Trinity / NERSC-8 Use Case Scenarios

April 5,2013

This document provides additional views of anticipated usage scenarios for two of
the advanced architecture features of Trinity, the burst buffer and power/energy
measurement and control. This document may change as our understanding of
needs and technologies evolves. These scenarios are not intended to include all
intended uses of these technologies.

Format: Embedded in the primary scenario descriptions are numbered tags referring to
requirements (listed following each scenario) that are inferred by the scenario. The reader
should read the specific requirement, specified by number, at the time it is encountered in each
scenario. Secondary scenarios (simply labeled scenario) are provided to describe additional
capabilities and do not include direct pointers to requirements.

Burst Buffer Scenarios

Primary Scenario: Checkpoint Restart with Pre-Stage and Drain

A) A new application's latest checkpoint is loaded into the burst buffer to be
available for the new job to begin. This may occur before the previous job
terminates in order to effectively pre-stage data. (4)(5)(6)

B) The application issues a checkpoint in which data is written in a ‘burst’ to the
burst buffer. Necessary bandwidth is estimated to be in the range of 4.4 -
17.8 TB/s (Trinity)! or 2.2 - 8.9 TB/s (NERSC-8)2. (2)(7)

a. Job terminates unexpectedly while writing checkpoint
i. Partially written checkpoint is removed or eventually
overwritten. (6)(8)
ii. Job restarts using last known good checkpoint and is read from
burst buffer, staged from the parallel file system to burst
buffer, or read directly from the parallel file system. (4)(5)(6)
iii. Job begins computing and restarts at step B.

1 For Trinity, this bandwidth range is estimated based on a JMTTI in the range of 10
- 20 hours and an aggregate memory size in the range of 2 - 4 PB. Based on those
ranges and a JMTTI / delta ratio of at least 200 (delta is time to checkpoint 80% of
aggregate memory), maximum delta value is in the range of 180 - 360 seconds and
minimum burst buffer bandwidth is in the range of 4.4 - 17.8 TB/s.

2 For NERSC-8, using the same calculation based on an aggregate memory size range
of 1 - 2 PB, the corresponding minimum burst buffer bandwidth is in the range of
2.2-89TB/s.

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 1 of 9



C) Every nth checkpoint, or after some time interval, the data is drained off
asynchronously to the parallel file system (PFS). The data must be drained
fast enough to ensure space is available for the next checkpoint. This
performance must be maintained while other applications are writing their
checkpoints.? Slower drains to the PFS will expose the job to a higher
probability of failure without a recent checkpoint. (1)(3)(5)(7)

a. Failure case - job fails to write to parallel file system
i. Detection of failure and restart drain from last known good
checkpoint or wait for next available checkpoint depending on
relative age and time remaining in job. (4)(5)(6)

D) The application writes its final checkpoint to the burst buffer. This last
checkpoint is drained to the PFS. The application will not be doing additional
computing and the job allocation will soon end. This is similar to step B,
except the burst buffer must ultimately clean up any remaining data or pre-
stage data for the next job. If the burst buffer in not available or post
completion draining is not available, the final checkpoint may be written
directly to the PFS. (2)(4)(5)(6)(7)

E) The first application terminates. Cleanup is completed and the next job starts
execution. If post completion drain is available, it will continue after the next
job has started. (6)(8)

Requirements for Checkpoint Restart with Pre-Stage and Drain

1. The primary requirement is that incorporation of the burst buffer into the
system design should be cost-justified by the increase in expected workload
productivity in the face of expected levels of system hardware and software
failures (including failures of the burst buffer itself).

2. Checkpoint data must be written to the burst buffer rapidly enough to reduce

the time required to complete a checkpoint (as compared to the PFS).

3. Selected checkpoints must be copied to the PFS asynchronously to

application execution.

4. Checkpoint data is available from the burst buffer for restart within an
existing or immediately scheduled new job after partial system failure or to
the extent practical, after burst buffer failure.

Checkpoint data is available from the PFS for restart on a new job.

6. Checkpoint data can be staged into the burst buffer prior to job start and also
drained (written to the PFS) after job completion. This requirement may be
satisfied after initial delivery.

7. Burst buffer speed and bandwidth estimates must be based on hardware and
file system that are at least 80% full and have undergone a realistic history of
file writes and deletions.

u

3 Future burst buffer designs will always require data to be staged on the burst
buffer in order to restart so that a slower parallel file system could ultimately be
provisioned.

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 2 of 9



8. This document does not attempt to prescribe specific behavior for handling
burst buffer errors. Rather, hardware or software failures in the use of the
burst buffer should be handled in a manner that provides the greatest
practical opportunity to continue job execution, perhaps in a degraded mode
that bypasses the burst buffer.

