Applying the Roofline Performance
Model to the Intel Xeon Phi Knights
Landing Processor

Douglas Doerfler, Jack Deslippe, Samuel Williams, Leonid Oliker, Brandon Cook,
Thorsten Kurth, Mathieu Lobet, Tareq Malas, Jean-Luc Vay, and Henri Vincenti

Lawrence Berkeley National Laboratory

ISC-2016 IXPUG Workshop
June 23 2016
Frankfurt, Germany

Office of
Science

Introduction

* The challenge of porting to any new architecture is gaining
an understanding of the architectural bottlenecks that may
be exposed to an application code

* This is especially true for a new many-core processor
architecture such as Intel’s Knights Landing, as it provides
multiple unique features such as (up to) 288 HW threads,
dual 512-bit vector units and on-package, high-bandwidth
memory

 The Roofline Performance Model provides an important
framework for the optimization process with code teams

The Roofline Model

A Peak FLOPs / sec,
— Attainable . . .
@ =miny Peak Memory Arithmetic
8— Peak GFlop/s (Ww/FMA) FLOPs | sec . X .
™ / (o FIA) Bandwidth Intensity
3
& . . : Total FLOPs
el o Arithmetic Intensity =
‘8 w (no FMA, no vectorization) TOtCll ByteS
o -
o 7
@ 5 8 (1) O(N)
3 < s T ol ~
= 3 2 - N
T o £ » .
Z g z Arithmetic |
‘8’ 8 > FFTs Particle Methods
Arithmetic Intensity (flops/bytes) Lattice Methods .
Stencils (PDEs) Dense Linear Algebra, (BLAS3)

SpMV, BLAS1,2

Target Hardware Architecture

* Intel KNL
— Standalone Intel white boxes
— KNL preproduction, BO stepping
— 64 cores @ 1.3 GHz, 4 hyper-threads/core
— 16 GB MCDRAM (>460 GB/s peak BW)
— 96 (6x16) GB DDR4 @ 2133 GHz (102 GB/s peak BW)

* |ntel Haswell (baseline)
— Cori Phase 1 supercomputer at NERSC
— Single node tests
— Dual socket, 16 cores/socket @ 2.3 GHz
— 128 (8x16) GB DDR4 @ 2133 GHz (137 GB/s peak BW)

Berkeley Empirical Roofline Toolkit Method

Method:

Sweep a range of FLOPs per iteration
— 1 FLOP/iteration

* Sweep a range of MPI ranks, keeping
total number of threads constant

* 1rank, 64 threads

* 2ranks, 32 threads

* Etc.
— 2 FLOPs/iteration

* Same as 1 FLOP
— ...upto e.g. 64 FLOPs/iteration
Sweep over a range of array sizes
— Eg.1KBto1GB

Choose the largest values for L1, L2, DRAM
and GFLOP/s out of the entire sweep

Toolkit Kernell:

Loop for 1 FLOPs/iteration:

for (i=0; i<array length; ++i) {
beta = A[i] + alpha;
A[i] = beta;

}

Loop for 2 or more FLOPs/iteration:
(Note: the higher level loop is unrolled to allow the
compiler to vectorize despite the vector dependency)
for (i=0; i<array length; ++i) {
beta = 0.8;
beta = beta * A[i] + alpha;
<repeat to achieve N FLOPs>
A[i] = beta;

10000

1000

KNL Roofline Results

KNL Roofline: Quad Flat

2,199 GFLOP/s

* Using 2 threads/core
* MaxLll, L2 and MCDRAM

1 FLOP/iteration
4 MPI + 32 threads

* Max GFLOP/s

64 FLOPs/iteration
2 MPI + 64 threads

All Bandwidths are in GB/s

(a) Values assume an AVX frequency of
1.1 GHz

(b) L2 assumed ~(L1/ 4)?

(c) MCDRAM BW is for 1R/1W per
iteration

E 100 L1 -
4 —L2
Q
T 10 ——MCDRAM
()
——DDR4 -
1
0.01 0.1 1 10 100 -
0.1 Arithmetic Intensity (FLOPs/Byte)
Quad Cache | Quad Flat | SNC2 SNC4 Peak?®
GFLOP/s 2,205 2,199 2,224 2,212 2,253
L1 5,894 6,040 5,889 6,055 9,011
L2 1,834 1,827 1,829 1,840 2,252b
MCDRAM 345 372 381 415 420¢
DDR 77.0 76.9 76.9 102

Applications, Proxies and Kernels

e PICSAR (proxy for WARP)

