Migrating From Cori to Perlmutter: CPU Codes

Erik Palmer, Helen He User Engagement Group

December 1st, 2022

Outline

Modules
Programing Environments
Example Code Compilation
Job Scripts & Affinity

Modules: Loading Preinstalled Software module avail spider

Modules Loaded at Login

Modules Loaded by Default:

1) <mark>craype-x86-milan</mark>	7) craype/2.7.16	13) darshan/3.4.0
2) libfabric/1.15.0.0	8) cray-dsmml/0.2.2	14) Nsight-Compute/2022.1.1
3) craype-network-ofi	9) cray-mpich/8.1.17	15) Nsight-Systems/2022.2.1
4) perftools-base/22.06.0	10) cray-libsci/21.08.1.2	16) cudatoolkit/11.7
5) xpmem/2.4.4-2.3_12.2gff0e1d9.shasta	11) PrgEnv-gnu/8.3.3	17) <mark>craype-accel-nvidia80</mark>
6) gcc/11.2.0	12) xalt/2.10.2	18) <mark>gpu/1.0</mark>

- CPU Architecture
- Default Programming Environment and Compiler
- GPU Architecture, CUDA-Aware MPI, GPU Profilers

Default Modules for CPU-only Code				
	For CPU-only code we recommend: module load cpu			
1) craype-x86-milan 2) libfabric/1.15.0.0 3) craype-network-ofi 4) perftools-base/22.0 5) xpmem/2.4.4-2.3_	7) craype/2.7.16 8) cray-dsmml/0.2.2 9) cray-mpich/8.1.17 06.0 10) cray-libsci/21.08.1.2 12.2_gff0e1d9.shasta 11) PrgEnv-gnu/8.3.3	13) darshan/3.4.0 14) <mark>cpu/1.0</mark>		
6) <mark>gcc/11.2.0</mark>	12) xalt/2.10.2			

- CPU Architecture
- Default Programming Environment and Compiler
- Configured for CPU-only MPI

Office of

Modules with Lmod

Most Common

- •module list
- module load/unload
- module swap
- module show
- module spider

Cool Tricks

```
•module --redirect -r spider . | grep <string>
•ml -t
•module reset
```

More information: man module or https://docs.nersc.gov/environment/Imod/

New Hierarchical Structure of Modules on Perlmutter

 Searches all modules without regard for hierarchy

 Displays only modules that can currently be loaded

Modules with Lmod

No Longer Recommended

•module avail

*Only shows packages that can be loaded into the current module environment (due to hierarchy) – use module spider instead

	epalmer@perlmutter:login34:~> \$ 📘
.1	
can :he	
ue to e ler	

More information: man module or https://docs.nersc.gov/environment/Imod/

Office of

Modules with Lmod

No Longer Recommended

module avail

*Only shows packages that can be loaded into the current module environment (due to hierarchy) – use module spider instead epalmer@perlmutter:login34:~> \$ 📘

More information: man module or https://docs.nersc.gov/environment/Imod/

Office of

New Hierarchical Structure of Modules on Perlmutter

 Searches for modules without regard for hierarchy

 Displays only modules that can currently be loaded

Loading Modules Modifies Your Environment

epalmer@perlmutter:login25:~/Training> \$ module show cray-hdf5 /opt/cray/pe/Imod/modulefiles/compiler/gnu/8.0/cray-hdf5/1.12.1.5.lua: family("hdf5") conflict("PrgEnv-pathscale") help([[Release info: /opt/cray/pe/hdf5/1.12.1.5/release info]]) whatis("The HDF5 Technology suite includes tools and applications for managing, manipulating, viewing, and analyzing data in the HDF5 format.") prepend path("PATH","/opt/cray/pe/hdf5/1.12.1.5/bin") prepend path("PKG CONFIG PATH","/opt/cray/pe/hdf5/1.12.1.5/gnu/9.1/lib/pkgconfig") prepend path("PE PKGCONFIG LIBS","hdf5 hl:hdf5") setenv("PE HDF5 PKGCONFIG LIBS","hdf5 hl:hdf5") prepend path("PE FORTRAN PKGCONFIG LIBS","hdf5hl fortran:hdf5 fortran") setenv("PE_HDF5_FORTRAN_PKGCONFIG_LIBS","hdf5hl_fortran:hdf5_fortran") prepend path("PE CXX PKGCONFIG LIBS","hdf5 hl cpp:hdf5 cpp") setenv("PE HDF5 CXX PKGCONFIG LIBS","hdf5 hl cpp:hdf5 cpp") setenv("CRAY HDF5 DIR","/opt/cray/pe/hdf5/1.12.1.5") setenv("PE HDF5 DIR","/opt/cray/pe/hdf5/1.12.1.5") setenv("CRAY HDF5 VERSION","1.12.1.5") setenv("CRAY HDF5 PREFIX","/opt/cray/pe/hdf5/1.12.1.5/gnu/9.1") Path Changes setenv("HDF5_DIR","/opt/cray/pe/hdf5/1.12.1.5/gnu/9.1") **Environment Variables** setenv("HDF5 ROOT","/opt/cray/pe/hdf5/1.12.1.5/gnu/9.1") prepend path("CRAY LD LIBRARY PATH","/opt/cray/pe/hdf5/1.12.1.5/gnu/9.1/lib") Other Info prepend path("MODULEPATH","/opt/crav/pe/Imod/modulefiles/hdf5/anu/8.0/crav-hdf5/1.12.1")

