
1

Migrating from Cori to
Perlmutter

Intro to Perlmutter and GPUs

Overview

December 2022 Jack Deslippe
Application Performance Lead

2

NERSC Systems Roadmap

NERSC-7: Edison
2.5 PFs
Multi-core CPU
3MW

NERSC-8: Cori
30PFs
Manycore CPU
4MW

2013 2016 2025

NERSC-9: Perlmutter
~120PFs
CPU and GPU nodes
>5 MW

2021

NERSC-10
ExaSystem
~20MW

3

AMD "Milan" CPU Node
2x CPUs

> 256 GiB DDR4
1x 200G "Slingshot" NIC

NVIDIA "Ampere" GPU Nodes
4x GPU + 1x CPU (>75 TF)

160 GiB HBM + DDR
4x 200G "Slingshot" NICs

Perlmutter system configuration

Compute racks
64 blades

Blades
2x GPU nodes or

4x CPU nodes

Centers of
Excellence
Network
Storage

App. Readiness
System SW

Perlmutter system
GPU racks
CPU racks

~6 MW

4

The System

More Details:
https://docs.nersc.gov/systems/perlmutter/architecture/

5

The System
GPU Nodes: CPU Nodes:

6

The System
All Flash Filesystem:

● 35 PB of disk space

● an aggregate bandwidth of >5 TB/sec

● 4 million IOPS (4 KiB random)

● It has 16 MDS (metadata servers)

● 274 I/O servers called OSSs

● 3,792 dual-ported NVMe SSDs.

7

Our Common Challenge

Enable a diverse community of scientific
users and codes to run efficiently on
advanced architectures like Cori, Perlmutter
and beyond

8

Comparison of Perlmutter and Cori
Attribute Cori (2016) Perlmutter (2021)

Peak Performance ~30 PF ~120 PF

Peak Power < 4MW ~6 MW

System Memory ~ 1PB (DDR4 + HBM) > 2PB (DDR4 + HBM)

Node Performance > 3 TF > 70 TF

Node Processors Intel KNL + Intel Haswell AMD EPYC (Milan) + Nvidia A100 GPUs

of Nodes 9300 KNL + 1900 Haswell 1536 GPU Accelerated + 3072 CPU only

Intra-Node Interconnect N/A NVLink across GPUs; PCIe

Inter-Node Interconnect Aries Slingshot

Filesystem 28 PB, 0.75 TB/s 35PB All-Flash; > 4TB/s

GPU Readiness Among NERSC Codes (Aug’17 - Jul’18)

9

GPU Status & Description Fraction

Enabled:
Most features are ported
and performant

32%

Kernels:
Ports of some kernels have
been documented.

10%

Proxy:
Kernels in related codes
have been ported

19%

Unlikely:
A GPU port would require
major effort.

14%

Unknown:
GPU readiness cannot be
assessed at this time.

25%

Breakdown of Hours at NERSC

A number of applications in NERSC
workload were GPU enabled already.

We leveraged existing GPU codes from
CAAR + Community

10

NESAP Motivation: CPUs vs GPUs

CPU (Haswell)
• 64 cores
• 2 threads each
• 2x256-bit vectors
• double precision

• ~2000 way parallelism
(64*4*8)

GPU (A100)
• 108 SM
• Up to 64 warps per SM

(2 active at a time)

• 32 SIMT per warp
• double precision

• 200,000+ way
parallelism
(108*64*32)

11

NESAP Motivation: CPUs vs GPUs

CPU (Haswell)
• 64 cores
• 2 threads each
• 2x256-bit vectors
• double precision

• ~2000 way parallelism
(64*4*8)

GPU (A100)
• 108 SM
• Up to 64 warps per SM

(2 active at a time)

• 32 SIMT per warp
• double precision

• 200,000+ way
parallelism
(108*64*32)

Oversubscribing GPUs
(w/ Warps and
Streams) helps hide
latency, too!

12

GPUs vs. CPUs Memory Bandwidth
CPU (Haswell)
• 128GB DDR
• ~120 GB/Sec Memory

Bandwidth

GPU (A100)
• 40GB HBM
• 1,500 GB/Sec Memory

Bandwidth

PCIe ~ 32 GB/Sec

Try to avoid moving
data back and forth
frequently

13

Challenge - There are Multiple GPU Optimization Avenues

1. You Need Orders of Magnitude More Parallelism

2. A100 GPU Memory is Very Fast. But, moving data to the GPU is
Not.

Other Second Order Considerations:

3. There is some overhead in launching kernels. Fusing short kernels together and
defining “CUDA Graphs” can help.

4. HBM is fast, but keeping data in registers, cache and “shared” memory is better!
Find optimal balance between maximizing parallelism and minimizing register spills.

