
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy!s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

An Application Based MPI Message 
Throughput Benchmark

Brian Barrett & K. Scott Hemmert

{bwbarre,kshemme}@sandia.gov

Sandia National Laboratories

Cluster 2009

September 3, 2009

1



Interconnects Are Important

•DOE labs have long history of highly scalable 
distributed memory applications

•Application scalability influenced by:

–Application developer / algorithms / etc.

–System noise

–Network hardware and software stack

•Network performance for motivating applications:

–Latency: some

–Bandwidth: many

–Message rate: maybe tomorrow

•Procurements seem to drive network development

–Benchmarks drive procurement requirements

2



Benchmarks as Research Drivers

•Latency (~10% variation)

–Half round-trip pretty hard to measure wrong

•Bandwidth (~2x variation)

–Buffer reuse?

–Buffer contents?

–Interaction with memory allocator?

–One message or aggregate?

•Message rate (~10x variation)

–Receive queue length?

–Cache interactions?

–Expected or unexpected messages?

3



Application Challenges

•Ghost cell updates on today’s code bulk messages 
at end of iteration

•Memory copies to pack / unpack buffers

•Network bandwidth improvements slowing 
compared to processor / memory bandwidth

•Motivates applications to move away from large 
messages after copies

–Message rates more important

–Communication patterns different from message rate 
benchmarks

•Generalize applications into 4 communication 
patterns

4



Single-Direction Communication

•Mimics existing 
benchmarks

•Not application 
representative, but 
useful as baseline

•Added “cache 
invalidation” between 
iterations

for (i = 0 ; i < niters ; ++i) {
nreqs = 0;

cache_invalidate();
synchronize();
start = timer();
if (rank < size / 2) {
for (k = 0 ; k < nmsgs ; ++k) {
MPI_Isend(send_buf + (nbytes * k),
nbytes, MPI_CHAR, rank + (size / 2), tag,
comm, &reqs[nreqs++]);

}
} else {
for (k = 0 ; k < nmsgs ; ++k) {
MPI_Irecv(recv_buf + (nbytes * k),
nbytes, MPI_CHAR, rank - (size / 2), tag,
comm, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
total += (timer() - start);

}

Fig. 1. Message rate benchmark with single-direction communication. Each

process either sends or receives messages with exactly one other peer.

The communication is paired, so that a given process is both

sending and receiving messages with exactly one other process

at a time, rotating to a new process when communication is

complete. A best effort is made to ensure that the remote pro-

cesses a given process must communicate with are located on

remote nodes, in order to more fully stress the network. This

is likely a departure from our application-centric approach, as

it is likely that at least one communicating process would be

on the same node in a multi-socket/multi-core environment.

Although the test posts non-blocking receives from a given

peer before sending to that peer, synchronization can not be

guaranteed and the test may result in a number of unexpected

messages. It is likely that for a given peer, messages will be

both expected and unexpected, although the ratio is unknown

and likely to vary between tests. Unlike the other application-

based tests discussed later, the pair-based communication only

posts nmsgs receives at a time, meaning the test has the

smallest number of outstanding receives at a given time, which

may be beneficial on platforms with hardware support for

message processing.

C. Pre-posted Communication
In order to increase the probability of expected message

reception, a number of applications pre-post receives for the

next communication phase before starting the computation

phase. The long computation phase essentially guarantees that

receive buffers will be available during the communication

phase and that all messages are expected by the MPI layer.

On networks with hardware matching, this communication

paradigm can be especially useful, as the number of memory

copies, and therefore wasted memory bandwidth, is reduced

to a minimum.

for (i = 0 ; i < niters ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);
start = timer();
for (j = 0 ; j < npeers ; ++j) {
nreqs = 0;
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset,

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
}
total += (timer() - start);

}

Fig. 2. Message rate benchmark with pair-based communication. Each

process sends and receives messages with a number of peers, one at a time.

The pre-posted communication test simulates such a model

by posting nmsgs receives from all peers, invalidating the

cache to simulate the computation working set and synchro-

nizing with a barrier, followed by starting nmsgs sends to

all peers. Although the test guarantees that all receives are

posted, it also tends to push the receive queue out of cache for

early receives due to the cache invalidation between posting

the receives and starting the sends. The number of receives

posted at any time is npeers ∗ nmsgs, which is considerably

higher than the pair-based communication test.

D. All-Start Communication

The all-start communication test possesses many of the

same properties as the pre-posted communication test, but does

not guarantee that all receives are pre-posted and invalidates

the cache to simulate the computation working set before any

communication calls in a given iteration. The test simulates an

application which finishes a computation phase, then issues all

communication calls at once with a single MPI_WAITALL call

to complete all communication.