— Particle-in-cell (PIC) code designed to simulate charged particle
beams and laser-matter interaction

e EMGeo (SpMV kernel)

— Geophysical imaging, studying medium properties by
performing scattering experiments using electromagnetic or
seismic waves

* MFDn (SpMV kernel)
— Many-body Fermion Dynamics for nuclei, nuclear physics

* BerkeleyGW

— Materials science, computes excited state properties of
materials

PICSAR Optimizations

A Fortran kernel based on WARP, a test bed for profiling and optimizations
* The current deposition and field gathering steps is the focus of this analysis
* Optimizations

— Original code spatially decomposes the problem with MPI

— MPI subdomains are subdivided into tiles handled with OpenMP, improving memory locality
and hence cache reuse of tiles. Having a large number of tiles allows OpenMP threads to load
balance across tiles.

— Direct current deposition and field gathering interpolation steps were rewritten to enable
more efficient vectorization, plus particle cell sorting was added to again improve memory
locality and hence cache reuse

* Test Case

— Maxwellian homogeneous plasma with initial thermal velocity of 0.1c.

— Domain discretization is 100x100x100 cells with 20 super particles per cell

— Haswell: 2 MPI ranks + 16 OpenMP threads/rank

— KNL: 4 MPI ranks + 32 OpenMP threads/rank (2 threads/core)

PICSAR Performance

Haswell KNL MCDRAM KNL DDR
Optimization Al GFLOP/s Al GFLOP/s Al GFLOP/s KNL Speedup
Original 0.57 16.7 0.13 5.6 0.13 5.4 0.34
+Tiling 1.10 32.0 0.56 20.0 0.56 19.2 0.63
+Tiling +Vect 1.50 67.5 0.81 60.4 0.81 49.4 0.89
10000 10000 KNL MCDRAM
1000 1000 -
£ e« e==Roofline Model £ e===Roofline Model
© 100 - = =wo/FMA Q 100 - = =wo/FMA
. e v
o = = i Original o A il Original
10 A w/Tiling 10 ™ A w/Tiling
1 ¢ w/Tiling+Vect 1 ¢ w/Tiling+Vect
0.1 1 10 0.1 1 10
Arithmetic Intensity (FLOP/byte) Arithmetic Intensity (FLOP/byte)

EMGeo Optimizations

Focus on the seismic part and forward step of the inverse scattering
problem

Sparse matrix-vector (SpMV) kernel dominates total runtime, ~70% for
Haswell and 50% for KNL.

Three optimizations

— Sliced ELLPack (SELL) sparse matrix format provides a more efficient matrix
format, reduces the FLOP count and reduces data transferred from DRAM

— Spatial Blocking (SB) to increase memory locality
— Multiple right hand sides (nRHS) cache blocking to increase memory locality

Test Case
— Benchmark focuses on a matrix with a maximum 12 non-zeros per row

— Production code evaluates about 256 independent RHS, we evaluate 32 RHS in
Haswell and 64 in KNL. However, the results are normalized for comparison

— Kernel has no MPI, hence Haswell result uses a single socket to avoid NUMA
issues

10

EMGeo Performance

GFLOP/s

Haswell? KNL MCDRAM KNL DDR
Optimization Al GFLOP/s Al GFLOP/s Al GFLOP/s KNL Speedup
Original 0.31 19.2 0.27 71.1 0.27 23.5 3.7
+SELL only 0.27 16.9 0.24 71.0 0.24 21.2 4.2
+SB only 0.34 20.2 0.28 62.3 0.28 20.9 3.1
+SELL+SB 0.31 19.2 0.26 63.9 0.26 19.6 3.3
+nRHS+SELL+SB 1.29 77.7 0.76 278.5 0.76 65.8 3.6
1) EMGeo kernel used for this analysis is not an MPI code, a single Haswell socket was used to avoid NUMA issues
10000 10000 KNL MCDRAM
1000 e==Roofline Model 1000 e==Roofline Model
~ . - -WO/FMA Q - -WO/FMA
100 i Original § 100 - i Original
P ,
A SELL o A SELL
10 > % SB 10 < SB
1 k4 SELL+SB 1 “ SELL+SB
01 1 10 © NRHS+SELL+SB 0.1 1 10 © NRHS+SELL+SB

Arithmetic Intensity (FLOP/byte)

Arithmetic Intensity (FLOP/byte)

11

MFDn Optimizations

Sparse matrix is stored in compressed sparse block coordinate
(CSB_COOQO) format

* Dominated by SpMV and SpM'™V
* Optimizations

— Replace SpMV with SpMM on blocks of vectors to improve
vectorization

— Vectors occupy MCDRAM and blocked (nRHS) to improve bandwidth
and locality (the larger sparse matrix resides in DDR4)

* Test case
— 2 protons and 6 neutrons

— Target test problem of size nxn with n=1e10 and a local sparsity of
5e-7, resulting in ~7.5e9 nonzero elements

12

MFDn Performance!?

