

INTERACTIVE I/O LOG ANALYSIS

JEAN LUCA BEZ, SUREN BYNA <jlbez@lbl.gov>

DXT Explorer Copyright (c) 2021, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

- Darshan is a popular tool to collect **I/O profiling**
- It **aggregates** information to provide insights
- Extended tracing mode (DXT)

export DXT_ENABLE_IO_TRACE=1

- Fine grain view of the I/O behavior
- POSIX or MPI-IO, read/write
- Rank, segment, offset, request size
- Start and end timestamp

DXT_POSIX module data

DXT, file_id: 13771918696892050919, file_name:

/gpfs/alpine/csc300/scratch/houjun/Flash-X-apr8.gcc/FLASH_I0_hdf5_1.10.6/2366525/flash.par

DXT, rank: 0, hostname: d11n01

DXT, write_count: 0, read_count: 3

DXT, mnt_pt: /gpfs/alpine, fs_type: gpfs

# Module	Rank	Wt/Rd	Segment	Offset	Length	Start(s)	End(s)
X_POSIX	0	read	Θ	Θ	783	0.0110	0.0110
X_POSIX	Θ	read	1	783	Θ	0.0111	0.0111
X_POSIX	Θ	read	2	783	Θ	0.0111	0.0111

DXT, file_id: 17855743881390289785, file_name:

/gpfs/alpine/csc300/scratch/houjun/Flash-X-apr8.gcc/FLASH_I0_hdf5_1.10.6/2366525/flash.log

DXT, rank: 0, hostname: d11n01

DXT, write_count: 62, read_count: 0

DXT, mnt_pt: /gpfs/alpine, fs_type: gpfs

# Module	Rank	Wt/Rd	Segment	Offset	Length	Start(s)	End(s)
X_POSIX	Θ	write	Θ	Θ	4105	0.0518	0.0527
X_POSIX	Θ	write	1	4105	4141	0.0530	0.0530
X_POSIX	Θ	write	2	8246	4127	0.0532	0.0532
X_POSIX	Θ	write	3	12373	4097	0.0534	0.0547

• • •

- No tool to visualize and explore yet
- Static plots have limitations
- Features we seek:
 - Observe POSIX and MPI-IO together
 - Zoom-in/zoom-out in time and subset of ranks
 - Contextual information about I/O calls
 - Focus on operation, size, or spatiality
- By visualizing the application behavior, we are **one step closer** to optimize the application

Explore the timeline by **zooming in and out** and observing how the **MPI-IO** calls are translated to the **POSIX** layer. For instance, you can use this feature to detect stragglers.

Visualize relevant information in the **context** of **each I/O call** (rank, operation, duration, request size, and OSTs if Lustre) by hovering over a given operation.

Explore the **operations by size** in POSIX and MPI-IO. You can, for instance, identify small or metadata operations from this visualization.

File Offset (bytes)

Explore the **spatiality** of accesses in file by each rank with **contextual** information. Understand how each rank is accessing each file.

dxt-explorer [-h] [-t] [-s] [-d] [-l] [--start START] [--end END] [--from START_RANK] [--to END_RANK] [-v] darshan

DXT Explorer:

darshan

positional arguments:

Input .darshan file

optional arguments:	
-h,help	show this help message and exit
-t,transfer	Generate an interactive data transfer explorer
-s,spatiality	Generate an interactive spatiality explorer
-d,debug	Enable debug mode
-l,list	List all the files with trace
start START	Report starts from X seconds (e.g., 3.7) from beginning of the job
end END	Report ends at X seconds (e.g., 3.9) from beginning of the job
from START_RANK	Report start from rank N
to END_RANK	Report up to rank M
-v,version	show program's version number and exit

Install DXT Explorer on your local machine

\$ pip install dxt-explorer

On NERSC systems you can also use the container version with Shifter

\$ shifter --image=docker:hpcio/dxt-explorer

HANDS-ON

Download some files for the hands-on exercise

- \$ wget https://github.com/jeanbez/dxt-sample-logs/raw/main/samples-openpmd.tar.gz
- \$ tar zxvf samples-openpmd.tar.gz
- # Run dxt-explorer with the provided .darshan DXT traces
- \$ dxt-explorer --debug samples/REPLACE_WITH_FILE_NAME.darshan
- # On NERSC systems you can also use the container version with Shifter
- \$ shifter --image=docker:hpcio/dxt-explorer

Download the files for local interactive exploration on your browser!

I/O INSIGHTS FOR ALL

JEAN LUCA BEZ, SUREN BYNA <jlbez@lbl.gov>

Drishti Copyright (c) 2022, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Drishti

- There is still a **gap** between **profiling** and **tuning**
- Drishti: from I/O profiles to **meaningful** information
 - **Detect** root causes of I/O bottlenecks
 - Map I/O bottlenecks into actionable items
 - Guide end-user to tune their application's I/O performance
- 4 levels of triggers
- > 30 triggers are checked for each .darshan log

Level	Description
HIGH	High probability of harming I/O performance.
WARN	Detected issues that could cause a significant negative impact on the I/O performance. The confidence of these recommendations is low as available metrics might not be sufficient to detect application design, configuration, or execution choices.
OK	Best practices have been followed.
INFO	Relevant information regarding application configuration.

