
An Application Based MPI
Message Throughput Benchmark

Brian W. Barrett and K. Scott Hemmert
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1319

e-mail: bwbarre@sandia.gov, kshemme@sandia.gov

Abstract—Recent trends in high performance computing have
renewed interest in the ability of platforms to sustain high
message throughput rates. The continued growth in platform
scale, combined with emerging application areas, are pushing
platforms to support increasing message rates. Best-case message
throughput has grown in previous hardware generations due
to growing clock rates and software optimization techniques.
However, previous work has shown that MPI receive queue
length and cache hit rates can drastically impact message
throughput, leading to a significantly lower worst-case message
throughput. This paper introduces the Sandia Message Through-
put benchmark which measures message throughput using a
communication pattern which is neither best-case nor worst-
case, but which mimics communication patterns found in real-
world applications. Results on InfiniBand, Myrinet, and Cray XT
platforms are presented, and suggest that message rates on some
networks are greatly impacted by cache invalidation between
communication phases, simultaneously sending and receiving,
and by communicating with more than one peer simultaneously.

I. INTRODUCTION

For HPC systems, interconnect performance has long deter-
mined application scalability. As machine sizes are growing
to tens of thousands of nodes and beyond, the interconnect
plays an even more crucial role in how effectively applications
can utilize the compute resources of the machine. The large
(and growing) node counts of modern machines are making
it increasingly important to properly balance the processing
capabilities of large machines with their interconnect perfor-
mance. Proper balance will ensure machines that are both
more cost effective and more energy efficient. To enable this
capability it is necessary to be able to quantify interconnect
performance and correlate it to application scalability. This,
unfortunately, is not an easy process.

The collection of meaningful measurements for interconnect
performance can be quite challenging. The first thing to
determine is which properties of the interconnect are most
important. In this regard, the three most commonly measured
metrics are bandwidth, latency and message rate. However,
other parameters, such as independent progress, host overhead,
etc., can also impact application performance. The more diffi-
cult question is: how should the data be measured given that
interconnect performance can vary dramatically based on the
operating conditions of the application using it? Most modern
benchmarks do not account for the impact of application
behavior on interconnect performance. As an example, the

average length of the MPI message queues will impact both
the latency and message rate [1] that the network can deliver.

Of the three main measures of interconnect performance,
message rate seems to be receiving the most attention lately.
Message rate is the measure of how many distinct messages
a node (or process) can send and/or receive in a given time
period, and is often referred to as message throughput. For
small messages, the message rate will determine how much
of the available network bandwidth can be effectively utilized;
maximum bandwidth able to be utilized is determined by
multiplying the message rate and message size. For example, a
message rate of 1 million messages per second would only be
able to sustain a bandwidth of 8 MB/s for messages of size 8
bytes and a bandwidth of 1 GB/s for messages of 1 KB. Thus,
the message rate determines the minimum message size which
can saturate the bandwidth of a given network. This effect
creates the typical “S-curve” pattern generated by streaming
bandwidth benchmarks.

With increasing network bandwidths, message rate is be-
coming ever more important and interconnect architectures
such as InfiniPath [2] are placing increased emphasis on
high message rate. Recent advances have pushed raw MPI
message rates to close to 10 million messages per second.
This means that on a 4 GB/second network, one would expect
to be able to saturate the bandwidth with 400 Byte messages.
Unfortunately, message rate has traditionally been measured in
idealized conditions, not realizable during typical application
runs, making the measured message rates over-optimistic.
More importantly, both hardware and software vendors have
optimized their products to the prevailing microbenchmarks,
but it is unclear if these optimizations offer any real advantage
to applications.

This paper describes the Sandia Message Throughput
Benchmark, which tests message rate in conditions more
closely resembling those found during application runs. It does
this by mimicking the computation and communication phases
generally found in scientific applications. These communi-
cation patterns are described in Section III. Section II will
describe related work and provide background information.
Data from running the benchmark on three platforms, each
using a different type of interconnect, will be presented in
Section IV, and conclusions are found in Section V.