11

Office of

Programming Environments: Configuring Compilers and Libraries

Programming Environments Control Compilers and Libraries on Perlmutter

Language	<u>Wrapper</u>	PrgEnv-gnu (default)	PrgEnv-nvidia	PrgEnv-cray
C++	CC	g++	nvc++	crayCC (Clang)
С	CC	gcc	nvc	craycc (Clang)
Fortran	ftn	gfortran	nvfortran	crayftn
MPI	MPI - cray-mpich		cray-mpich	cray-mpich
More	info:	module show PrgEnv-gnu	module show nvidia	module show cce

U.S. DEPARTMENT OF

Office of

Switching Programming Environments

To switch programming environments (PrgEnv) use:

module load PrgEnv-*

For example,

if I am in PrgEnv-gnu and want to switch to PrgEnv-cray, type:

module load PrgEnv-cray

Suggested Practice: Compiler Wrappers

Cray provides wrappers (CC, cc, and ftn) to the corresponding compilers for each PrgEnv. These wrappers incorporate many flags and features, including cray-mpich, the recommended MPI.

epalmer@nid005015:~/Training> gcc helloworld openmp.c -fopenmp -o hello

epalmer@nid005015:~/Training> cc -craype-verbose helloworld openmp.c -fopenmp -o hello

gcc -march=znver3 -D CRAY X86 MILAN -D CRAY NVIDIA80 -D CRAYXT COMPUTE LINUX TARGET -D TARGET LINUX helloworld openmp.c -fopenmp -o hello -WI,-rpath=/opt/cray/pe/gcc-libs -WI,-Bdynamic -l/opt/cray/pe/mpich/8.1.17/ofi/gnu/9.1/include -I/opt/cray/pe/libsci/21.08.1.2/GNU/9.1/x86 64/include -l/opt/cray/pe/dsmml/0.2.2/dsmml//include -l/opt/nvidia/hpc sdk/Linux x86 64/22.5/cuda/11.7/nvvm/include -I/opt/nvidia/hpc sdk/Linux x86 64/22.5/cuda/11.7/extras/CUPTI/include ...(and more)

Automatic Links Provided By The Wrappers

• Depending on modules loaded, compiler wrappers link:

MPI, LAPACK, Blas, ScaLAPACK, and more, automatically.

 Cray modules, such as cray-hdf5, cray-fftw, etc. are also linked automatically by the compiler wrappers when loaded into the user environment.

Note: Several scientific libraries such as, LAPACK, ScaLAPACK, Blas and QDWH, are included in cray-libsci. For more information use: man libsci.

Manually Specify Cray Compile Wrappers

Some build systems such as CMake or Makefiles may be coded to search for CC, CXX and FC environment variables.

In these cases, it is possible to specify the Cray compile wrappers by setting the environment variables in the following way:

CC=\$(which cc) CXX=\$(which CC) FC=\$(which ftn)

Or at the configure step,

./configure CC=cc CXX=CC FC=ftn F77=ftn

More info: <u>https://docs.nersc.gov/development/build-tools/autoconf-make/</u> <u>https://docs.nersc.gov/development/build-tools/cmake/</u>

Office of

Modules Link Dynamically by Default

- Many modules prepend the LD_LIBRARY_PATH or CRAY_LD_LIBRARY_PATH, and have their shared libraries dynamically linked.
 - e.g. module load gsl CC gsl_test.cpp -lgsl -lgslcblas -o gsl_test
- If you are compiling your own shared libraries, consider using the option, -W1, -rpath=<library path>. Cray wrappers build dynamically linked executables by default.
- On Perlmutter static compilation with -static or CRAYPE_LINK_TYPE=static can fail and is not supported.