Drishti

```
usage: drishti [-h] [--issues] [--html] [--svg] [--verbose] [--code] darshan
```

Drishti:

```
positional arguments:
darshan Input .darshan file
```

optional arguments:

- -h, --help show this help message and exit
- --issues Only displays the detected issues and hides the recommendations
- --html Export the report as an HTML page
- --svg Export the report as an SVG image
- --verbose Display extended details for the recommendations
- --code Display insights identification code

Overall information about the Darshan log and execution

Number of critical issues, warning, and recommendations

Drishti checks metrics for **over 30 triggers**

Highlight the **file** that triggered the issue

•••	Drishti
DRISHTI v.0.3 -	
FILES: PROCESSES HINTS:	1190243 bin/8_benchmark_parallel jlbez_8_benchmark_parallel_id1190243_7-23-45631-11755726114084236527_1.darshan 2021-07-23 16:40:31+00:00 to 2021-07-23 16:40:32+00:00 (0.00 hours) 6 files (1 use STDIO, 2 use POSIX, 1 use MPI-IO) 64 romio_no_indep_rw=true cb_nodes=4
🖵 l critical issu	es, 5 warnings, and 5 recommendations
Application m	s read operation intensive (6.34% writes vs. 93.66% reads) ight have redundant read traffic (more data was read than the highest read offset) ight have redundant write traffic (more data was written than the highest write offset)
- OPERATIONS	
<pre>read/write reque</pre>	ssues a high number (285) of small read requests (i.e., < 1MB) which represents 37.11% of all sts) small read requests are to "benchmark.h5" oostly uses consecutive (2.73%) and sequential (90.62%) read requests oostly uses consecutive (19.23%) and sequential (76.92%) write requests ses MPI-IO and read data using 640 (83.55%) collective operations ses MPI-IO and write data using 768 (100.00%) collective operations ould benefit from non-blocking (asynchronous) reads could benefit from non-blocking (asynchronous) writes s using inter-node aggregators (which require network communication)

Multiple output formats:

Severity based on certainty and impact: high, medium, low, info

Current version only checks **profiling** metrics

textual, SVG, HTML

2022 | LBL | Drishti report generated at 2022-08-05 13:19:59.787458 in 0.955 seconds

• • • Drishti - DRISHTI v.0.3 -JOB: 1190243 EXECUTABLE: bin/8 benchmark parallel DARSHAN: <u>jlbez 8 benchmark p</u>arallel id1190243 7-23-45631-11755726114084236527 1.darshan EXECUTION DATE: 2021-07-23 16:40:31+00:00 to 2021-07-23 16:40:32+00:00 (0.00 hours) FILES: 6 files (1 use STDIO, 2 use POSIX, 1 use MPI-IO) PROCESSES 64 HINTS: romio no indep rw=true cb nodes=4 – 1 critical issues, 5 warnings, and 5 recommendations • METADATA -----▶ Application is read operation intensive (6.34% writes vs. 93.66% reads) ▶ Application might have redundant read traffic (more data was read than the highest read offset) ▶ Application might have redundant write traffic (more data was written than the highest write offset) OPERATIONS -↔ Recommendations: • Consider buffering read operations into larger more contiguous ones ↔ Since the appplication already uses MPI-IO, consider using collective I/O calls (e.g. MPI File read all() or MPI File read at all()) to aggregate requests into larger ones ▶ Application mostly uses consecutive (2,73%) and sequential (90,62%) read requests ▶ Application mostly uses consecutive (19.23%) and sequential (76.92%) write requests ▶ Application uses MPI-IO and read data using 640 (83.55%) collective operations ▶ Application uses MPI-IO and write data using 768 (100.00%) collective operations ▶ Application could benefit from non-blocking (asynchronous) reads ↔ Recommendations: ↔ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations (e.g., MPI File iread(), MPI File read all begin/end(), or MPI File read at all begin/end()) ▶ Application could benefit from non-blocking (asynchronous) writes Gecommendations:
 \hookrightarrow Since you use MPI-IO, consider non-blocking/asynchronous I/O operations (e.g., MPI File iwrite(), MPI File write all_begin/end(), or MPI_File_write_at_all_begin/end()) ▶ Application is using inter-node aggregators (which require network communication) ↔ Recommendations: ↔ Set the MPI hints for the number of aggregators as one per compute node (e.g., cb nodes=32)

Drishti can check for

HDF5 usage to fine tune

the recommendations

2022 | LBL | Drishti report generated at 2022-08-05 13:20:19.715639 in 0.996 seconds