 978-1-4244-5012-1/09/$25.00 ©2009 IEEE

II. BACKGROUND

Interconnection networks in modern HPC systems have a
variety of performance parameters which impact application
performance. Many metrics have been developed to try to
describe this performance. One attempt to model these pa-
rameters and access their impact on applications led to the
development of the LogP model [3], [4]. Follow-up work
incorporating an analysis of long messages generated the
LogGP [5] model. More recent work has developed techniques
for measuring the LogGP parameters on modern networks [6].
In addition to these modeling efforts, there is a body of work
on benchmarks to measure various aspects of interconnect
performance. NetPIPE [7], and Netperf [8], Ohio State’s
OMB [9], and Intel’s MPI Benchmarks [10] can be used to
measure network latency and bandwidth.

In addition to these general measures, more specific work
has been done to quantify MPI performance. The OSU bench-
mark suite [9] has microbenchmarks for measuring latency,
streaming bandwidth and message rate, among others. Further
research has worked to measure additional areas of intercon-
nect performance such as overlap [11]. While others have
looked at the impact of queue lengths [1] and overhead and
buffer re-use [12].

Unfortunately, many of the network microbenchmarks mea-
sure performance in idealized conditions that do not match
those present during application execution. Additionally, it is
not uncommon for hardware and MPI developers to optimize
to the most common microbenchmarks. Many areas where
such optimizations improve microbenchmark performance, but
have little to no impact on application performance have
been identified in [13]. One issue identified with traditional
microbenchmarks is that the only operation performed is
the sending and receiving of data, which means that the
MPI data structures are always in cache. This is not the
typical operating environment for real applications, which will
intersperse communication with computation.

Another area of specific concern is message coalescing.
Both Open MPI [14] and MVAPICH [15] coalesce short
messages when running with software flow-control. There
are many ways to coalesce messages; the simplest method
implemented today works only for zero-byte messages with
identical MPI envelope information. However, for coalescing
to be generally useful to applications, it must work on mes-
sages with data sizes greater than zero and across messages
with non-identical tags.

III. BENCHMARK

The Sandia Message Throughput Benchmark is designed to
measure message rate under conditions mimicking those found
in typical scientific applications. This results in a benchmark
that tests a set of three different communication patterns, all
of which are modeled after common application patterns. In
particular, pair-based communication, pre-posted receives, and
an all-start model are tested. A single-direction pair-based
test which is similar to the communication pattern found
in most message rate benchmarks is also provided to offer

comparison and validation with other existing benchmarks.
All tests share a number of features in common, including
a computation/communication phase design, variable tags in
communication, and the ability to send data (rather than
using 0-byte messages) during communication. In addition,
the reported message rate for each process includes both the
sends and receives accomplished by that process.

Many large-scale applications can be divided into periods of
computation and communication, which repeat for the life of
the application. During the computation phase, a significant
portion of main memory, at least as large as the cache
available on modern processors, is modified, resulting in cache
misses during communicate phases. Each test includes a cache
invalidation step, which simulates an application’s working set
for each computation phase. Previous work has shown that
communication performance, particularly when MPI message
matching occurs on the main processor, is sensitive to cache hit
rates. An application is likely to invalidate cache lines holding
MPI structures during the computation phase, as any real
working set is likely at least as large as cache. Unlike previous
work, however, our message rate benchmark issues multiple
communication requests in a single communication phase,
allowing for some cache-use efficiency during communication.

In order to prevent benchmark optimizations, such as ag-
gressive message coalescing, from skewing message rates
from those achievable in an application, the benchmark both
changes tags for each message and optionally sends a payload
from application memory in each message. The size of the
messages transferred is a run-time configurable option, and
defaults to 8 bytes. The sending of a payload also exposes the
impact of transferring to/from host memory during communi-
cation, which greatly impacts both latency and message rate
for some networks.

A. Single-Direction Communication
The single-direction communication test mimics existing

message rate benchmarks. Unlike the other tests presented in
this section, we do not believe this test is representative of any
real-world application. However, in our own validation during
benchmark development, it was useful to verify our benchmark
against existing message rate benchmarks.

Processes are paired off, with the lower rank sending
messages to the higher rank in a tight loop. The individual
pairs synchronize before communication begins to minimize
jitter in measurements. Process pairs are chosen to minimize
the number of pairs placed on the same node and maximize
traffic across the network. Fig. 1 presents psuedo-code for
the benchmark kernel. The loop is slightly reordered in the
benchmark to reduce the number of conditionals in the timing
block, but the communication pattern is preserved.