More info: https://docs.nersc.gov/development/compilers/wrappers/

Office of

Other Good-to-Know Compiler Settings for CPU

GNU	Cray	Nvidia	Description/ Comment
-00	-00	-01	Default Optimization Level
-Ofast	-Ofast, -flto	-O4, -fast	Aggressive Optimization (some may cause non-bit-identical output)
-fopenmp	-fopenmp	-mp	Enable OpenMP (not default)
-g, -O0	-g, -O0	-g (-O0 by default)	Debug
-V	-V	-V	Verbose

For more information, when in the corresponding PrgEnv type:

man gcc/gfortran man craycc/crayftn man nvc/nvfortran

https://docs.nersc.gov/development/compilers/

Three Quick Tips for Compiling Older Codes

Fortran:

- 1. For older codes, try the **-std=legacy** flag
- which includes some flags that reduce strictness, such as **-fallow-argument-mismatch**

C/C++:

- 2. Look for flags that reduce strictness, such as **-fpermissive**
- 3. -Wpedantic can warn you about lines that break code standards

NERSC Programming Environment (Experimental)

	Language	Suggested Compile Commands	PrgEnv-llvm	
	C++	mpic++	clang (Intel)	
	С	mpicc	clang (Intel)	
	Fortran	N/A	N/A	
	MPI	-	cray-mpich	
Usage: module use /global/cfs/cdirs/nstaff/cookbg/pe/modulefiles module load npe module load PrgEnv-llvm				
Nore Info: https://docs.nersc.gov/development/compilers/npe/				

More

Office of

OpenMPI

Usage:

module use /global/common/software/m3169/perlmutter/modulefiles module load openmpi

Compile:

mpicc -o my_c_exec my_c_prog.c mpif90 -o my f90 exec my f90 prog.f90

Run:

mpirun -np 64 ./my c exec mpirun -np 64 ./my_f90 exec

More Info: https://docs.nersc.gov/development/programming-models/mpi/openmpi/

Office of

Building Applications: Cori codes should be recompiled for Perlmutter

Example CPU Code Compile with MPI and OpenMP

```
int main(int argc, char *argv[]) {
  int numprocs, rank, namelen;
  char processor_name[MPI_MAX_PROCESSOR_NAME];
  int iam = 0, np = 1;
  MPI_Init(&argc, &argv);
  MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Get_processor_name(processor_name, &namelen);
 #pragma omp parallel default(shared) private(iam, np)
   np = omp_get_num_threads();
    iam = omp_get_thread_num();
    printf("Hello from thread %d out of %d from process
           %d out of %d on %s\n",
           iam, np, rank, numprocs, processor_name);
```

MPI_Finalize();

Hellohybrid.c – contains both MPI and OpenMP commands.

Example from:

https://rcc.uchicago.edu/docs/ru nning-jobs/hybrid/index.html

Compile with MPI and OpenMP (CPU only)

Modules Loaded: PrgEnv-gnu

Compile line: cc hellohybrid.c -fopenmp -o hellohybrid

Office of

Compile with MPI and OpenMP (CPU only)

epalmer@nid006368:~/NERSC_User_Training/EX1>

Modules Loaded: PrgEnv-gnu

Compile line: cc hellohybrid.c -fopenmp -o hellohybrid

Office of

Compile with MPI and OpenMP (CPU only)

epalmer@nid006368:~/NERSC_User_Training/EX1> 📘

Compilation with wrappers is very similar.* -fopenmp

Compile line: cc hellohybrid.c -fopenmp -o hellohybrid

Office of

Manually Specify Include, Library Location and Links

epalmer> # In this example, we will show how to manually include and link libraries during the compile step. The example code I will use, requires

Manually Specify Include, Library Location and Links

Understanding Job Parameters

Guiding Example Batch Job Script

```
#!/bin/bash
#SBATCH -N 2
#SBATCH -C cpu
#SBATCH -q regular
#SBATCH -J job_name
#SBATCH --mail-user=elvis@lbl.gov
#SBATCH -t 0:30:00
export OMP_NUM_THREADS=8
export OMP_PLACES=threads
export OMP_PROC_BIND=spread
srun -n 32 -c 16 --cpu_bind=cores ./demo_code
```

Key Terms:

- Node
- MPI Task
- Logical CPU
- Thread
- Physical Core
- Processor
- Advanced Terms:
- NUMA Domain

Office of

Understanding Job Parameters: Hardware: Node, Processor, Physical Core, Logical CPU

Perlmutter CPU Node Terms

From Perlmutter system architecture	This Talk
2x AMD EPYC 7763 (Milan) CPUs	2x AMD EPYC 7763 (Milan) Processors
64 Cores per CPU	64 Physical Cores per processor
2 Hyperthreads per core	2 Logical CPUs per physical core
4 NUMA domains per socket	4 NUMA domains per processor