Provides **actionable** feedback for users

↔ Recommendations:

↔ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations (e.g., MPI_File_iwrite(), MPI File write all begin/end())

Colution Example Enippet

▶ Application is using inter-node aggregators (which require network communication)

↔ Recommendations:

 \sim Set the MPI hints for the number of aggregators as one per compute node (e.g., cb_nodes=32)

– Solution Example Snippet –

1 # ----- # 2 # MPICH 4 export MPICH MPIIO HINTS="*:cb nodes=16:cb buffer size=16777216:romio cb write=enable:romio ds wri 8 # cb buffer size ---> controls the buffer size used for collective buffering 10 # romio cb read ---> controls collective buffering for reads 11 # romio ds write ---> controls data sieving for writes 15 export MPICH MPIIO HINTS DISPLAY=1 18 # OpenMPI / SpectrumMPI (Summit) # 19 # ----- # 20 export OMPI MCA io=romio321 21 export ROMIO HINTS=./my-romio-hints 23 # the my-romio-hints file content is as follows: 24 cat \$ROMIO HINTS 26 romio cb write enable 27 romio cb read enable 28 romio ds write disable 29 romio ds read disable 30 cb buffer size 16777216 31 cb nodes 8

Sample configurations are provided

Level	Interface	Detected Behavior	Jobs	Total (%)	Relative* (%)
HIGH	STDIO	High STDIO usage (>10% of total transfer size uses STDIO)	43,120	38.29	52.1
ОК	POSIX	High number of sequential read operations (≥ 80%)	38,104	33.84	58.14
ОК	POSIX	High number of sequential write operations (≥ 80%)	64,486	57.26	98.39
INFO	POSIX	Write operation count intensive (>10% more writes than reads)	26,114	23.19	39.84
INFO	POSIX	Read operation count intensive (>10% more reads than writes)	23,168	20.57	35.35
INFO	POSIX	Write size intensive (>10% more bytes written then read)	23,568	20.93	35.96
INFO	POSIX	Read size intensive (>10% more bytes read then written)	40,950	36.36	62.48
WARN	POSIX	Redundant reads	14,518	12.89	22.15
WARN	POSIX	Redundant writes	59	0.05	0.09
HIGH	POSIX	High number of small (<1MB) read requests (>10% of total read requests)	64,858	57.59	98.96
HIGH	POSIX	High number of small (<1MB) write requests (>10% of total write requests)	64,552	57.32	98.49
HIGH	POSIX	High number of misaligned memory requests (>10%)	36,337	32.27	55.44
HIGH	POSIX	High number of misaligned file requests (>10%)	65,075	57.79	99.29
HIGH	POSIX	High number of random read requests (>20%)	26,574	23.6	40.54
HIGH	POSIX	High number of random write requests (>20%)	559	0.5	0.85
HIGH	POSIX	High number of small (<1MB) reads to shared-files (>10% of total reads)	60,121	53.39	91.73
HIGH	POSIX	High number of small (<1MB) writes to shared-files (>10% of total writes)	55,414	49.21	84.55
HIGH	POSIX	High metadata time (at least one rank spends >30 seconds)	9,410	8.36	14.35
HIGH	POSIX	Data transfer imbalance between ranks causing stragglers (>15% difference)	40,601	36.05	61.95
HIGH	POSIX	Time imbalance between ranks causing stragglers (>15% difference)	40,533	35.99	61.84

Level	Interface	Detected Behavior	Jobs	Total (%)	Relative* (%)
WARN	MPI-IO	No MPI-IO calls detected from Darshan logs	109,569	97.3 -	
HIGH	MPI-IO	Detected MPI-IO but no collective read operation	169	0.15	5.55
HIGH	MPI-IO	Detected MPI-IO but no collective write operation	428	0.38	14.06
WARN	MPI-IO	Detected MPI-IO but no non-blocking read operations	3,043	2.7	100
WARN	MPI-IO	Detected MPI-IO but no non-blocking write operations	3,043	2.7	100
OK	MPI-IO	Detected MPI-IO and collective read operations	402	0.36	13.21
OK	MPI-IO	Detected MPI-IO and collective write operations	2,592	2.3	85.17
HIGH	MPI-IO	Detected MPI-IO and inter-node aggregators	2,496	2.22	82.02
WARN	MPI-IO	Detected MPI-IO and intra-node aggregators	304	0.27	9.99
OK	MPI-IO	Detected MPI-IO and one aggregator per node	29	0.03	0.95

Drishti

HANDS-ON

Install Drishti on your local machine

\$ pip install drishti

Run Drishti with the provided .darshan DXT traces

\$ drishti --verbose samples/REPLACE_WITH_FILE_NAME.darshan

On NERSC systems you can also use the container version with Shifter

\$ shifter --image=docker:hpcio/drishti -- drishti samples/REPLACE_WITH_FILE_NAME.darshan