B. Pair-based Communication
In the pair-based communication pattern, shown in Fig. 2,

each process communicates with a small number of remote
processes (variable as a configuration parameter) in each
communication phase. The communication is paired, so that

for (i = 0 ; i < niters ; ++i) {
nreqs = 0;

cache_invalidate();
synchronize();
start = timer();
if (rank < size / 2) {
for (k = 0 ; k < nmsgs ; ++k) {
MPI_Isend(send_buf + (nbytes * k),
nbytes, MPI_CHAR, rank + (size / 2), tag,
comm, &reqs[nreqs++]);

}
} else {
for (k = 0 ; k < nmsgs ; ++k) {
MPI_Irecv(recv_buf + (nbytes * k),
nbytes, MPI_CHAR, rank - (size / 2), tag,
comm, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
total += (timer() - start);

}

Fig. 1. Message rate benchmark with single-direction communication. Each
process either sends or receives messages with exactly one other peer.

a given process is both sending and receiving messages with
exactly one other process at a time, rotating to a new process
when communication is complete. A best effort is made
to ensure that the remote processes a given process must
communicate with are located on remote nodes, in order to
more fully stress the network. This is likely a departure from
our application-centric approach, as it is likely that at least
one communicating process would be on the same node in a
multi-socket/multi-core environment.

Although the test posts non-blocking receives from a given
remote process before sending to that process, synchronization
can not be guaranteed and the test may result in a number
of unexpected messages. It is likely that for a given process,
messages will be both expected and unexpected, although the
ratio is unknown and likely to vary between tests. Unlike the
other application-based tests discussed later, the pair-based
communication only posts nmsgs receives at a time, meaning
the test has the smallest number of outstanding receives at
a given time, which may be beneficial on platforms with
hardware support for message processing.

C. Pre-posted Communication
In order to increase the probability of expected message

reception, a number of applications pre-post receives for the
next communication phase before starting the computation
phase. The long computation phase essentially guarantees that
receive buffers will be available during the communication
phase and that all messages are expected by the MPI layer.
On networks with hardware matching, this communication
paradigm can be especially useful, as the number of memory
copies, and therefore wasted memory bandwidth, is reduced
to a minimum.

for (i = 0 ; i < niters ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);
start = timer();
for (j = 0 ; j < npeers ; ++j) {
nreqs = 0;
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset,

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
}
total += (timer() - start);

}

Fig. 2. Message rate benchmark with pair-based communication. Each
process sends and receives messages with a number of remote processes,
one at a time.

The pre-posted communication test simulates such a model
by posting nmsgs receives from all communicating processes,
invalidating the cache to simulate the computation working
set and synchronizing with a barrier, followed by starting
nmsgs sends to all communicating processes. Although the
test guarantees that all receives are posted, it also tends to
push the receive queue out of cache for early receives due
to the cache invalidation between posting the receives and
starting the sends. The number of receives posted at any time
is nprocesses∗nmsgs, which is considerably higher than the
pair-based communication test.

D. All-Start Communication
The all-start communication test possesses many of the

same properties as the pre-posted communication test, but does
not guarantee that all receives are pre-posted and invalidates
the cache to simulate the computation working set before any
communication calls in a given iteration. The test simulates an
application which finishes a computation phase, then issues all
communication calls at once with a single MPI_WAITALL call
to complete all communication.

Like the pre-posted communication test, the MPI is forced
to deal with a large number of outstanding receives. The
test will also likely cause the MPI to have to search a large
portion of the expected queue for any incoming message, as
the queue is ordered by remote process. MPI implementations
which optimize queue searching by maintaining per-process
receive queues in addition to a global queue for handling
MPI_ANY_SOURCE may be able to avoid the deep queue
search. Like the per-pair communication test, the MPI is likely

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
total += (timer() - start);

for (i = 0 ; i < niters - 1 ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
nreqs = 0;
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
total += (timer() - start);

}

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE);
total += (timer() - start);

Fig. 3. Message rate benchmark with pre-posted receives. Each process
sends and receives messages with a number of remote processes, posting all
receives, then all sends.

to see a mix of expected and unexpected messages, depending
on the timing of a particular run of the test.

for (i = 0 ; i < niters ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);

start = timer();
nreqs = 0;
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset,

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE);
total += (timer() - start);

}

Fig. 4. Message rate benchmark with all sends and receives started before
waiting for completion and no pre-posted guarantees.

