-gnu CUDA

PrgEnv-nvidia/PrgEnv-gnu Kokkos

PrgEnv-nvidia/PrgEnv-cray OpenMP offload

PrgEnv-nvidia OpenACC

PrgEnv-nvidia stdpar

11

Compiling

• *.c, *.cpp, *.f90 => CPU source code
o may include MPI
o may use directives for GPU
o compile with regular compilers (Cray wrappers)

• CC for C++
• cc for C
• ftn for Fortran

• *.cu => CUDA kernels
o compile with nvcc

• (Note: With PrgEnv-nvidia, CUDA can be incorporated into same
source files as CPU code, add "-cuda" or "-gpu" flag at compile time)

Hands on Exercises

13

Hands on Exercises

• Exercises along with instructions are available at:
https://github.com/NERSC/Migrate-to-Perlmutter

• For GPU examples, move to the GPU folder.
• The README.md file details seven exercises and list

steps to build and run them.
• It is suggested to go through these examples during the

hands-on session to understand usage of different
programming environments.

https://github.com/NERSC/Migrate-to-Perlmutter

14

Hands on Exercises

What’s covered:
• Building and running CUDA, OpenACC and OpenMP

codes for GPUs.
• Building and running GPU + MPI codes using NVIDIA and

GNU programming environment.
• Building and running a CUDA-Aware MPI example.
• Understanding GPU affinity with an example.

15

Hands on Exercises

• For all the examples, build steps are provided in a
Makefile within each exercise’s directory.

• Each exercise’s directory also contains a batch.sh file
which the users can use to run.

16

Necessary SBATCH options (1)
#!/bin/bash

#SBATCH -q regular # "regular" QOS for most jobs

#SBATCH -N 2 # number of Nodes requested

#SBATCH -t 5 # max wallclock time (5 minutes)

#SBATCH -n 8 # number of MPI tasks

#SBATCH -c 32 # reserve 32 cpus per task

#SBATCH --ntasks-per-node=4 # 8 tasks / 4 per node = 2 nodes

#SBATCH --gpus-per-task=1 # reserve 1 GPU per task

#SBATCH -A ntrain2 # GPU version of your project/repo

#SBATCH -C gpu # use GPU nodes

#SBATCH –reservation=pm_gpu_dec1 # reservation

Each GPU node has 64 cores x 2
hyperthreads, so 128 CPUs => 32
cpus is 1/4th of a node

17

Necessary SBATCH options (2)

#!/bin/bash

#SBATCH -q regular # regular QOS

#SBATCH -N 2 # number of Nodes requested

#SBATCH -t 5 # max wallclock time (5 minutes)

#SBATCH -n 8 # number of MPI tasks

#SBATCH -c 32 # reserve 32 cpus per task

#SBATCH --ntasks-per-node=4 # 8 tasks / 4 per node = 2 nodes

#SBATCH --gpus-per-task=1 # reserve 1 (of four) GPUs per task

#SBATCH -A ntrain2 # GPU version of your project/repo

#SBATCH -C gpu # use GPU nodes

#SBATCH –reservation=pm_gpu_dec1 # reservation

Specify a constraint of "run only on
gpu nodes"

18

Useful Runtime Environment Variables

• Generates runtime debug info such as kernel launch and data
transfers between host and device.

• PrgEnv-gnu (upcoming gcc/12 compiler)
o % export GOMP_DEBUG=1

• PrgEnv-nvidia (Nvidia compiler)
o % export NVCOMPILER_ACC_NOTIFY=<value>
o where value can be: 1: kernel launches 2: data transfers
o 4: region entry/exit 8: wait operations or synchronizations with the device
o 16: device memory allocates and deallocates

• PrgEnv-cray (CCE compiler)
o % export CRAY_ACC_DEBUG=<value>

where value can be 1, 2, 3

19

Exercise-1: Simple CUDA Kernel

• The source file contains a simple CUDA kernel that adds
two vectors and stores the sum in third.

