
Physics Data Production on

HPC: Experience to be

efficiently running at scale

Michael D. Poat, Jérôme Lauret, Jefferson Porter, & Jan Balewski

NERSC Users Group SIG Annual Meeting

August 17th, 2020

1

Introduction
 The STAR detector at RHIC produces 10s of PB every

year and ran its data production on NERSC/PDSF for ~20
years

 PDSF’s is EOL -> migrated to NERSC/Cori

 Ongoing Efforts for STAR Data Production on Cori

 Container Model

 Scalability of CVMFS serving the STAR SW on Cori

 Workflow on Cori

 MySQL Database access

 Efficiency

2

STAR Software in Containers

 Docker/Shifter containers are required to enable the STAR Software to run on Cori

 Best to deploy minimal containers, with Software stack

provisioned from CVMFS

 Initial Container Model:

 Base OS SL7 + RPM + STAR SW + 1 STAR Library (4 GB)

 Minimal Container Model:

 Base OS SL7 + RPM

 CVMFS Serves: STAR SW + STAR Libraries

 Our previous setup required 1 node to run a MySQL DB container

while all other worker nodes would run STAR tasks

 The current running setup combines STAR Tasks

& MySQL Database on 1 node

 Current Container: SL7 + RPM + mysqld

Container Maintenance Tree

3

Current Running Setup on Cori

CVMFS on Cori

Throughput Maximization for CVMFS

 Looked at average of events produced min/“task”

 Drops by ~10-12% at first but we still gain in “events min/node”

 Curve remains flat afterward up to our max @15,000 tasks on 240 nodes

 In order to achieve this we needed to modify our workflow with

time delays…

4

CVMFS on Cori

 Fuse restriction on Cori (No Kernel access on worker nodes)

- cannot munt CVMFS natively

 NERSC provides Cori with Data Virtualization Service (DVS)

servers

 DVS servers forward I/O well, but do not support metadata

lookups (requires lookup to real CVMFS backend -> latency)

STAR Workflow on Cori

5

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

 Both scripts have random sleep delays (one for copying

the DB and 1 for loading SW via CVMFS)

 Once STAR SW is loaded the script will wait until the DB

has started (biggest time killer!)

 Node(s) will launch ‘n’ Parallel ROOT4STAR tasks

Node 1

Node 2

Node n

STAR Workflow on Cori

5

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

 Both scripts have random sleep delays (one for copying

the DB and 1 for loading SW via CVMFS)

 Once STAR SW is loaded the script will wait until the DB

has started (biggest time killer!)

 Node(s) will launch ‘n’ Parallel ROOT4STAR tasks

Node 1

Job start efficiency loss

Node 2

Node n

Efficiency on Cori

6

• Job Start Efficiency: Real time to
copy/start DB, load env., sleep
delays (E1)

• Event Efficiency: CPU/Real time
ratio for STAR event data
reconstruction (E2)

• Total Efficiency: SLURM job Start
->Last Task Finished
(NodesUsed/NodesUnused) * E1 *
E2

Goal: Maximize (event per sec. / per $)

 Dedicating 1 head node as DB only to serve
10 worker nodes (1-to-11) VS. (1-to 1) model
(each worker node self-serves DB)

 1-to-1 model: Total Eff. 99.30%

 1-to-11 model: Total Eff. 89.44%

 Better to self-serve DB

 Job Start Efficiency: we lose ~.05%

 Event Efficiency: ~98-99%
big job = highest value

 Total Efficiency on 1-to-1 KNL/Haswell, and
BNL BCF: ~98-99%

 Total vCore Utilization:

 Haswell: 87% @ 60 task + 1 DB

 KNL: 36.9% @ 100 task + 1 DB

 Cannot maximize CPU util. due to memory limit
-> Best to focus on packing best # of tasks
per/node & Total Efficiency

Job (T) DB dump, Load

Env., Rand (1-60s)

delays

Job Start Efficiency

(Total Job Time -

(T))/Total Job Time

(E1)

Event Efficiency

All Events

(E2)

Total Efficiency
(NodesUsed/Nodes

Unused) * E1 * E2

KNL 1 Node

(Long Test – 60

task)

819 sec. 99.50% 99.79% 99.30%

KNL 11 Nodes

1 Node ded. DB

server (60 task)

864 sec. 99.48% 99.90% 89.44%

Haswell 1 Node

(Long Test – 60

task)

378 sec. 99.76% 99.04% 98.80%

BNL RCF Job –

100 tasks
1 sec. 99.99% 99.81% 98.82%

Conclusion
 Docker/CVMFS:

 Containers are kept to minimum -> SL7 + RPM + mysqld, Software provisioned from CVMFS via DVS servers on Cori

 Database:

 DB can be copied to NERSC on demand and remerged with authentication tables

 On Cori: Worker node running ‘mysqld’ DB instance + R4S tasks to self-serve & serve DB connections to some worker nodes -> most
efficient model

 Workflow:

 Launch DB & environment scripts in parallel

 Time delays required (latency) for CVMFS via DVS

 Efficiency:

 “Job Start Efficiency” and Idle CPU at the end of job have minimal impacts on “Total CPU/Real time Efficiency” if we run for maximize
node allocation (48h)

 Head node model introduces biggest efficiency % loss

 Haswell provides best CPU power / $ for us

Our next steps

 Ensure graceful termination of the tasks (use of “signal handling”)

 Potential use of Burst Buffer to pre-stage DB content

 “Event Service” is coming soon

7

8

Thanks!

Throughput Estimator

9

 Due to the efficiency loss at the start & end of a job, it is best to run for the maximum amount of time (48h)

 By obtaining the average time events are processed per task, we can estimate how long a job will take

 Multiple tests run on a single KNL node, a single Haswell node, & BNL RCF (2.8GHz Intel)

 The distribution and scaling is very predictable between the systems on any dataset

 With the estimator, we only need to run a small batch of jobs on our BNL RCF farm to get estimate of total time on Cori
KNL/Haswell

 Provides starting point for an “Event Service” to launch new tasks when one finishes