Diagram of Perlmutter CPU Node

33

Perlmutter CPU Compute Node

- Processor
- Physical Core
- Logical CPU

Office of

Office Building Analogy for Node Architecture

Processor

Physical Cores

Logical CPUs / Hardware Threads

rerer

Sample Batch Job Script

```
#!/bin/bash
#SBATCH -N 2
#SBATCH -C cpu
#SBATCH -q regular
#SBATCH -J job_name
#SBATCH --mail-user=elvis@lbl.gov
#SBATCH -t 0:30:00
export OMP_NUM_THREADS=8
export OMP_PLACES=threads
export OMP_PROC_BIND=spread
srun -n 32 -c 16 --cpu_bind=cores ./demo_code
```

Key Terms:

- Node
- MPI Task
- Logical CPU
- Thread
- Physical Core
- Processor
- Advanced Terms:
- NUMA Domain

Office of

Understanding Job Parameters: Splitting Up Work: MPI Tasks, (OpenMP) Threads

Cargo Analogy for MPI Tasks & OMP Threads

Office of

Guiding Example Batch Job Script

#!/bin/bash

```
#SBATCH -N 2
#SBATCH -C cpu
#SBATCH -q regular
#SBATCH -J job_name
#SBATCH --mail-user=elvis@lbl.gov
#SBATCH -t 0:30:00
```

export OMP_NUM_THREADS=8
export OMP_PLACES=threads
export OMP_PROC_BIND=spread

srun -n 32 -c 16 --cpu_bind=cores ./demo_code

Key Terms:

- Node
- MPI Task
- Logical CPU
- Thread
- Physical Core
- Processor
- Advanced Terms:
- NUMA Domain

Office of

Understanding Job Parameters: Memory Affinity: NUMA Domains

What is a NUMA Domain?

NUMA - Non-uniform Memory Access

Takeaway:

Accessing memory from remote NUMA domains is slower than accessing memory from a local NUMA domain.

NUMA Domains on Perlmutter CPU

NUMA Domain

Office of

Perlmutter CPU Node NUMA Info

numactl -H: provides NUMA info of CPUs

128 cores and 2 processors total64 cores and 4 NUMA domains per processor

vunhe@nid005620:~> numactl -H available: 8 nodes (0-7) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 node 2 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 ... node 7 cpus: 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 node distances: node 0 1 2 3 4 5 6 7 0: 10 12 12 12 32 32 32 32 32 1: 12 10 12 12 32 32 32 32 32 2: 12 12 10 12 32 32 32 32 32 Shows relative cost of memory bandwidth 3: 12 12 12 10 32 32 32 32 There is a factor of 3 accessing local vs 4: 32 32 32 32 10 12 12 12 remote NUMA domains in this example 5: 32 32 32 32 12 10 12 12 6: 32 32 32 32 12 12 10 12 7: 32 32 32 32 12 12 12 10

U.S. DEPARTMENT OF

Office of

Affinity Verification Methods

 NERSC has provided pre-built binaries from an HPE code (xthi.c) to display process thread affinity: check-mpi.gnu.pm, check-mpi.nvidia.pm, check-hybrid.nvidia.pm, etc.

% srun -n 32 -c 8 --cpu-bind=cores check-mpi.gnu.pm | sort -nk 4 Hello from rank 0, on nid006340. (core affinity = 0-3,128-131) Hello from rank 1, on nid006340. (core affinity = 64-67,192-195) ...

 OpenMP 5.0 introduced OMP_DISPLAY_AFFINITY and OMP_AFFINITY_FORMAT

% export OMP_DISPLAY_AFFINITY=true

% export OMP_AFFINITY_FORMAT="host=%H, pid=%P, thread_num=%n, thread affinity=%A"

% srun -n 2 -c 128 --cpu-bind=cores check-hybrid.gnu.pm | sort -nk 4 host=nid006340, pid=127001, thread_num=0, thread affinity=64 host=nid006340, pid=127001, thread_num=1, thread affinity=192 ...