14

Determining Which Optimizations to Pursue
Co Designing-Vendor Tools

NERSC worked closely with
NVIDIA to design speed of light
and roofline modeling in
NVIDIA’s NSIGHT profiler.

15

NESAP Strategy
NESAP is NERSC’s Application Readiness Program for preparing our workload for new systems.

Strategy: Partner with application development teams and vendors to port & optimize key applications
of importance to the Office of Science. Share lessons learned with with NERSC community via
documentation and training.

Resource Available to Teams: NERSC Staff technical liaisons, performance postdocs, access to
vendor application engineers, hackathons, early access to hardware (GPU nodes on Cori and
Perlmutter)

Simulation: 14 application teams
Data: 9 applications
Learning: 5 applications

16

This was an all hands on deck activity!

Lisa Gerhardt
(User Int lead)

Brandon Cook
(Simulation Area
Lead)

Laurie Stephey
(Python)

Paul Lin
(Early Science
Lead)

Steve Farrell
(Learning Area
Lead)

Zhengji
Zhao

Helen He
Training

Stephen Leak
(PE Lead) Neil

Mehta
Woo-Sun
Yang

Kevin Gott
(Hackathons)

Hannah
Ross

Rahul
Gayatri

Phillip
Thomas

Chris
Daley

Amanda
Dufek

Johannes
Blaschke
(Data Area
Lead)

Muaaz
Awan

Bill Arndt Bjoern
Enders

Rollin Thomas
(Jupyter)

Wahid
Bhimji

Jack Deslippe
(NESAP Lead)

Lisa Claus
(Math Libs)

17

Hackathons Have Been Effective for Reaching Code Teams

NERSC Supports Two Types of Hackathons:
1. Private N9 Project COE Hackathons

Quarterly with 2-3 NESAP teams + Cray and NVIDIA engineer
support. Project controlled and focused on FOM
optimizations. 12 conducted!

2. Public GPU Hackathons
(https://www.gpuhackathons.org) NERSC provided more
team mentors than any other institution to worldwide
events.

Allows us to reach NERSC teams all around the country and
world - amplifies NESAP impact to the broad NERSC
workload.

“Hackathons” have proven to be a highly effective tool for
preparing applications for new architectures.

NERSC adapted the hackathon format for the COVID
work-from-home environment. Instead of on-site,
multiple-day, full-day sessions, we moved to a series of
shorter sessions spread out over 6-8 weeks. Some
features of this format were popular and effective and we
plan to incorporate them into future hackathons.

https://www.gpuhackathons.org

18

NESAP Had a Big Impact on Applications (Example)

NESAP
Hackathons

LAMMPS

• LAMMPS is a classical molecular dynamics code with a
focus on materials modeling

• Production LAMMPS Kokkos version was highly
optimized over a series of hackathons (joint effort of
NERSC/NESAP, ECP, NVIDIA and HPE)

• Every kernel was rewritten and optimized individually

• SSI (system-wide throughput increase over Edison) in
atom-steps/second

 SSI: 35.3

Node vs Node Speedup: 171

19

Record Scale MD With LAMMPs
Gordon Bell Finalists

● Collaborative effort: University of South Florida, Sandia, NERSC and NVIDIA

● Billion atom molecular dynamics simulation (20B atoms)
○ SNAP quantum-accurate machine learned interatomic potential

○ Kokkos CUDA backend for NVIDIA GPUs

● Simulation model shock compression of carbon at extreme pressures and temperatures.

20

NERSC Staff Gordon Bell Finalists/Winners

2018 (Winners): Thorsten Kurth, Jack Deslippe, Mr. Prabhat
Climate/AI

2020 (Finalists): Charlene Yang, Mauro Del Ben, Jack Deslippe
Materials

2021 (Finalists): Rahul Gayatri
Molecular Dyn./AI

2022 (Finalists): Muaaz Awan
Bio-Informatics

2022 (Winner): Kevin Gott
Accelerator Physics

21

Observations

● Many applications have been successful is preparing for Perlmutter

● We’d like to keep engaging with the broad NERSC community to enable it to
use Perlmutter productively

○ We are continuing to encourage everyone to join community hackathons at
GPUHackathons.org – events all over the country in the next year

● Multiple GPU optimization angles exist. Profiling and roofline modeling are key
to determining optimization paths.

● The scientific community is motivated to optimize their codes for GPUs.

