Node Types

• Login nodes
 – Shared with other users
 – Code compilation, job preparation and submission

• MOM nodes (Cray machines)
 – Shared with other users
 – Where batch script executes
 – Will go away when we transition to SLURM

• Compute nodes
 – Not shared (except serial queues)
Login Node Configuration

• **Edison**
 – Twelve nodes
 • 16 cores, 2.0 GHz Intel Sandy Bridge, 512 GB

• **Hopper**
 – Eight nodes
 • 16 cores, 2.4 GHz AMD Opteron, 128GB
 – Four nodes
 • 32 cores, 2.0 GHz AMD Opteron, 128GB

• **Genepool**
 – Four nodes
 • 8 cores, 2.3 GHz Intel Sandy Bridge, 32 GB

• **PDSF**
 – Three nodes
 • 16 cores, 2.6 GHz Intel Sandy Bridge, 125 GB
Login Node Access

• Connect (via ssh) to load balancer
 \% ssh edison.nersc.gov
 \% ssh hopper.nersc.gov
 \% ssh genepool.nersc.gov
 \% ssh pdsf.nersc.gov

• Load balancer selects login node based on:
 – Number of connections
 – Memory of previous connections from same IP
Login Node Usage

• Login nodes are shared by many users, all the time
• Edit files, compile programs, submit batch jobs
• Some post-processing/data analysis
 – IDL, MATLAB, NCL, python, etc.
• Some file transfers
 – Use data transfer nodes for large/long-running transfers
• Please use discretion
 – All users get frustrated by sluggish interactive response
Login Node Guidelines

- Use *no more* than 50% of available cores
- Use *no more* than 25% of available memory
- Limit use of parallel “make”
 - `% make -j 4 all`
- NERSC will kill user processes if login nodes become unacceptably slow or unresponsive
- Terminate idle sessions of licensed software
 - IDL
 - MATLAB
 - Mathematica
Shell Initialization Files

• **Standard dot files are maintained by NERSC**
 – `.bashrc`, `.profile`, `.cshrc`, `.login`, etc.
 – Symbolic links to read-only files

• **Personal dot files**
 – Aliases, environment variables, modules, etc.
 – Use .ext suffix (“.ext files”) `.bashrc.ext`, etc.

• **Broken? Use “fixdots” to start over**
 – Creates $HOME/KeepDots.<timestamp>
 – Restores all dot files to default state
 – If PATH corrupted:
 /usr/common/usg/bin/fixdots

• **Use NIM to change default login shell**
NERSC Supported Software

• **NERSC provides a wide range of software**
 – Scientific Applications
 • VASP, Amber, NAMD, ABySS, ...
 – Compilers
 • Intel, GCC, PGI, Cray
 – Scripting Languages
 • perl, python, R - including common packages for each
 – Software Libraries (some maintained by Cray)
 • blas/lapack (MKL), boost, hdf5, netcdf, ...
 – Development utilities
 • git, mercurial, cmake, ...
 – Debuggers and Profilers
 • CrayPat, DDT, TotalView, gdb, MAP, darshan, IPM, VTune
 – Visualization
 • Visit, ParaView, VMD, ...

• **See complete list**
 http://www.nersc.gov/users/software/
Software is Managed by Modules

- **Identify the software you need**
 - Use the NERSC website
 http://www.nersc.gov/users/software/
 - Use `module avail`
 * Lots of output
 - All module output goes to stderr, not stdout
 * Each system has different modules!

- **Load the module**

 `%% which idl`
 `idl: Command not found.`
 `%% module load idl`
 `%% which idl`
 `/usr/common/usg/idl/idl82/bin/idl`
Loading Modules

- Different module for each version of software
 - Syntax: `<name>/<version>`
 - Default provided if no `<version>` supplied

```sh
% module avail idl
idl/7.1   idl/8.0   idl/8.2 (default)
% module load idl/7.1
```

- Load modules in every batch script
 - Ensure correct run-time environment
 - Self-documenting for troubleshooting and reproducibility
Other Useful Module Commands

module unload <modulename>
 – Remove the module from your environment

module swap <module1> <module2>
 – Unload one module and replace it with another
 module swap pgi gcc

module list
 – See what modules you have loaded right now

module show <modulename>
 – See what the module actually does

module help <modulename>
 – Get more information about the software
Default Modules

• When you login, many *default* modules are loaded automatically
 – Usually foundational modules which are required to get proper function from the system
 • Build environment, required libraries and applications, batch environment
 – Use caution in unloading these

• Swapping to functionally equivalent module may be OK

 hopper% module swap PrgEnv-pgi PrgEnv-gnu

• Each NERSC system has different default modules
Types of Modules

• Applications
 – VASP, amber, blast, ...
 – Usually only set `PATH, LD_LIBRARY_PATH`

• Libraries
 – Set `LD_LIBRARY_PATH`
 • but probably not on Crays
 – Set “helper” environment variable for building software
 • Header/include file search paths
 • Library search paths
 • Library names

% module load hdf5
% mpicc mycode.f $HDF5
Cray Programming Environment

- **Compiler specific**
 - PrgEnv-pgi, PrgEnv-intel, PrgEnv-cray, PrgEnv-gnu
 - Intel is default on Edison, PGI is default on Hopper

- **Meta-modules**
 - Organize a set of modules
 - Compiler (intel, pgi, cray, gnu)
 - Libraries (including MPI) tuned for compiler

- **Swapping Programming Environments**
 - `module swap PrgEnv-pgi PrgEnv-intel`
 - swaps compiler
 - *no need to swap libraries!*
Compiler Wrappers

• On Hopper / Edison:
 – Defined by `PrgEnv-*` modules
 – `ftn` (fortran), `cc` (C), `CC` (C++)
 – Provides include header and library search paths for MPI, common math libraries (e.g., Cray libsci), Cray system software
 – Provides consistent level of optimization across compilers

• Seldom need native compilers!
CHOS Environment

• **Provides different OS environments**
 – Often different third-party software
 • Some software packages have specific OS requirements
 – Possibly due to validation requirements

• **Used on Genepool, PDSF, and Carver (retires in September 2015)**

• **Transparent**
 – Default configuration for most users
 – Alternate configurations for some users

• **Details on website**
Resources

http://www.nersc.gov/users/software/nersc-user-environment/

http://www.nersc.gov/users/software/nersc-user-environment/modules/

http://www.nersc.gov/users/computational-systems/edison/programming

http://www.nersc.gov/users/computational-systems/hopper/programming/

http://www.nersc.gov/users/computational-systems/carver/programming/
Thank you.