IV. RESULTS

A. Experimental Setup

Three platforms with different network designs are used to
compare benchmark results: a Cray XT-based architecture, an
InfiniBand-based cluster, and a Myrinet-based cluster. While
all three platforms utilize the Opteron processor, node design,
processor revision, and operating system vary greatly between
platforms.

The Red Storm platform installed at Sandia National Labo-
ratories was the predecessor to the Cray XT line of platforms.
The test environment used for this paper consisted of 24 nodes
with a single 2.4 GHz dual-core Opteron processor and 48
nodes with a single 2.2 GHz quad-core Opteron processor (all
benchmarks were run exclusively on the quad-core nodes).
Each node utilizes a single SeaStar NIC capable of 4 GB/s
bidirectional bandwidth, configured in a mesh topology. The
system was configured with the Unicos/lc operating system
based on the Catamount lightweight kernel, version 2.0.62.
Cray’s MPI, derived from MPICH2, was used for testing.

The InfiniBand-based cluster is 272 nodes, each with four
quad-core 2.2 GHz Opteron processors. Each node contains a
single Mellanox ConnectX HCA connected to a Voltaire DDR
switch. The system runs a variant of Red Hat Enterprise Linux,
Open Fabrics Enterprise Edition 1.2, and Open MPI 1.2.7.

The Myrinet-based cluster has 128 nodes, each with two
single-core 2.2 GHz Opteron processors. Each node contains
a single Myrinet 10G NIC (10G-PCIE-8A-C) connected to
a single Myrinet 10G switch. The system runs Red Hat
Enterprise Linux 4, Update 7, Myrinet MX 1.2.7, and Open

MPI 1.2.8. Open MPI was configured to use the native MX
matching, rather than the default of MPI matching inside the
Open MPI library.

Unlike Red Storm and the InfiniBand hardware used for this
experiment, the Myrinet hardware used is capable of NIC-
based adaptive routing. [16] The number of messages “in
flight” at any given time is constant and well under theoretical
network limits for any experiment, therefore we believe the
trends presented in this section are related to endpoint and
software design more than the ability to adaptively route
messages.

All tests were executed on 32 nodes, with the number of
processes in the job varied based on the desired number of
processes per node. The number of iterations was set to 4096,
the number of messages to each peer in an iteration at 128, and
the message size at 8 bytes. The number of communicating
peers, the number of processes per node, and the working set
size simulated were all varied during testing.

B. Working Set Analysis
Figs. 5, 6, and 7 examine the achievable message rate when

larger blocks of cache are invalidated by reading and writing
to application memory regions. As the cache invalidation
simulates an application’s computation phase, its impact is
important to understanding the message rates an application
is likely to experience. One process is placed on each node,
and the message rate is the average of all 32 processes. We
use the average rather than the maximum as we are more
interested in overall application impact, rather than nearest
neighbor artifacts. For the pair-based, pre-posted, and all-start
communication patterns, every process communicates with
six other peers. In the single direction test, each process
communicates with exactly one other process.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

0 512K

1M
B

4M
B

8M
B

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Working set (bytes)

Single-direction
Pair-based
Pre-posted

All-start

Fig. 5. Impact of working set size on message rate on a InfiniBand
interconnect.

InfiniBand provides extremely high message rates when
MPI structures are not pushed out of cache by application
data (Fig. 5). However, as a greater amount of MPI structure
is pushed out of cache into main memory, the InfiniBand

message rates generally suffer. The cases where processes both
send and receive result in a lower message rate than when
a process is only sending or receiving (the single-direction
case), although they also appear to be less severely impacted
by cache misses. This is likely because there is more work
between cache invalidation, due to both a greater number of
peers and double the operations per peer (both sending and
receiving), amortizing the cost of loading MPI structures back
into cache. The InfiniBand result suggests that benchmarks
which test the far left side of the graph for the single-direction
communication pattern produce results which do not represent
achievable rates in a real application.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

0 512K

1M
B

4M
B

8M
B

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Working set (bytes)

Single-direction
Pair-based
Pre-posted

All-start

Fig. 6. Impact of working set size on message rate on a Myrinet 10G
network.

