
1

I/O Profiling

NERSC Data Day 2022
October 26, 2022

Alberto Chiusole
Data and Analytics Services Group, NERSC

Jean Luca Bez
Scientific Data Management, SciData Division, LBNL

2

I/O Stack: Moving Data To Disk

pd.read_csv(“/pscratch/…/data.csv”)

High Level I/O Libraries map
application abstractions onto
storage abstractions and provide
data portability.

HDF5, Parallel netCDF, ADIOS

I/O Middleware organizes
accesses from many
processes, especially those
using collective I/O.

MPI-IO, GLEAN, PLFS

Parallel file systems maintain a
logical file model and provide
efficient access to data.

Lustre, GPFS, PVFS, PanFS

I/O Hardware

Application

Parallel File System

High-Level I/O Library
I/O Middleware

I/O Forwarding

I/O Forwarding transforms
I/O from many clients into
fewer, larger requests;
reduces lock contention; and
bridges between the HPC
system and external storage.

Cray DVS, IBM CIOD, IOFSL

Productivity Interface

Productivity Interface is a thin
layer on top of existing high
performance I/O libraries, for
productive big data analytics

Python, Spark, TensorFlow

Scratch: /pscratch/sd/y/youruser
CFS: /global/cfs/cdirs/yourprj
Home: /global/homes/y/youruser

3

I/O Pattern Analysis

Contiguous I/O
● Read time: 0.1ms

Noncontiguous I/O
● Seek time: 4ms
● Rotation time: 3ms
● Read time: 0.1 ms
● Total time = 7.1ms

How to describe your I/O
● Number of Processes
● Number of Files
● Size per file
● Frequency of I/O
● Size per I/O
● Read, Write, Metadata?
● Shared File or not
● I/O Libraries
● Contiguous (Sequential)

vs Non-contiguous
(Random) access pattern

● Data alignment
● ...

4

● Darshan
○ Lightweight HDF5/MPI-IO/POSIX I/O profiling tool, developed by ANL

■ https://www.mcs.anl.gov/research/projects/darshan/
○ Loaded by default at NERSC: currently version 3.4.0

■ https://docs.nersc.gov/tools/performance/darshan/

■ module av -S darshan

darshan/3.4.0 (D) darshan/3.4.0-hdf5
darshan/3.3.1 darshan/3.3.1-hdf5

I/O Profiling: Darshan

https://www.mcs.anl.gov/research/projects/darshan/
https://docs.nersc.gov/tools/performance/darshan/

5

● Darshan is available at NERSC with and without HDF5 support
● Darshan with HDF5 support

○ Makes all execs load HDF5 (latest cray-hdf5-parallel)
○ Dependency problems if you’re using an old HDF5 (<1.10)
○ .. or when using different MPI libraries than Cray-MPI/MVAPICH

● You can build your own Darshan, see instructions in the docs
https://docs.nersc.gov/tools/performance/darshan/#hdf5-aware-darshan-build

● parallel NetCDF profiling is also supported by Darshan, enable it at configure

I/O Profiling: support for HDF5 et al.

https://docs.nersc.gov/tools/performance/darshan/#hdf5-aware-darshan-build

6

● Darshan log files produced at the end of successful executions of applications
○ All I/O calls are recorded, no sampling

■ I/O calls can spread several “layers”
■ i.e. NetCDF → HDF5 → MPI-IO → POSIX → Lustre (if I/O on scratch)

○ Log files can get very large depending on the number of process, I/O
patterns used, etc

I/O Profiling: Darshan

7

● Darshan is a “post mortem” tool, no live profiling/debugging
○ Applications need to have darshan injected at compile time or manually

loaded at runtime to profile I/O
● Cray Compiler wrappers (cc, CC, ftn) at NERSC inject Darshan into final exec

○ https://docs.nersc.gov/tools/performance/compilers/wrappers

I/O Profiling: Darshan

$ cat hello.c; cc hello.c
int main() { return 0; }

$ ldd a.out |grep darshan
libdarshan.so => /path/…/lib/libdarshan.so

https://docs.nersc.gov/tools/performance/compilers/wrappers

8

● Only MPI applications will trigger the tracing mechanism
○ Darshan overwrites MPI_Init and MPI_Finalize
○ Only applications that call MPI_Finalize will produce a darshan log file
○ For non-MPI applications, manually enable darshan with:

○ Warning: do not export darshan in LD_PRELOAD or you’ll trace any
application, including ls
■ Impacts yours and other users’ applications

○ MPI error with non-MPI exec? Build your own Darshan --without-mpi

I/O Profiling: Darshan non-MPI

DARSHAN_ENABLE_NONMPI=1 \
LD_PRELOAD="$DARSHAN_BASE_DIR/lib/libdarshan.so" \
 your_application.py

9

● Darshan log files
○ /global/cscratch1/sd/darshanlogs/<year>/<month>/<day>/
○ /pscratch/darshanlogs/<year>/<month>/<day>/
○ More than 1000 logs/day (more expected when Perlmutter system in

production)
● Filename format:

<username>_<jobname>_<jobid>_<time>_<date>-<uniqueid>-<timing>.darshan

elvis_vasp_id31418_231851_9-20-57716-76722841398621341237.darshan

I/O Profiling: Darshan log files

10

I/O Profiling: parsing Darshan logs
● Darshan scripts available at NERSC with any darshan module

○ darshan-parser /input_file.darshan
■ Parse content of Darshan log file and output text
■ Can be very verbose

○ module load texlive
darshan-job-summary.pl \

/input_file.darshan
■ Create a PDF report with useful I/O plots
■ More advanced plotting and analysis tools

with DXT Explorer and Drishti

11

● PyDarshan, new tool with Darshan 3.4.0
○ https://www.mcs.anl.gov/research/projects/darshan/docs/pydarshan/
○ $ pip install darshan

$ python
>>> report = darshan.DarshanReport('example.darshan')
>>> report.records['STDIO'].to_df()

○ Version must match library available in LD_LIBRARY_PATH
○ Useful to process/analyze log files programmatically or build API interface
○ May segfault w/ Darshan <3.4.0 log files

■ Run darshan-convert /example.darshan{,.converted}

I/O Profiling: PyDarshan

https://www.mcs.anl.gov/research/projects/darshan/docs/pydarshan/

12

Questions?