22

Perlmutter Supports Every GPU Programming Model

Fortran/
C/C++

CUDA OpenACC
2.x

OpenMP
5.x

CUDA
Fortran

Kokkos /
Raja

MPI HIP DPC++ /
SYCL

NVIDIA

CCE

GNU

LLVM

NERSC
Supported

Vendor
Supported

23

The System Has a Robust Programming Environment

Debuggers

DDT

GDB (CUDA-GDB)

Profilers

NSIGHT

CrayPat

Tensorboard

24

Getting started with GPUs in Python
• NumPy and SciPy do not utilize GPUs out of the box

• There are many Python GPU frameworks out there:
o “drop in” replacements for numpy, scipy, pandas, scikit-learn, etc

o CuPy, RAPIDS, cuNumeric (coming soon?)
o “machine learning” libraries that also support general GPU

computing
o PyTorch, TensorFlow

o “I want to write my own GPU kernels”
o Numba, PyOpenCL, PyCUDA

• Many of these GPU libraries have adopted the CUDA Array
Interface which makes it easier to share array-like objects
stored in GPU memory between the libraries

• There is also some effort in the community to standardize
around a common Python array API

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://data-apis.org/array-api/latest/

25

How do I run Jupyter notebooks on Perlmutter

https://jupyter.nersc.gov

Log In

https://jupyter.nersc.gov/hub/home (home or “console”)

Note: Your console may look a little different if
you don’t have Cori GPU access for instance

26

The Programming Environment Supports All Major GPU Prog. Models

• The NVHPC, GCC, CCE and LLVM (Clang) compilers provide additional
support for applications. NERSC Staff are part of ECP Flang (in testing)

• OpenMP 4.5/5.x support has been enabled in NVHPC through NERSC NRE

• NERSC is a member of the OpenACC board. Supported in multiple compilers.

• DPC++ supported on Perlmutter enabled via CodePlay NRE (LLVM)

• NERSC participating in ECP HIP project - Enabling/Testing on Perlmutter

• Kokkos works well on the system. Multiple NERSC Staff members are part of
the ECP Kokkos team.

27

Broad impact and enablement

Community GPU hack-a-thons

Perlmutter Supports all Major
Programming models and
languages

kokkos

Pre-installed/Optimized Community Codes

ortran Community Resources

Co Design-Vendor Tools

28

NERSC Invested in Performance Portable Programming with OpenMP
& DPC++ NRE (Off Project)

• OpenMP 4.5/5.x support has been enabled in NVHPC through NERSC NRE

 Multi-Year NRE that Utilized NESAP and ECP applications for testing

 Settled on a well-defined subset of the OpenMP standard for optimized
GPU acceleration

 Released in production NVHPC SDK

• DPC++ supported on Perlmutter enabled via CodePlay NRE (LLVM)

 Multi-Year NRE in collaboration with ALCF to enable optimized DPC++
execution on A100.

 Based on Open-Source LLVM and available to use on Perlmutter

29

Science Examples

30

Qubit Design With BerkeleyGW

31

Qubit Design
The BerkeleyGW NESAP team was
recognized as a Gordon Bell finalist in 2020.

● Si-214 system (scaled: 4Ry CT ;
3000 bands). 8 GPUs each.

MTXEL CHI-0 Total
OpenACC (V100) 64 27 100
OpenACC (A100) 49.8 14.2 69
CUDA (V100) 15.2 14.7 41
CUDA (A100) 12.6 8.7 26.2

Cori GPU (V100) vs
Perlmutter (A100)

32

Exabiome (Meta-Genomics)

● Microbes: these are single cell organism, e.g. viruses, bacteria
● Microbiomes: communities of microbial species living in our environment.

● Metagenomics: genome sequencing of these communities.

33

Exabiome (Meta-Genomics)
● A lot of progress has been made on GPU

algorithms for meta-genomics.
● This NESAP team wrote the world’s fastest GPU

aligners using a lot of clever strategies, newly
available GPU intrinsic instructions etc.

● With the help of warp level intrinsics, dynamic
data structures were written for GPUs from
scratch to re-write the Local Assembly stage.

34

Accelerating CFD with
GANs on Perlmutter
The FlowGAN project introduces a technique based
on a deep neural network architecture to augment
traditional numerical simulations of fluid flows. The
ML model is used to correct the numerical errors
induced by a coarse-grid simulation of turbulent
flows at high-Reynolds numbers.

FlowGAN architecture:

2.9x
performance
improvement
over CoriGPU
on ML
workflow

Performance
Comparison:

35

Exaop Performance for the Ab-Initio Molecular Dynamics

Ground-breaking real-world exaop calculation in
mixed FP16/32 run on Perlmutter

• The non-orthogonal local submatrix method
applied to electronic-structure based molecular
dynamics simulations exceeds 1.1 EFLOP/s in
FP16/FP32 mixed floating-point arithmetic

• Used 4,400 NVIDIA A100 GPUs on Perlmutter

• The method achieves a sustained fraction of peak
performance of about 80%.