Myrinet 10G is unable to match InfiniBand for peak mes-
sage rate. However, Myrinet’s message rate is not signifi-
cantly impacted by working size set, which leads to message
rates which are higher than those provided by InfiniBand
for working sets over 1 MB in size. For real applications,
1 MB would be an extremely small data set, suggesting that
Myrinet may provide better performance for message rate
bound applications.

The message rate suggests that Myrinet is able to sustain
a higher message rate when communication occurs with only
one peer at a time, as the single direction and pair-based com-
munication tests offer a higher message rate than the pre-post
and all-start messaging tests. They also suggest that Myrinet
is not as sensitive to unexpected messages as to number of
peers actively communicating. Discussions with the author
of the Myrinet software interface, MyriExpress [17] suggests
a significant reason for the ability to sustain performance
in the face of working set size is a careful combination of
cache-aware data structure and interrupts to wake a processing
thread when the host is not actively processing network
traffic. The cache-aware data structures ensure that numerous
receive queue entries are brought into cache on the first load,
mitigating the cost of the first cache miss.

Unlike InfiniBand and Myrinet, the Cray platform and its
SeaStar network perform matching in kernel space. Posting a

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

0 512K

1M
B

4M
B

8M
B

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Working set (bytes)

Single-direction
Pair-based
Pre-posted

All-start

Fig. 7. Impact of working set size on message rate on a Cray XT SeaStar
network.

send or receive involves a trap to the kernel, and incoming
messages result in an interrupt on the host processor. The
result is the lowest message rate of the three networks (Fig. 7),
although it is relatively insensitive to working set size. It is
believed that handling incoming messages with an interrupt
handled in kernel space is likely the cause of the low working
set influence.

Similar to MX, although the message rate is uniformally
low, it is still higher than InfiniBand’s rates for large working
set sizes. Unlike MX, SeaStar isn’t able to match InfiniBand’s
message rates until the working set size reaches 8 MB, which
is the size of cache on most processors, but still not an
unreasonable working set for real applications.

C. Peer Count Analysis

The results for pair-based, pre-posted, and all-start commu-
nication patterns presented in Section IV-B assume a process is
communicating with six other peers. In this section, the impact
of varying the number of peers utilized in communication is
examined. The working set is held fixed at 8 MB and as with
previous tests, one process is executed on each of 32 nodes.

Fig. 8 suggests that InfiniBand is capable of higher message
rates as the number of communicating peers increases. The
improved performance is likely due to the credit-based flow
control utilized within the MPI library. InfiniBand’s poor
network level flow control behavior requires MPI-level flow
control, and the number of credits to a given host is relatively
low. With the increased number of peers, the number of
available send credits increases.

As Figs. 9 and 10 demonstrate, Myrinet and Cray’s SeaStar
do not have the same scalability as InfiniBand in message
rate as the number of communication peers is increased.
Two explanations for the performance behavior are the longer
message queues of the pre-posted and all-start tests and a
limitation in the network stack when receives are posted for
messages from multiple peers. The performance of the pair-
based test does not eliminate either hypothesis, as the process

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1 2 4 6

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Number of peers

Pair-based
Pre-posted

All-start

Fig. 8. Impact of peer count on message rate on an InfiniBand network.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1 2 4 6

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Number of peers

Pair-based
Pre-posted

All-start

Fig. 9. Impact of peer count on message rate on a Myrinet 10G network.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1 2 4 6

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Number of peers

Pair-based
Pre-posted

All-start

Fig. 10. Impact of peer count on message rate on a Cray XT SeaStar network.

only posts receives from a single peer at a time, which also
results in a significantly shorter receive queue.

D. Process per Node Scaling
The final results present the impact of running multiple

processes on a node, holding the working set size at 8 MB.
Rather than raw message rates, the results are presented as
scalability based on total node message rate divided by one
process per node message rate. The total number of processes
in the experiment varies based on the number of process
per node, where the node count is held constant at 32. The
communication pattern between nodes is setup such that two
processes on the same node will not communicate as part of
the benchmark measurement.