Burst Buffer Secondary Scenarios

The remaining Burst Buffer scenarios describe additional capability beyond
checkpoint-restart. It would be beneficial to take advantage of such cases, but they
must still adhere to the burst buffer requirements, particularly (1)(8). They do not,
however, directly address the other requirements as the primary scenario does.

Scenario: Data Cache — Common Read Only Files — Demand Load
This scenario is motivated by poor performance experienced when every compute
node attempts to read the same shared object libraries or configuration data files.
A) Each compute node issues a read for a common read only file, typically a
shared object library, a configuration file, or a data file that is shared by many
or all nodes of the workload.
B) The read is recognized as referring to a file in the data cache, perhaps by its
location in the file system name space.
C) The file is loaded into the burst buffer from the backing file system.
D) The compute node’s read is satisfied from the burst buffer copy.
E) The same burst buffer copy satisfies reads from additional compute nodes.
F) The burst buffer copy is deleted on job termination or to free up space for a
more recent read request.

Scenario: Data Cache — Common Read Only Files — Data Staged
This scenario is similar to the demand load case, except the files are loaded into the
burst buffer prior to job start.

A) Atjob submission time, a list of files is made available to the job scheduler

B) In a manner similar to pre-launch staging of checkpoints, when the time for
job start approaches, the listed files are copied into the burst buffers
associated with all the nodes of the future job.

C) After job start, each compute node issues a read for a common read only file,
typically a shared object library, a configuration file, or a data file that is
shared by many or all nodes of the workload.

D) The read is recognized as referring to a file in the data cache, perhaps by its
location in the file system name space.

E) The compute node’s read is satisfied from the burst buffer copy.

F) The burst buffer copy is deleted on job termination.

Scenario: Temporary Job Data — Out-of-Core and other kinds of working space
This scenario is motivated by workloads that process more required data than main
memory can hold. Typically in such cases the data is not present before the job is
run and does not need to be stored after the run, thus all they require is an

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 3 of 9



allocation of burst buffer resources. Such workloads are typically optimized to fetch
data from physical disks and may be improved upon with fast access to a large
amount of fast burst buffer storage.
A) A paging space could be implemented on burst buffer. Paging strategies are
well understood and can likely be used with this, but may decrease the life of
SSDs. Technology to monitor and possibly limit a particular job’s impact on
life of SSDs is implicitly required if the burst buffer is used as paging space.
B) Streaming algorithms may allow for multiple passes on huge volumes of data,
especially if the burst buffer is attached to additional compute resources.

Data Analysis and Visualization Secondary Scenarios

The following scenarios are motivated by the opportunity to use the burst buffer to
perform analysis and visualization tasks that have not previously been possible.
This section covers the entire category of data analysis, including reductions, feature
extraction, statistical analysis, compression and visualization. Note that
visualization is a subset of data analysis. Data analysis workloads may also make
use of the Data Cache and Temporary Data use cases described previously.

The three burst buffer use cases discussed below are in transit, post-processing and
ensemble visualization, and are differentiated from each other by where the data
resides prior to being read into the burst buffer.

Scenario: Data Analysis and Visualization: In Transit

This scenario includes analyzing data coming from the compute node after it is
generated by simulation, but before it is written to disk. Data arrive from the
compute nodes, just after they have been generated. These may be part of the
checkpoint process, or may have been reduced on the compute node in situ, for
example, as a visualization dump or a statistical reduction. Here are some forms this
might take:

A) In transit analysis/visualization of simulation. Data are written to the burst
buffer from the compute nodes, as part of a checkpoint or in the form of
visualization dumps. The data are analyzed o r visualized on the burst
buffer and written to disk.

B) In transit analysis/visualization, followed by spillover. Data are written to
the burst buffer from the compute nodes, partially analyzed or reduced, then
the product is written to other resources, such as visualization nodes for
further processing.

C) Comparative analysis and visualization. Data are written to the burst buffer
from the compute nodes, and compared immediately to data from simulation
or experiment that had been previously stored and is now read in to the
burst buffer for the purpose. The incoming data might also be compared to
data from previous time-steps still on the burst buffer.

Scenario: Data Analysis and Visualization: Post-processing— Read/Write Files —
Data Staged

This scenario includes analyzing data from simulations that have been stored on the
file system. This scenario is similar to the demand load case, except the files are

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 4 of 9



loaded into the burst buffer prior to job start. Typically each task or process
addresses its own share of the data exclusively.

A) Atjob submission time, a list of files is made available to the job scheduler

B) In a manner similar to pre-launch staging of checkpoints, when the time for
job start approaches, the listed files are copied into the burst buffers
associated with all the nodes of the future job.

C) After job start, each compute or visualization node issues a read for its file,
typically a data file that is associated with the process on that node. For
example, a segment of a parallel database.