Haswell KNL MCDRAM? KNL DDR
nRHS Al GFLOP/s Al GFLOP/s Al GFLOP/s KNL Speedup
1 0.23 23.2 0.13 17.1 0.13 13.5 0.74
4 0.62 56.8 0.25 62.4 0.25 27.8 1.1
8 0.80 67.5 0.30 109.1 0.30 30.7 1.6
1) MFDn uses single precision only, Roofline model is adjusted accordingly
2) Stores input/output vectors in MCDRAM, all other data resides in DDR
10000 10000 KNL MCDRAM
1000 1000
£ e==Roofline Model £ e==Roofline Model
Q 100 = =wo/FMA 9 100 = =wo/FMA
[V (¥
) /f i 1RHS o i 1RHS
10 10 L
/ A 4RHS / A 4RHS
% 8RH ¢ 8RH
1 . . . 8 RHS 1 | | | 8 RHS
0.01 0.1 1 10 0.01 0.1 1 10
Arithmetic Intensity (FLOP/byte) Arithmetic Intensity (FLOP/byte)

13

BerkeleyGW Optimizations

Dense linear algebra (GEMM, diagonalization and inversion) dominate

Focus on hand tuned code for this analysis (FFTs and linear algebra steps
excluded)

Optimizations
— Refactor to support OpenMP and improved locality

* Quter loop decomposed over MPI
* Nested inner loops decomposed over OpenMP w/vectorization

— Support for compiler auto-vectorization by reordering the nested loops
— Add cache blocking to potentially better utilize LLC

— Replace the complex divide with a real absolute value to avoid x87
instructions

— Add hyper-threading, and replace above complex divide optimization with —fp-
model-fast=2

Test Case
- ?

14

BerkeleyGW Performance

Haswell KNL MCDRAM KNL DDR
Optimization Al GFLOP/s Al GFLOP/s Al GFLOP/s KNL Speedup
Refactored 2.64 38.7 1.93 9.80 1.93 9.80 0.25
+ Vectorized 3.68 100.3 0.66 143.4 0.66 55.1 1.43
+ Blocked 3.77 100.3 1.79 153.2 1.79 140.8 1.53
+ Improved Vect 3.78 142.6 1.80 178.4 1.80 142.1 1.25
+ Hyper-threads 3.27 186.9 1.76 252.6 1.76 144.0 1.35
1000 e==Roofline Model e==Roofline Model
@ = = ewo/FMA = *wo/FMA
§ 100 - kil Refactored il Refactored
© = A +Vectorized A +Vectorized
10 ¢ +Blocked ¢ +Blocked
1 ‘ | ' +Improved vec 1 ‘ “ +Improved vec
0.1 1 10 © +Hyperthreads 0.1 1 © +Hyperthreads

Arithmetic Intensity (FLOP/byte)

Arithmetic Intensity (FLOP/byte)

15

Performance Summary

GFLOP/s Speedup
Haswell (HSW) KNL MCDRAM KNL DDR KNL/HSW MCDRAM/DDR
PICSAR 67.5 60.4 49.4 0.89 1.2
EMGeo (SpMV) 77.7 181.0 43.6 2.33 4.2
MFDn 67.5 109.1 30.7 1.62 3.6
BerkeleyGW 186.9 252.6 144.0 1.35 1.75

All codes showed a significant performance gain vs. the baseline version
KNL outperforms Haswell with the exception of PICSAR
— however the PICSAR optimizations benefited both architectures significantly

No code showed to be peak floating-point bound, all were in the regime where the Roofline ceiling
was bandwidth

— EMGeo and MFDn were clearly bandwidth bound

— PICSAR and BerkeleyGW showed potential for further optimization
Haswell consistently attains a higher arithmetic intensity than KNL.

— KNL generally moves more data to/from memory than Haswell

— The higher theoretical performance benefits of MCDRAM bandwidth may not be fully realized due to this
extra data movement, and exploration of the performance benefits of a larger last-level caches are in order

16

Thank You

dwdoerf@Ibl.gov

<
S, U.S. DEPARTMENT OF : A
R Office of f\,l A
O ENERG I Science BERKELEY LAB