Settings to Address NUMA Performance

- Use --cpu_bind=cores when the # of MPI tasks ≤ the # of physical cores
- Use --cpu_bind=threads when the # of MPI tasks > the # of physical cores
- In hybrid MPI/OpenMP code, use at least 8 MPI tasks to avoid NUMA penalties when using OpenMP threads
- The value of -c should be ≥ the value of OMP_NUM_THREADS
- For thread affinity set: OMP_PROC_BIND=spread OMP_PLACES=threads

Sample Batch Job Script

#!/bin/bash

```
#SBATCH -N 2
#SBATCH -C cpu
#SBATCH -q regular
#SBATCH -J job_name
#SBATCH --mail-user=elvis@lbl.gov
#SBATCH -t 0:30:00
```

export OMP_NUM_THREADS=8
export OMP_PLACES=threads
export OMP_PROC_BIND=spread

srun -n 32 -c 16 --cpu_bind=cores ./demo_code

Key Terms:

- Node
- MPI Task
- Logical CPU
- Thread
- Physical Core
- Processor

Advanced Terms:

NUMA Domain

Office of

Compute Nodes Comparison for CPU Affinity

	Cori Haswell	Cori KNL	Perlmutter CPU	CPU on Perlmutter GPU
Physical cores	32	68	128	64
Logical CPUs per physical core	2	4	2	2
Logical CPUs per node	64	272	256	128
NUMA domains	2	1	8	4
-c value for srun	floor(64/tpn)	floor(272/tpn), usually do floor(256/tpn)	floor(256/tpn)	floor(128/tpn)

tpn = Number of MPI tasks per node

Office of Science

Job Scripts

Cori Haswell	Perlmutter CPU
#!/bin/bash	#!/bin/bash
#SBATCH -N 40 #SBATCH -C haswell #SBATCH -q regular #SBATCH -J job_name #SBATCH -t 1:00:00	#SBATCH -N 10 #SBATCH -C cpu #SBATCH -q regular #SBATCH -J job_name #SBATCH -t 1:00:00
<pre>export OMP_NUM_THREADS=1 srun -n 1280 -c 2 \cpu_bind=cores ./demo_code</pre>	<pre>export OMP_NUM_THREADS=1 srun -n 1280 -c 2 \cpu_bind=cores ./demo_code</pre>

Cori Haswell	Perlmutter CPU
#!/bin/bash	#!/bin/bash
#SBATCH -N 40 #SBATCH -C haswell #SBATCH -q regular #SBATCH -J job_name #SBATCH -t 1:00:00	#SBATCH -N 40 #SBATCH -C cpu #SBATCH -q regular #SBATCH -J job_name #SBATCH -t 1:00:00
export OMP_NUM_THREADS=1 srun -n 1280 -c 2 \	export OMP_NUM_THREADS=1 srun -n 1280 -c 8 \
cpu_bind=cores ./demo_code	cpu_bind=cores ./demo_code

Question

Question

#!/bin/bash

#SBATCH -N 40
#SBATCH -C cpu
#SBATCH -q regular
#SBATCH -J job_name
#SBATCH -t 1:00:00

export OMP_NUM_THREADS=8
export OMP_PROC_BIND=spread
export OMP_PLACES=threads

srun -n 320 -c ? \
--cpu_bind=cores ./demo_code

Hint

Considered because using OpenMP

Question

```
#!/bin/bash
#SBATCH -N 40
#SBATCH -C cpu
#SBATCH -q regular
#SBATCH -J job_name
#SBATCH -t 1:00:00
```

export OMP_NUM_THREADS=8
export OMP_PROC_BIND=spread
export OMP_PLACES=threads

```
srun -n 320 -c ? \
--cpu_bind=cores ./demo_code
```

Process

- 2. Logical CPUs / MPI tasks 256 / 8 = 32
- Check logical CPUs greater than threads
 32 > 8

Considered because using OpenMP

Question

#!/bin/bash #SBATCH -N 40 #SBATCH -C cpu #SBATCH -q regular #SBATCH -J job_name #SBATCH -t 1:00:00 export OMP_NUM_THREADS=8 export OMP_PROC_BIND=spread export OMP_PLACES=threads srun -n 320 -c ? \ --cpu_bind=cores ./demo_code

Answer

#!/bin/bash

```
#SBATCH -N 40
#SBATCH -C cpu
#SBATCH -q regular
#SBATCH -J job_name
#SBATCH -t 1:00:00
export OMP_NUM_THREADS=8
export OMP_PROC_BIND=spread
export OMP_PLACES=threads
srun -n 320 -c 32 \
--cpu_bind=cores ./demo_code
```


Office of

MPI Only

#!/bin/bash #SBATCH -N 40 #SBATCH -C cpu #SBATCH -q regular #SBATCH -J job_name #SBATCH -t 1:00:00 export OMP_NUM_THREADS=1 srun -n 320 -c 32 \ --cpu_bind=cores ./demo_code