D) The read is recognized as referring to a file in the data cache, perhaps by its
location in the file system name space.

E) The compute/visualization node’s reads and writes are satisfied from the
burst buffer copy. Typically these read and write requests are not contiguous,
with frequent seeks.

F) The burst buffer copy is migrated back to disk on job termination.

For visualization, this process will include geometry extraction from data, and may
include on-platform rendering as well as other forms of analysis. This is the
traditional form of visual analysis, and for scientific reasons, will remain part of the
workflow.

[t will also be possible to read many time-steps of reduced visualization data into
the burst buffer from the file system, and analyze these as an ensemble across time
steps, providing a new visualization capability.

Scenario: Data Analysis and Visualization: Ensembles of Data.

This scenario includes the analysis of large ensembles of data from related
simulations. This may take place in transit, as the data from the simulations are
written to the burst buffer, or in post-processing, as datasets are read from the file
system, or as a mixture of both.

A) Ensemble visualization. Data is written to the burst buffer from the compute
nodes, as part of a checkpoint or in the form of visualization dumps. Data
may also be read from the file system. Data from different simulations are
compared.

Notes on the burst buffer in terms of visualization use

¢ Visualization use would depend on both reads and writes from the burst
buffer.

e If the burst buffer is implemented on a node with processing capability, it
could be useful to do reduction, analysis or visualization on the burst buffer
itself.

* Reductions may be saved on the burst buffer for further analysis, to be
compared with future time-steps or with data already saved to disk.
Sufficient memory would be useful for doing comparisons of small parts of
data with incoming data.

* Reductions may also be sent to a special-purpose rendering machine or to
remote machines, via the LAN or DISCOM, so reasonable connectivity to
those resources would be useful.

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 5 of 9



* Reductions and analysis products may be saved to disk, as in the checkpoint
case.

* The burst buffer would be shared between the existing checkpoints and the
analysis data and products, so attention to scheduling or partitioning of the
burst buffer will be needed. How this is done would depend on the size of the
reduced analysis data relative to that of the checkpoint data.

* Visualization may be batch or interactive. Interactive visualization is
inherently bursty, so this would also impact scheduling schemes.

Power/Energy Measurement and Control Scenarios

Primary Scenario: Increase Application Efficiency

Discussion: Application Efficiency will be determined by an as yet undefined metric
that will likely include performance, energy, priority of job, amortized node expense
and time-of-day (to list a few) as variable and/or weighted parts of eventual fused
metric (goodness value). In concept, this is similar to Energy Delay Product (EDP)
but more inclusive and targeted to a particular sites needs.

This scenario, for the purposes of simplification, will focus on performance (wall
clock execution time) and energy (combined total energy used by a single
application on all nodes used by the application for the duration of application
execution).

A) Execute a large-scale production scientific computing application
(application) using the default system environment and parameters. This
first run is a productive run that produces productive results. This run also
establishes the baseline energy and performance characteristics of this
application (1) (Note: other factors might affect the application such as scale
and input problem requiring separate or additional analysis).

B) Analyze the energy and performance data to determine what available tuning
parameters might be applied to follow on executions (2).

C) Execute SAME application (keep as many factors, number of nodes, problem
type etc. the same as possible) with tuning parameters applied (3). The
energy and performance results from this run will be judged relative to the
baseline execution (1,2). Note, this is also a productive run producing useful
production results.

D) Analyze (reference (B), 2).

E) Additional component level analysis to determine if additional tuning can be
productively applied (4).

F) Additional executions of the SAME application until range of productive
tuning parameters are established (1,2,3,4).

Notes on Increasing Application Efficiency:

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 6 of 9



This scenario focuses on applying tuning parameters to hardware power
management capabilities, e.g. affecting the frequency and subsequent energy use of
the CPU. This could be accomplished in a number of ways including setting P, C or S
states, or any other architectural mechanism exposed for this purpose. We value any
opportunity to affect energy used by ANY component if it can be leveraged to
increase the energy efficiency of our applications, and/or to operate the system
within its externally allocated and variable power budget. The cycle outlined is a
general high-level scenario. The process is repeated using production applications
so all time consumed for analysis is the result of productive runs. The output of the
analysis is an understanding of the effect on performance and energy of tuning
parameters that can be applied to this application at this scale for this problem. The
knowledge gained by this analysis can be used to simply run the application more
efficiently (using the proposed fused metric for example) or to implement intelligent
power capping of the overall platform (described in a separate scenario).