• nvcc by default identifies .cu files as containing CUDA.
o nvcc -arch=sm_80 vecAdd.cu -o vec_add

o CC -cuda vecAdd.cpp -o vec_add

• But this practice may not work for larger projects where
rest of the code relies on a different compiler.

20

Exercise-2: CUDA separate compilation

• For complex projects where the host compiler does not
recognize CUDA.

• Compile CUDA code separately (in separate files) and
link to it later.

NVCCFLAGS = -arch=sm_80

vec_add: kernels.o kernels.h vecAdd.cpp

 CC -o $@ vecAdd.cpp kernels.o

kernels.o: kernels.cu kernels.h

 nvcc $(NVCCFLAGS) -c kernels.cu -o $@

21

Exercise-3: simple MPI + CUDA

• A simple example of MPI + CUDA in same source file is
best built with “PrgEnv-nvidia”.

• The CC wrappers link with the MPI specifically built for
“PrgEnv-nvidia”.

• When using “PrgEnv-nvidia” wrappers, –gpu flags need to
be mentioned:

NVCCFLAGS = -arch=sm_80

NVCFLAGS = -cuda -gpu=cc80

vec_add: vecAdd.cu

 CC $(NVCFLAGS) vecAdd.cu -o $@

22

Exercise-4: separate compilation (MPI + CUDA)
• When using a programming environment other than

“PrgEnv-nvidia”, device code needs to be built separately.
• Load the programming environment of your choice, build the

CUDA code separately and then link it with MPI wrappers.
• In such a scenario “cudart” library needs to be linked in as

well
NVCCFLAGS = -arch=sm_80

NVCFLAGS = -gpu=cc80

vec_add: kernels.o kernels.h vecAdd.cpp

 CC -o $@ vecAdd.cpp kernels.o

kernels.o: kernels.cu kernels.h

 nvcc $(NVCCFLAGS) -c kernels.cu -o $@

23

Compute Nodes Comparison for CPU Affinity
Cori Haswell Cori KNL Perlmutter

CPU
CPU on

Perlmutter GPU

Physical cores 32 68 128 64

Logical CPUs per
physical core 2 4 2 2

Logical CPUs per node 64 272 256 128

NUMA domains 2 1 8 4

-c value for srun floor(64/tpn)
floor(272/tpn),

usually do
floor(256/tpn)

floor(256/tpn) floor(128/tpn)

tpn = Number of MPI tasks per node

24

Launch options and affinity (GPUs)
#!/bin/bash
#SBATCH --account=mxxx
#SBATCH --qos=regular
#SBATCH --nodes=2
#SBATCH --time=60
#SBATCH --constraint=gpu
#SBATCH --jobname=myjob
#SBATCH --ntasks-per-node=64
#SBATCH --cpus-per-task=2
#SBATCH --gpus-per-node=4

export OMP_NUM_THREADS=1
srun -n 128 –cpu-bind=cores –gpus-bind=closest <executable>

● By default all processes will have access to all GPUs.
● A round robin assignment does not guarantee affinity.
● To guarantee that closest GPU is assigned: -gpus-bind=closest
● To bind ranks to individual cores: -cpu-bind=cores

c = 2*(64/k)

where:
k = ntasks-per-node

25

Affinity and binding

Perlmutter GPU nodes are configured as "NPS4" => 4 NUMA
nodes per socket. Each GPU is "closest" to certain cores

26

Exercise-5: Rank to GPU binding
• This example prints out the cores each MPI rank is residing on

along with the GPUs that are visible to each rank.
• By default all the MPI ranks will be able to view all the GPUs.
• Build and test the example by first running with script_reg.sh

sbatch script.
• Then test with script_close.sh sbatch script.
• Notice that using the latter sbatch script each MPI rank can view

only the GPU located closest to the corresponding NUMA node.
• The only difference was usage of --gpu-bind=closest flag. You can

explore other ways this binding can be done, refer to:
https://slurm.schedmd.com/srun.html