• Example calculations are performed for
SARS-CoV-2 spike proteins with up to 83 million
atoms.

SARS-CoV-2 spike protein in aqueous solution: full cell
(left) and without hydrogen and oxygen atoms (right).

Robert Schade, Tobias Kenter, Hossam
Elgabarty, Michael Lass, Thomas D. Kühne,
Christian Plessl, Paderborn University

arXiv:2205.12182v1 24 May 2022

36

Early Successes in Data/Learning

Open Catalyst Project

● Deep learning to accelerate catalyst
discovery for reactions that are critical for
energy storage and climate change mitigation

● Scaling current models from O(10-100)
GPUs to O(1000) GPUs

Data-driven Atmospheric
Modeling

● ML Data-driven prediction of
high-resolution atmospheric flow
variables

● 2.9x improvement in throughput
using Perlmutter A100 compared
to Cori V100 GPUs

Anomaly Detection, Unfolding & Fast
Simulation in Particle Physics

● DL techniques used in searches for
fundamental particles at the LHC

● Expanding to more complex
models/approaches and higher-fidelity
generative networks

DESC (Dark Energy Science Collaboration)
● Using GPUs with Tensorflow, via Jupyter, for redshift

model-fitting
● Distributed TF at scale on GPU w/ NCCL
● Tested up to 2048^3 N-body simulation, distributed on

256 GPUs
● Multiple TB of RAM

37

Early Successes in Superfacility
LCLS

● Reconstruct molecular structure form
X-Ray scattering data

● Used Perlmutter for live data
processing (ie., determining molecular
structures during data collection),
enabling real-time steering of the
experiment

Lux-Zepplin (LZ)

● Dark matter detection
experiment used GPUs for
ray tracing in detector
simulation

● Used Perlmutter to extract
limits on dark
matter-nucleon interaction
for first science results

NCEM

● Multi-TB scale electron
microscopy image simulation to
train NN for materials research

● VASP to calculate XAS spectra to
train a ML model for automated
assignment of bond valence

● Real-time processing and
reduction of 4D-STEM data with
distiller.lbl.gov

Dark Energy Spectroscopic
Instrument

• DESI Spectral Extraction is an
image processing code
implemented in Python.

• 2.5x improvement in per-node
throughput using Perlmutter A100
compared to Cori V100 GPU (x25
compared to Edison).

38

Questions?

39

DESI
Dark Energy Spectroscopic Instrument

• DESI Spectral Extraction is an image
processing code implemented in Python.

• Completed major refactor of optimized CPU
code and initial GPU port in early 2020.

• Major optimization milestones include:
saturating GPU utilization using MPI and CUDA
Multi-Process Service, refactoring code to
leverage batched linear algebra operations on
GPU, and interleaving IO with computation.

• 25x improvement in per-node throughput using
Perlmutter compared to Edison baseline.

40

ExaFEL
XFEL requires real-time data analysis to make decisions during ongoing experiments.
Data collection rates outpacing computational resources at the experimental sites, requiring
a Superfacility approach.

In two years, NESAP has developed a highly scalable CUDA/GPU application.
CCTBX/nanoBragg w/ runtime improved from 12.3 hours on Edison, to 2 minutes

CCTBX/nanoBragg strong scaling on Summit.
Colored lines show number of concurrent
streams per GPU

41

ExaFEL
NESAP has been essential in developing a scalable
version of the MTIP algorithm (figure, right). By
offloading kernels to CUDA, MTIP/Spinifel runtime
was decreased by 2.4x over CPU-only code.

Illustration of SPI technique: the X-ray
beam interacts with only a few molecules at
a time

42

Large Scale Combustion Modeling w/ Pele

• DRM19 chemistry with 21
species

• ERK chemistry solver
• 2 AMR levels

Combustion Fuel 🡪 Methane

Figure above shows a statistically stationary flame. This flame
configuration has been extensively used in DNS calculations and in this

case it is used for scaling tests.
The configuration can be easily reproduced with different chemical

mechanisms.

43

NERSC, ALCF and Codeplay partnership on SYCL
● Target SYCL 2020 (latest

specification) support on
Ampere A100 GPUs

● Open LLVM based compiler

● Provides Portability for Apps
Developed for Aurora

● Extensions for A100
○ Asynchronous Copy
○ Asynchronous Barrier
○ Tensor core types/ APIs

