Dark Energy Spectroscopic Instrument (DESI)
Making a 3D Map of the Universe at NERSC

Stephen Bailey
LBNL Physics

NERSC User Group Annual Meeting
2020-08-17

— What we do at NERSC
— Challenges
— Successes
DESI@NERSC: Data Processing Basics

Nightly
- Every 10 minutes rsync new data from telescope at Kitt Peak, AZ → NERSC
- Process data using 10 nodes of realtime queue
- Results ready by breakfast for analysis during the day, to inform the following night’s observing plan
- Repeat nightly for 5 years to build 3D map of ~50M galaxies, quasars, stars
- 100s GB/night growing to ~10 PB and ~100M MPP hours/year in 5 years

Monthly / yearly
- Reprocessing runs with latest tagged code, starting from raw data
- Same code as nightly processing, but very different scaling needs
- This is the primary reason for DESI @ NERSC
- Also: one stop shopping for daily processing, big processing reruns, final science analyses
DESI uses the full NERSC ecosystem

Computing
- realtime, regular, interactive, debug queues

I/O
- CFS, scratch, HPSS
- Globus, rsync, data transfer nodes, portal.nersc.gov, spin container with nginx

Workflow management
- Workflow nodes, databases

Analysis & Development
- Jupyter
- Interactive & debug queues

QA monitoring
- Spin, cron jobs

For DESI, it’s much more than just FLOPS and I/O bandwidth
Challenge: queuing complex dependencies

One short night of data: $O(100)$ units of work with wildly varying time and CPU needs

For rerun of 5 years of data, submitting $\sim 110 \times 365 \times 5 = 200k$ jobs with interdependencies isn’t a slurm queuing best practice.
Attempt 1: Bundle each step x ~1 week of data

Pros:
- Big HPC-like jobs
- Most efficient packing (in theory)
- When it works, it works great

Cons:
- Still requires hundreds of jobs, only 2 of which are priority scheduled, and remainder are bigger than ideal for backfill
- Job B doesn’t start aging in queue until A finishes
- Couples otherwise completely independent tasks
 (fragile — one rank can take down all ranks)
Attempt 2: 1 exposure = 1 job, accept inefficiencies

Pros:
– Faster end-to-end for subset of data
– Decouples independent data
– Matches realtime job packing method

Cons:
– Many more jobs (~60k), won’t scale to 5 years of data without job launch throttling (like Fireworks launcher)
– Wasted cores within a job during certain steps
– We’ve started thinking of ways that we would like to couple different exposures for algorithmic reasons

We’re still working on this
– SIG was helpful for learning options
– Only 2 priority-scheduled jobs is big limit on experimental data processing
– Ironic that an HPC center has scaling problems with its scheduler: investment here could improve effective use of future systems
Successes

Testing at NERSC
- Nightly cronjob — simple but effective
 - “git pull” all repos
 - run unit tests (confirms that it works at NERSC, not just travis-ci configuration)
 - run basic integration test
- Jupyter notebook orchestrates end-to-end integration test for quarterly software releases
- How will NERSC support continuous integration testing on GPUs?

Workflow resiliency [Work in Progress]
- Invest in easy *recovery from problems*, not just *avoiding problems* in the first place
- O(1%) transient job failures seems common across experimental projects
- Example: 0.1% failures on 1M images = 1000 failures
 = more than a human can easily handle if recovery is custom handwork

NESAP Optimizations
- One full-time postdoc + part-time senior consulting resulted in 10-25x speedups [Stephey, Margala, Thomas]
Summary

DESI is making a 3D map of the universe using NERSC as the primary computing center

- Yearly reprocessing drives the need for HPC
- Also benefit from one stop shopping for data processing + science analyses

Challenges

- Queueing N>>1 algorithmic steps with very different parallelism needs
- Not covered here
 - Downtimes, mean time-to-failure
 - I/O performance fluctuations, especially on metadata
 - Coordinating dataflow within NERSC (HPSS, scratch, CFS, BB, /tmp)

Successes

- Testing @ NERSC
- Resilient workflows [WIP]
- NESAP code optimizations
Thanks to
- You (NUG meeting attendees)
- NERSC (consulting, NESAP, liaisons)
- Our funding agencies
- David Lawrence for organizing NUG SIG for Experimental Facilities