Hybrid MPI & OpenMP

#!/bin/bash

```
#SBATCH -N 40
#SBATCH -C cpu
#SBATCH -q regular
#SBATCH -J job_name
#SBATCH -t 1:00:00
```

```
export OMP_NUM_THREADS=8
export OMP_PROC_BIND=spread
export OMP_PLACES=threads
```

```
srun -n 320 -c 32 \
--cpu_bind=cores ./demo_code
```


Office of

NERSC Job Script Generator

https://my.nersc.gov/script_generator.php or https://iris.nersc.gov/jobscript

This tool generates a batch script template which also realizes specific process and thread binding configurations.	
Configuration: Job script:	
Machine #!/bin/bash	
Select the machine on which you want to submit your job.	
# Base script gener	rated by NERSC Batch Script Generator on
Perlmutter - CPU	.gov/jobscript
Application Name #SDATCH - C CDU	
Specify your application including the full path #SBATCH - g_ regular	
#SBATCH - J test job	01
my app // #SBATCHmail-user	r=elvis@lbl.gov
#SBATCHmail-type	=ALL
Job Name #SBATCH -t 0:30:0	
Specify a same for your job	
# OpenMP settings:	
test ioh1	ADS=1
export OMP_PLACESET	hreads
Email Address	iu-true
Specify your email address to get patified when the ich enters a certain state #run, the application	an :
specify you email address to get notified when the job enters a certain state.	cpu_bind=cores my_app
elvis@lbl.gov	
Quality of Service	
Select the QoS you request for your job.	

Office of

Job Script Generator

- Job scripts are largely similar to Cori
- Job script generator now available within Iris to help you get correct process affinity, etc.

o <u>https://iris.nersc.gov/jobscript</u>

Spack: Even More Software!

Spack: A Package Manager for Supercomputers

Spack currently contains 6617 mainline packages

NERSC has two instances of Spack available on Perlmuter:

Instance	Version	Command	# of Packages	Can I Install More?
Spack	0.17.1	module load spack	130	Yes
Extreme-scale Scientific Software Stack (E4S)	0.18.0.dev0	module load e4s/22.05	319	Yes

More info: Spack – <u>https://docs.nersc.gov/development/build-tools/spack/</u> E4S – <u>https://docs.nersc.gov/applications/e4s/</u>