Requirements for Increasing Application Efficiency:

1) To obtain an energy profile, the amount of energy used by a single
application on all nodes used by the application, the minimum requirement is
a node level measurement capability. Since an application will be executed
on a large number of nodes and there is no expectation that these nodes will
coincide perfectly with a set of cabinets a node level measurement capability,
rather than cabinet level, is required. The frequency of data sampling per
node should be greater than or equal to, one sample per second to obtain
enough fidelity for analysis and comparison with subsequent runs. It is
expected that at the node level the data samples will be DC measurements,
discrete current and voltage values.

2) This analysis step implies that the measurement data be made available for
analysis, at a minimum, after application execution. Also implied is a
transport mechanism to coalesce the data to a single location. The transfer of
data from the points of measurement must scalable and efficient to be of
utility. Further, this also implies tools are available for analysis such as
generating a energy total for all nodes involved in the application and
possibly visualization capabilities to analyze characteristics of the energy
profile of the application over the duration of the run. These tools will help
determine the most productive tuning parameters to apply to subsequent
executions. An out-of-band tightly integrated Reliability Availability and
Serviceability (RAS) subsystem could be leveraged to accommodate many of
these capabilities.

3) To affect the energy used, tuning parameters must be exposed, for example,
to the OS, run-time, launch mechanism, scheduler or application library. For
example, before application execution all cores of all nodes that will host the
application are set to a lower frequency state. After execution, the nodes are
reset to default values. This implies an ability to control CPU frequency, for
example. This is more of a static approach to CPU frequency tuning.

4) Initial tuning parameters may be applied statically. Multiple static tuning
configurations may be applied and analyzed based solely on composite or

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 7 of 9



node level analysis. It may be determined that to achieve additional
application energy efficiency, or to achieve any relative to baseline, dynamic
tuning methods must be applied. Component level measurement is required
to determine where energy is being used within a node. For example, intense
compute, communication or [0 phases can be observed with component level
measurement. Dynamic tuning can be applied to allow the CPU to run at very
high frequency during computationally intensive phases. During heavy
communication or 10 phases the CPU can be set at lower energy saving
frequencies. Other components can be tuned if the capability is available and
exposed.

Primary Scenario: Power Capping

Discussion: Power Capping, minimally defined as the ability to proscribe the
instantaneous power draw, energy use (over time) or power/energy fluctuation
(including rate of change and magnitude). This scenario will suggest that two
methods of Power Capping should be applied in conjunction to maximize the use of
the underlying resource while protecting against accidental violations of Power Cap
parameters. This scenario will assume that the facility manager has defined, for
example, the sites power, energy and cooling parameters for the period of time
covered in this scenario and the Platform manager has defined any other
parameters that will be used to define Power Capping levels such as other local
policy considerations used in the fused metric defined in Scenario 1. The two
approaches are: 1) hardware Power Cap - defined by setting a physical limit to the
amount of instantaneous power that the platform, cabinet, node or component is
limited to, or rate of change limitation, 2) Power aware scheduling - defined as
intelligently scheduling jobs to maintain a mix of power consumption (or energy
use) that complies with site policies.

A) System Administrators set platform Power Caps as directed by Facility
and Platform management (1).

B) Users schedule applications (over a period of time) that have been
previously analyzed (as in Scenario 1)(2).

C) Scheduler launches applications with tuning parameters necessary to
keep overall platform within Power Cap parameters (3).

D) Scheduler does not adequately launch application mix to maintain
power/energy use within Power Cap parameters (4).

Notes Power Capping:
This does not account for a dynamically changing Power Cap, jobs launched based
on what caps were at the time of launch.

Requirements for Power Capping:
1) This activity requires an integrated ability to configure the platform as a
whole, at the cabinet, node and or component level to gate the power and or
energy consumption at a hardware level. Efficiently configuring the platform

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 8 of 9



to accomplish this implies that this is an activity that can be accomplished
while the platform is operational (it will not be practical to only have the
option of accomplishing this configuration at boot time for example). As
described in Requirement 2 - Scenario 1, a RAS system could be leveraged to
efficiently accomplish this activity.

2) Implies there is a way for either the user to specify the range of
power/energy tuning parameters and associated profile information or this
information is available by some other means to the scheduler.

3) In addition to the requirements described in Scenario 1, which enable
individual applications to be analyzed from a power and performance
perspective, this activity requires an ability for a scheduler to use the specific
power and energy characteristics and tuning parameters as part of the fused
metric calculation mentioned in Scenario 1 to determine how (what tuning
parameters) and when (when this application given the known
power/energy profile) each application can be scheduled to run to most
efficiently use the resource while remaining within the proscribed Power Cap
parameters.

4) This implies that the power parameters configured in step (A) act as a fail-
safe preventing the platform, cabinet, node or component from violating the
Power Cap parameters.

Trinity Use Case Scenarios (SAND 2013-2941 P Unclassified, Unlimited Release) Page 9 of 9