27

Launch options and affinity (GPUs)
srun -n8 --cpu-bind=cores ./vec_add

Rank 1/8 (PID:73658 on Core: 16) from nid003497 sees 4 GPUs, GPU assigned to me is: = 0000:41:00.0
Other 3 GPUs are:
**rank = 0: 0000:03:00.0 **
**rank = 2: 0000:81:00.0 **
**rank = 3: 0000:C1:00.0 **
Rank 5/8 (PID:73662 on Core: 17) from nid003497 sees 4 GPUs, GPU assigned to me is: = 0000:41:00.0
Other 3 GPUs are:
**rank = 0: 0000:03:00.0 **
**rank = 2: 0000:81:00.0 **
**rank = 3: 0000:C1:00.0 **
Rank 0/8 (PID:73657 on Core: 0) from nid003497 sees 4 GPUs, GPU assigned to me is: = 0000:03:00.0
Other 3 GPUs are:
**rank = 1: 0000:41:00.0 **
**rank = 2: 0000:81:00.0 **
**rank = 3: 0000:C1:00.0 **
Rank 2/8 (PID:73659 on Core: 32) from nid003497 sees 4 GPUs, GPU assigned to me is: = 0000:81:00.0
Other 3 GPUs are:
**rank = 0: 0000:03:00.0 **
**rank = 1: 0000:41:00.0 **
**rank = 3: 0000:C1:00.0 **

28

Launch options and affinity (GPUs)
NUMA node(s): 4
NUMA node0 CPU(s): 0-15,64-79
NUMA node1 CPU(s): 16-31,80-95
NUMA node2 CPU(s): 32-47,96-111
NUMA node3 CPU(s): 48-63,112-127

 NUMANode L#0 (P#0 62GB)
 PCI c1:00.0 (3D)
 NUMANode L#1 (P#1 63GB)
 PCI 82:00.0 (3D)
 NUMANode L#2 (P#2 63GB)
 PCI 41:00.0 (3D)
 NUMANode L#3 (P#3 63GB)
 PCI 03:00.0 (3D)

Rank 1/8 (PID:102481 on Core: 1) from nid001364 sees 1 GPUs, GPU assigned to me is: = 0000:C1:00.0
Other 0 GPUs are:
Rank 0/8 (PID:102480 on Core: 0) from nid001364 sees 1 GPUs, GPU assigned to me is: = 0000:C1:00.0
Other 0 GPUs are:
Rank 5/8 (PID:102486 on Core: 33) from nid001364 sees 1 GPUs, GPU assigned to me is: = 0000:41:00.0
Other 0 GPUs are:
Rank 2/8 (PID:102482 on Core: 16) from nid001364 sees 1 GPUs, GPU assigned to me is: = 0000:82:00.0
Other 0 GPUs are:
Rank 4/8 (PID:102485 on Core: 32) from nid001364 sees 1 GPUs, GPU assigned to me is: = 0000:41:00.0
Other 0 GPUs are:

29

CUDA-aware MPI

Nvidia UVA presents GPU device
memory as part of the same address
space as CPU main memory
• Allows a CUDA-aware MPI

implementation (eg Cray-MPICH)
to send and receive messages
directly from/to GPU memory -
no copy-to-main-memory needed

(from https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/)

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/

30

Example-6: CUDA-aware MPI

Make sure gpu module is loaded before trying this example
as CUDA-aware MPI requires certain environment setup.

If your executable uses CUDA-aware MPI, ldd should show
libmpi_gtl_cuda.so.0, eg:

libmpi_gtl_cuda.so.0 =>
/opt/cray/pe/lib64/libmpi_gtl_cuda.so.0

31

Exercise-7: OpenACC and OpenMP offload
• This example demonstrates building OpenACC and OpenMP

offload codes.
• The example implements the same kernel from previous

examples but this time using different programming models.
• Make sure that you have PrgEnv-nvidia loaded before trying out

the example.
ifeq ($(OPENMP),y)

CXXFLAGS += -mp=gpu -gpu=cc80 -Minfo

EXE = vec_add.openmp

else ifeq ($(OPENACC),y)

CXXFLAGS += -acc -Minfo=accel

EXE = vec_add.openacc

32

Thank you!

More questions? Need help? ...
http://help.nersc.gov/