 0

 5

 10

 15

 20

 25

 30

1 2 4 6

S
ca

lin
g

fro
m

 1
 p

pn

Number of peers

Pair-based 2ppn
Pair-based 4ppn

Pair-based 16ppn
Pre-posted 2ppn
Pre-posted 4ppn

Pre-posted 16ppn
All-start 2ppn
All-start 4ppn

All-start 16ppn

Fig. 11. Process-per-node scalability comparison for InfiniBand networks

Overall, InfiniBand (Fig. 11) shows the best scalability
of all three networks. The all-start case is troubling, as it
suggests scaling for the 16 processor case greater than 16.
The performance for the all-start case on the tested InfiniBand
platform is rather noisy and erratic, suggesting an artifact
of testing not understood by the authors is resulting in the
performance anomaly.

 0

 0.5

 1

 1.5

 2

1 2 4 6

S
ca

lin
g

fro
m

 1
 p

pn
 ra

te

Number of peers

Pair-based 2ppn
Pre-posted 2ppn

All-start 2ppn

Fig. 12. Process-per-node scalability comparison for Myrinet 10G networks

The test platform for Myrinet (Fig. 12) only provides two

single core processors, limiting the scalability test to the two
process per node case. The overall scalability of the network
is poor, with aggregate message rates only increasing 30%
when the number of processes on a node is doubled. Such
a result is somewhat surprising, as matching occurs on the
host processor with Myrinet, and message processing on the
receive side is generally the limiting factor. However, the
older communication architecture of the platform rather than
Myrinet may be to blame, limiting the throughput from both
processors to the NIC.

 0

 0.5

 1

 1.5

 2

1 2 4 6

S
ca

lin
g

fro
m

 1
 p

pn

Number of peers

Pair-based 2ppn
Pair-based 4ppn
Pre-posted 2ppn
Pre-posted 4ppn

All-start 2ppn
All-start 4ppn

Fig. 13. Process-per-node scalability comparison for Cray XT SeaStar
networks

The Cray SeaStar results show poor scalability, with little
gain in message rate between two and four processes per node.
Such a result is expected, as all incoming message processing
on the Catamount-based XT platforms is handled by core 0
of the processor, an artifact likely to be removed in future
generations of the XT line. The little scalability gain seen for
the pre-posted and all-start cases as the number of communi-
cating peers increases suggests the declining scalability seen
in Fig. 10 is not as severe as the number of processes on a
node is increased.

E. Comparison with Ohio State Benchmarks
Fig. 14 compares the message rate results from the Ohio

State MPI Benchmarks Multiple Bandwidth / Message Rate
test with the Sandia Message Throughput Benchmark. The
Sandia benchmark was configured such that each process com-
municated with exactly one other process, there was no cache
invalidation, and a single-direction communication pattern was
used. This somewhat closely approximates the communication
pattern for the Ohio State benchmark and offers a valid
comparison point, although it is the least interesting data point
for the Sandia benchmark.

The results show a small difference in results on the Cray
XT and Myrinet platforms, but a large (30%) performance
difference on the InfiniBand platform. The results suggest that
InfiniBand is sensitive to factors other than those examined
in this paper (such as outstanding message counts), and

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

Cray XT InfiniBand Myrinet

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

Fig. 14. Comparison between Sandia Message Throughput Benchmark and
Ohio State MPI Benchmarks. Sandia results are with one peer, no cache
invalidate, and single-direction communication pattern.

the Sandia benchmark is more favorable to InfiniBand in
those parameters and suggest further experimentation with
the parameters available in the Sandia benchmark would
be necessary to more closely approximate the Ohio State
Benchmarks, although such an approximation was not a design
goal of the benchmark suite.

V. CONCLUSIONS

Network design and platform procurment is, in part, driven
by performance on micro-benchmarks. Therefore, it is critical
that benchmarks accurately reflect the performance character-
istics of real applications. This paper presents a new bench-
mark, the Sandia Message Throughput Benchmark, which tests
message rates under scenarios likely to be encountered by real
applications by similating an application working set and both
sending and receiving data with multiple remote processes.
The benchmark is highly parameterizable, allowing in-depth
study of conditons which impact acheivable message rates on
current networking hardware.