Installed Spack Packages

epalmer@perlmutter:login36:~> \$ spack find											FAS		
==>	130 installed packa	ges											
1	cray-cnl7-haswell / :	intel@19.1.2.254 -	==> 319 installed pack	ages									
cfi	ltsio@4.0.0		cray-sles15-zen3 / cce@13.0.2										
			adios2@2.8.0 cray-	libsci@21.08.1.2	gettext@0.21	libarch.	ive@3.5.2	libmd@1.0.	4 mbedtls@2.28.0 p	oython@3.8.13 sundials	6.2.0	xz@5.2.5	
cray-sles15-zen3 / gcc@11.2.0			arpack-ng@3.8.0 cray-	mp1cn@8.1.15	hdf501.10.7	libbsd@	1Ve@3.5.2	libuy@1.6	0.37 metis@5.1.0 r	eadline@7.0 superlu@	0.3.0 Hist07 2 A	ZTD@0.5.5 zlib@1 2 12	
ant@1.10.7 glproto@1.4.17			c-blosc@1.21.1 diffu	tils@3.6	hypre@2.24.0	libfabr	ic@1.15.0.0	libxml2@2.	9.13 parmetis@4.0.3 s	lepc@3.17.1 sz@2.1.1	2	zstd@1.5.2	
arr	arpack-ng@3.8.0 gperf@3.1		cmake@3.23.1 expat	@2.4.8	kokkos@3.6.00	libffi@		lz4@1.9.3	petsc@3.17.1 s	nappy@1.1.8 tar@1.30			
hdt	$f_{0} = 5$	hynre@2 24 0	cmake@3.23.1 gdbm@	1.23	kokkos-kernels@3.6.00	libicon	v@1.16	lzo@2.10	pkgconf@1.8.0 s	qlite@3.38.5 util-lin	1x-uuid@2.33.1		
hisop@3 0.4 icu4c@67 1		crav-sles15-zen3 /	acc@11_2_0										
bzi		inputproto@2 2 2	adios2@2.8.0	dyninst@12.1.0	hpctoolkit@2022.04.1		libiberty@2		metis@4.0.3	pkgconf@1.8.0	snappy@1.	1.8	
		intltool@0_51_0	adios2@2.8.0	eccodes@2.25.0	hpcviewer@2022.03		libice@1.0.		metis@5.1.0	plasma@21.8.29	sqlite@3.	38.5	
		idk@11_0_1_12	amrex@22.05	elfutils@0.186	hpx@1.7.1		libiconv@1.:	16	mfem@4.4.0	proj@8.2.1	strumpack	@6.3.1	
CL	IW@2.0.3	Jak@11.0.1_13	arnack-ng@3 8 0	etrutils@0.186	hwbre@2.24.0		libipeg <mark>@9e</mark>	ho@2 1 3	mkfontscale@1 1 2	py-peniget@0.4.1	sundials	(00.3.1 6.2.0	
Cma	ake@3.17.0	Kbproto@1.0.7	asio@1.21.0	expat@2.4.8	hypre@2.24.0		libjpeg-tur	00@2.1.3	mpark-variant@1.4.0	py-gast@0.5.3	super lu@5	.3.0	
Cma	ake@3.22.0	krb5@1.19.2	autoconf@2.69	ffmpeg@4.4.1	hypre@2.24.0		libmd@1.0.4		nasm@2.15.05	py-mpi4py@3.1.2	superlu-d	ist@7.2.0	
Cma	ake@3.22.1	Lcms@2.9	automake@1.16.5	fftw@3.3.10	icu4c@67.1		libmonitor@	2021.11.08	nccmp@1.9.0.1	py-numpy@1.22.3	sz@2.1.12		
Cma	ake@3.22.2	libbsd@0.11.3	bartopcr@1.0.5 berkelev-db@18_1_40	findutils04 6 0	intel_thb@2020_3		libpng@1 6	500.16 37	ncl@6.6.2 nco@5_0_1	py-periodictable@1.5	19 tar@1.30	A7 7	
cray-libsci@21.08.1.2		libffi@3.3	binutils@2.38	flex@2.6.3	intel-tbb@2020.3		libpthread-stubs@0.4		ncurses@6.1	py-pip@21.3.1	tau@2.31.	1	
cuda@11.7.64		libfontenc@1.1.3	bison@3.8.2	font-util@1.3.2	intel-xed@2022.04.17		libquo@1.3.1		ncview@2.1.8	py-pip@21.3.1	tcsh@6.24	.00	
curl@7.66.0		libgit2@1.1.1	blaspp@2021.04.01	fontconfig@2.13.9	4 kbproto@1.0.7		libsm@1.2.3		etcdf-c@4.8.1 py-ply@3.11		trilinos@	trilinos@13.0.1	
docbook-xml@4.4		libice@1.0.9	blaspp@2021.04.01	fontenroto@2.13.9	4 KIM-ap102.2.1		libtool@2 4 7		netcdf-c@4.8.1	py-pypind11@2.8.1	uduhits@2	.2.28 x-uuid@2 33 1	
docbook-xsl@1.79.2		libiconv@1.16	blt@0.4.1	fortrilinos@2.0.0) kokkos@3.6.00		libunwind@1	.6.2	netcdf-fortran@4.5.4	py-pythran@0.10.0	util-macr	os@1.19.3	
expat@2.4.4		libineg@9d	boost@1.79.0	freetype@2.11.1	kokkos-kernels@3.6.0	0	libunwind@1		netlib-scalapack@2.2.0	py-scipy@1.8.0	vtk-m@1.7		
fixesproto@5		libmd@1 0 3	boost@1.79.0	fribidi@1.0.12	kokkos-kernels@3.6.0	0	libuv@1.44.	1	ninja@1.10.2	py-setuptools@59.4.0	warpx@22.	05	
flev@2_6_4		libpng@1_6_37	boost@1.79.0	gasnet@2022.3.0	kokkos-nvcc-wrapper	3.2.00	libx11@1.7.0	9	ninja@1.10.2	py-setuptools@59.4.0	warpx@22.	05	
fort util@1 2 2		libptbrood stube@	butterflypack@2.1.1	adbm@1.23	lapackpp@2022.0107		libxau@1.0.13		numact102.0.14	py-warpx@22.05	xcb-proto	03 01.14.1	
		libored 0.0	bzip2@1.0.6	gettext@0.21	lapackpp@2021.04.00		libxcb@1.14		openblas@0.3.20	py-warpx@22.05	xerces-c@	3.2.3	
rontconrig@2.13.94		L1DSm@1.2.3	c-blosc@1.21.1	gettext@0.21	lapackpp@2021.04.00		libxdmcp@1.	1.2	openblas@0.3.20	py-wheel@0.37.0	xerces-c@	3.2.3	
fontsproto@2.1.3		L1bssh2@1.10.0	cairo@1.16.0	git@2.26.2	libaec@1.0.5		libxext@1.3.3		openjdk@11.0.14.1_1	py-wheel@0.37.0	xextproto	@7.3.0	
fre	etype@2.11.1	libtiff@4.3.0	carro@1.16.0	gt10@2.72.1 googletest@1_10_0	libarchive@3.5_2		libxml202 9	.13	openppeg@2.3.1	python@3.8.13	xtrans@1	3.5	
fri	lbidi@1.0.5	libx11@1.7.0	camp@0.2.2	aperf@3.1	libarchive@3.5.2		libxml2@2.9	.13	otf2@2.3	python@3.8.13	xz@5.2.5	0.0	
gho	ostscript-fonts@8.11	libxau@1.0.8	cdo@2.0.5	gperftools@2.9.1	libarchive@3.5.2		libxmu@1.1.		papi@6.0.0.1	python@3.8.13	xz@5.2.5		
			cmake@3.23.1	grads@2.2.1	libbsd@0.11.5		libxpm@3.5.	12	papi@6.0.0.1	qthreads@1.16	yasm@1.3.	0	
	cray-sles15-zen3 / n	vhpc@21.11 <u></u>	cmake@3.23.1	gromacs@2021.5	Libcerf@1.3		libxrender@	9.9.10	parallel@20210922	raja@0.14.0	zfp@0.5.5		
cat	ro@1.16.0 gperf@3_1	intel-mk1@2020 4	conduit@0_8_3	gst@2.7	libdwarf@20180129		17401 9 3		parattet-netcur@1.12.2	readline@7_0	zlib@1_2	12	
ou.	Sport @0.1		cray-libsci@21.08.1.2	hdf5@1.8.22	libfabric@1.15.0.0		lzo@2.10		pcre@8.45	renderproto@0.11.1	zstd@1.5.	2	
-			cray-mpich@8.1.15	hdf5@1.10.7	libffi@3.3		m4@1.4.18		pdt@3.25.1	rhash@1.4.2			
			cub@1.13.1	hdf5@1.10.8	libffi@3.4.2		makedepend@	1.0.5	perl@5.34.1	shapelib@1.5.0			
	I SDACK I		cuda@11.5.0	hdf5@1.12.1	libfontenc@1.1.3		mbedtls@2.2	8.0	petsc@3.17.1	slate@2021.05.02			
			curl@7.66.0	hdf5@1.12.1	Libgd@2.2.4		memkind@1.1	3.0	petsc@3.17.1	slate@2021.05.02			
	1 1		dyninct@12_1_0	hoffto@2_2_0	libgootiff@1 6 0		meson@0.62.	1	pivmon@0_40_0	stepcus.17.1			

