Porting the MIMD Lattice Computation (MILC) Code to the Intel Xeon Phi Knights Landing Processor

Ruizi Li¹, Dhiraj Kalamkar², Ashish Jha², Steven Gottlieb¹, Carleton DeTar³, Doug Toussaint⁴, Balint Joo⁵, and **Douglas Doerfler**⁶

¹Indiana University, ²Intel Corp.,
 ³University Of Utah, ⁴University of Arizona,
 ⁵Thomas Jefferson National Accelerator Facility,
 ⁶Lawrence Berkeley National Laboratory

Introduction

- The MILC code was chosen by NERSC to be a tier 1
 application in its NESAP (NERSC Exascale Science
 Applications Program) collaborative, an effort in which
 NERSC will partner with code teams to prepare for the Cori
 supercomputer
- NESAP provides access to staff from NERSC, Cray and Intel and also provides unique resources such as early hardware test beds and advanced training
- In addition, an Intel Parallel Computing Center has been established at Indiana University (in part) to help port the MILC code to the Intel Xeon Phi processor

Target Hardware Architecture

- Intel Endeavor Cluster
 - Multiple node types
 - OmniPath high speed interconnect
- Intel KNL
 - KNL preproduction, B0 stepping
 - 64 cores @ 1.3 GHz, 4 hyper-threads/core
 - 16 GB MCDRAM (>460 GB/s peak BW)
 - 96 (6x16) GB DDR4 @ 2133 GHz (102 GB/s peak BW)
- Intel Broadwell
 - Dual socket, 18 cores/socket @ 2.30 HGz
 - 128 GB (8x16) DDR4 @ 2400 GHz (153.6 GB/s peak BW)

The QPhiX Library

- An open source library for generating vectorized lattice QCD code on multi-core architectures
- Originally developed for Wilson and Wilson Clover quarks on Knights Corner
- MILC effort adapts QPhiX to Staggered Fermions
- Library is based on code generation and intrinsics
 - Has been targeted to SSE, AVX, AVX2, AVX512 and BlueGene/Q QPX
- Major feature is improved vectorization by blocking in the X-Y planes of the lattice
- NESAP effort has also provided further OpenMP optimizations
- The DSLASH operator is implemented with QPhiX, but our analysis is for the entire Multi-mass CG solve

Single Node Weak Scaling

Multi-node Weak Scaling

Thank You

dwdoerf@lbl.gov