The impact of working set size, number of remote processes
involved in communication, and number of processes per
node are all examined for InfiniBand, Myrinet, and Cray
XT networks. The results suggest that existing message rate
benchmarks, which have no application working set simula-
tion, greatly inflate message rates for the InfiniBand network,
when compared with achievable rates for most applications.
The results also suggest that while both Myrinet and Cray XT
hardware have lower message rates in ideal situations, they
are more consistent across tests.

The Sandia Message Throughput Benchmark will be made
available to the community under the GNU Lesser General
Public License (LGPL) as part of the Sandia MPI Micro-
Benchmark Suite (SMB) package.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
advice, as well as Keith Underwood, Kevin Pedretti, and

Patrick Geoffray for answering numerous questions. Sandia
National Laboratories is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] K. D. Underwood and R. Brightwell, “The impact of MPI queue usage
on message latency,” in Proceedings of the International Conference on
Parallel Processing (ICPP), Montreal, Canada, August 2004.

[2] L. Dickman, G. Lindahl, D. Olson, J. Rubin, and J. Broughton, “Path-
Scale InfiniPath: A first look,” in Proceedings of the 13th Symposium
on High Performance Interconnects (HOTI’05), August 2005.

[3] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken, “LogP: Towards a real-
istic model of parallel computation,” in Proceedings 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 1993,
pp. 1–12.

[4] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson, “Effects
of communication latency, overhead, and bandwidth in a cluster archi-
tecture,” in Proceedings of the 24th Annual International Symposium on
Computer Architecture, June 1997.

[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Sheiman, “LogGP:
Incorporating long messages into the LogP model,” Journal of Parallel
and Distributed Computing, vol. 44, no. 1, pp. 71–79, 1997.

[6] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands,
C. Iancu, M. Welcome, and K. Yelick, “An evaluation of current high-
performance networks,” in 17th International Parallel and Distributed
Processing Symposium (IPDPS’03), Apr. 2003.

[7] Q. O. Snell, A. Mikler, and J. L. Gustafson, “NetPIPE: A network proto-
col independent performance evaluator,” in Proceedings of the IASTED
International Conference on Intelligent Information Management and
Systems, June 1996.

[8] Netperf, http://www.netperf.org.
[9] Network-Based Computing Laboratory Benchmarks,

http://mvapich.cse.ohio-state.edu/benchmarks/.
[10] Intel MPI Benchmarks, http://software.intel.com/en-us/articles/intel-mpi-

benchmarks/.
[11] W. Lawry, C. Wilson, A. B. Maccabe, and R. Brightwell, “COMB:

A portable benchmark suite for assessing MPI overlap,” in IEEE
International Conference on Cluster Computing, September 2002, poster
paper.

[12] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas,
P. Wyckoff, and D. K. Panda, “Performance comparison of MPI imple-
mentations over InfiniBand, Myrinet and Quadrics,” in The International
Conference for High Performance Computing and Communications
(SC2003), November 2003.

[13] K. Underwood, “Challenges and issues in benchmarking MPI,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface:
13th European PVM/MPI Users’ Group Meeting, Bonn, Germany,
September 2006 Proceedings, ser. Lecture Notes in Computer Science,
B. Mohr, J. L. Träff, J. Worringen, and J. Dongarra, Eds., vol. 4192.
Springer-Verlag, 2006, pp. 339–346.

[14] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97–104.

[15] W. Huang, G. Santhanaraman, H.-W. Jin, Q. Gao, and D. K. Panda,
“Design and Implementation of High Performance MVAPICH2: MPI2
over InfiniBand,” in International Sympsoium on Cluster Computing and
the Grid (CCGrid), Singapore, May 2006.

[16] P. Geoffray and T. Hoefler, “Adaptive routing strategies for modern high
performance networks,” in 16th IEEE Symposium on High Performance
Interconnects, Stan, August 2008, pp. 165 – 172.

[17] Myricom, Inc., “Myrinet Express (MX): A high performance, low-level,
message-passing interface for Myrinet,” July 2003. [Online]. Available:
http://www.myri.com/scs/MX/doc/mx.pdf