Like the pre-posted communication test, the MPI is forced

to deal with a large number of outstanding receives. The test

will also likely cause the MPI to have to search a large portion

of the expected queue for any incoming message, as the queue

is ordered by peer. MPI implementations which optimize

queue searching by maintaining per-peer receive queues in

addition to a global queue for handling MPI_ANY_SOURCE
may be able to avoid the deep queue search. Like the per-

pair communication test, the MPI is likely to see a mix of

expected and unexpected messages, depending on the timing

5



Pair-based Communication

•Each process 
communicates with 
multiple peers, both 
sending and receiving

•Likely to generate 
(potentially large) 
unexpected message 
count

•Only nmsgs posted 

receives at a time

for (i = 0 ; i < niters ; ++i) {
nreqs = 0;

cache_invalidate();
synchronize();
start = timer();
if (rank < size / 2) {
for (k = 0 ; k < nmsgs ; ++k) {
MPI_Isend(send_buf + (nbytes * k),
nbytes, MPI_CHAR, rank + (size / 2), tag,
comm, &reqs[nreqs++]);

}
} else {
for (k = 0 ; k < nmsgs ; ++k) {
MPI_Irecv(recv_buf + (nbytes * k),
nbytes, MPI_CHAR, rank - (size / 2), tag,
comm, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
total += (timer() - start);

}

Fig. 1. Message rate benchmark with single-direction communication. Each

process either sends or receives messages with exactly one other peer.

The communication is paired, so that a given process is both

sending and receiving messages with exactly one other process

at a time, rotating to a new process when communication is

complete. A best effort is made to ensure that the remote pro-

cesses a given process must communicate with are located on

remote nodes, in order to more fully stress the network. This

is likely a departure from our application-centric approach, as

it is likely that at least one communicating process would be

on the same node in a multi-socket/multi-core environment.

Although the test posts non-blocking receives from a given

peer before sending to that peer, synchronization can not be

guaranteed and the test may result in a number of unexpected

messages. It is likely that for a given peer, messages will be

both expected and unexpected, although the ratio is unknown

and likely to vary between tests. Unlike the other application-

based tests discussed later, the pair-based communication only

posts nmsgs receives at a time, meaning the test has the

smallest number of outstanding receives at a given time, which

may be beneficial on platforms with hardware support for

message processing.

C. Pre-posted Communication
In order to increase the probability of expected message

reception, a number of applications pre-post receives for the

next communication phase before starting the computation

phase. The long computation phase essentially guarantees that

receive buffers will be available during the communication

phase and that all messages are expected by the MPI layer.

On networks with hardware matching, this communication

paradigm can be especially useful, as the number of memory

copies, and therefore wasted memory bandwidth, is reduced

to a minimum.

for (i = 0 ; i < niters ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);
start = timer();
for (j = 0 ; j < npeers ; ++j) {
nreqs = 0;
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset,

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
}
total += (timer() - start);

}

Fig. 2. Message rate benchmark with pair-based communication. Each

process sends and receives messages with a number of peers, one at a time.

The pre-posted communication test simulates such a model

by posting nmsgs receives from all peers, invalidating the

cache to simulate the computation working set and synchro-

nizing with a barrier, followed by starting nmsgs sends to

all peers. Although the test guarantees that all receives are

posted, it also tends to push the receive queue out of cache for

early receives due to the cache invalidation between posting

the receives and starting the sends. The number of receives

posted at any time is npeers ∗ nmsgs, which is considerably

higher than the pair-based communication test.

D. All-Start Communication

The all-start communication test possesses many of the

same properties as the pre-posted communication test, but does

not guarantee that all receives are pre-posted and invalidates

the cache to simulate the computation working set before any

communication calls in a given iteration. The test simulates an

application which finishes a computation phase, then issues all

communication calls at once with a single MPI_WAITALL call

to complete all communication.

Like the pre-posted communication test, the MPI is forced

to deal with a large number of outstanding receives. The test

will also likely cause the MPI to have to search a large portion

of the expected queue for any incoming message, as the queue

is ordered by peer. MPI implementations which optimize

queue searching by maintaining per-peer receive queues in

addition to a global queue for handling MPI_ANY_SOURCE
may be able to avoid the deep queue search. Like the per-

pair communication test, the MPI is likely to see a mix of

expected and unexpected messages, depending on the timing

6



Pre-posted Communication

•Mimic applications 
which pre-post receives 
at end of 
communication phase

•Guaranteed there are 
no unexpected receives

•Large number of 
posted receives

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
total += (timer() - start);

for (i = 0 ; i < niters - 1 ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
nreqs = 0;
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
total += (timer() - start);

}

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE);
total += (timer() - start);

Fig. 3. Message rate benchmark with pre-posted receives. Each process sends
and receives messages with a number of peers, posting all receives, then all
sends.

of a particular run of the test.