.AB

Install or Load a Spack Package

Steps	Already Installed in Spack/E4S	Available via Spack/E4S
1	spack find -v	spack list
	Match package config. and compiler	Search list of ~6200 avail. packages
2	spack load <package></package>	spack info <package></package>
	Load desired package/package variant into environment	Get information about package options
3		spack install <package></package>
		Installs the package into Spack
4		spack load <package></package>

Extra Step: spack load --sh <package> Shows the modifications made to your environment when a package is loaded.

Example: Install a Dependency with Spack

epalmer> # In this example, suppose I am compiling a code that depends on a package or version of a package that is not currently installed as a module on Perlmutter. To demonstrate, I will compile a code that requires

Suppose my example code, gsl_test.cpp, requires the GNU **Scientific Library** version 2.7.1. This example will show how to load this dependency from the E4S software stack using Spack.

Example: Install a Dependency with Spack

Suppose my example code, gsl_test.cpp, requires the GNU **Scientific Library** version 2.7.1. This example will show how to load this dependency from the F4S software stack using Spack.

Key Suggestions: • Use module spider for comprehensive module search Recompile Cori code with PrgEnv-gnu, PrgEnv-cray, or another PrgEnv • Use the compiler wrappers Recalculate job script parameters for optimal performance

CPU Hands-on Exercises

- Feel free to use some NERSC prepared CPU examples at
 - https://github.com/NERSC/Migrate-to-Perlmutter/tree/main/CPU
 - or bring your own applications codes today.
- Follow README.first and README for each example
 - hello-example: serial and MPI
 - matrix-example (C) or jacobi-example (Fortran): hybrid MPI/OpenMP
 - xthi-example: affinity
 - gsl_test: using package available from E4S stack
- Perlmutter Compute node reservations, 10:00 15:00:
 - CPU: #SBATCH --reservation=pm_cpu_dec1 -A ntrain2 -C cpu
 - Existing NERSC users are added to the ntrain2 project to access node reservations

Thanks for your attention!

More questions? Need help? . http://help.nersc.gov/