IV. RESULTS

A. Experimental Setup

Three platforms with different network designs are used to
compare benchmark results: a Cray XT-based architecture, an

for (i = 0 ; i < niters ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);

start = timer();
nreqs = 0;
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset,

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE);
total += (timer() - start);

}

Fig. 4.

InfiniBand-based cluster, and a Myrinet-based cluster. While
all three platforms utilize the Opteron processor, node design,
processor revision, and operating system vary greatly between
platforms.

The Red Storm platform installed at Sandia National Labo-
ratories was the predecessor to the Cray XT line of platforms.
The test environment used for this paper consisted of 24 nodes
with a single 2.4 GHz dual-core Opteron processor and 48
nodes with a single 2.2 GHz quad-core Opteron processor (all
benchmarks were run exclusively on the quad-core nodes).
Each node utilizes a single SeaStar NIC capable of 4 GB/s
bidirectional bandwidth, configured in a mesh topology. The
system was configured with the Unicos/lc operating system
based on the Catamount lightweight kernel, version 2.0.62.
Cray’s MPI, derived from MPICH2, was used for testing.

The InfiniBand-based cluster is 272 nodes, each with four
quad-core 2.2 GHz Opteron processors. Each node contains a
single Mellanox ConnectX HCA connected to a Voltaire DDR
switch. The system runs a variant of Red Hat Enterprise Linux,
Open Fabrics Enterprise Edition 1.2, and Open MPI 1.2.7.

The Myrinet-based cluster has 128 nodes, each with two
single-core 2.2 GHz Opteron processors. Each node contains
a single Myrinet 10G NIC (10G-PCIE-8A-C) connected to
a single Myrinet 10G switch. The system runs Red Hat
Enterprise Linux 4, Update 7, Myrinet MX 1.2.7, and Open
MPI 1.2.8. Open MPI was configured to use the native MX
matching, rather than the default of MPI matching inside the
Open MPI library.

All tests were executed on 32 nodes, with the number of
processes in the job varied based on the desired number of
processes per node. The number of iterations was set to 4096,

7



All-start Communication

•Similar to pre-posted 
communication test, 
but no pre-posted 
guarantee

•Simple communication 
pattern, similar to those 
used today

•Unlikely to be useful in 
future

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
total += (timer() - start);

for (i = 0 ; i < niters - 1 ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs,

MPI_STATUSES_IGNORE);
nreqs = 0;
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
total += (timer() - start);

}

start = timer();
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE);
total += (timer() - start);

Fig. 3. Message rate benchmark with pre-posted receives. Each process sends
and receives messages with a number of peers, posting all receives, then all
sends.

of a particular run of the test.

IV. RESULTS

A. Experimental Setup

Three platforms with different network designs are used to
compare benchmark results: a Cray XT-based architecture, an

for (i = 0 ; i < niters ; ++i) {
cache_invalidate();
MPI_Barrier(MPI_COMM_WORLD);

start = timer();
nreqs = 0;
for (j = 0 ; j < npeers ; ++j) {
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Irecv(recv_buf + offset,

nbytes, MPI_CHAR,
recv_peers[j], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
for (k = 0 ; k < nmsgs ; ++k) {
offset = nbytes * (k + j * nmsgs);
MPI_Isend(send_buf + offset,

nbytes, MPI_CHAR,
send_peers[npeers - j - 1], tag,
MPI_COMM_WORLD, &reqs[nreqs++]);

}
}
MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE);
total += (timer() - start);

}

Fig. 4.

InfiniBand-based cluster, and a Myrinet-based cluster. While
all three platforms utilize the Opteron processor, node design,
processor revision, and operating system vary greatly between
platforms.

The Red Storm platform installed at Sandia National Labo-
ratories was the predecessor to the Cray XT line of platforms.
The test environment used for this paper consisted of 24 nodes
with a single 2.4 GHz dual-core Opteron processor and 48
nodes with a single 2.2 GHz quad-core Opteron processor (all
benchmarks were run exclusively on the quad-core nodes).
Each node utilizes a single SeaStar NIC capable of 4 GB/s
bidirectional bandwidth, configured in a mesh topology. The
system was configured with the Unicos/lc operating system
based on the Catamount lightweight kernel, version 2.0.62.
Cray’s MPI, derived from MPICH2, was used for testing.

The InfiniBand-based cluster is 272 nodes, each with four
quad-core 2.2 GHz Opteron processors. Each node contains a
single Mellanox ConnectX HCA connected to a Voltaire DDR
switch. The system runs a variant of Red Hat Enterprise Linux,
Open Fabrics Enterprise Edition 1.2, and Open MPI 1.2.7.

The Myrinet-based cluster has 128 nodes, each with two
single-core 2.2 GHz Opteron processors. Each node contains
a single Myrinet 10G NIC (10G-PCIE-8A-C) connected to
a single Myrinet 10G switch. The system runs Red Hat
Enterprise Linux 4, Update 7, Myrinet MX 1.2.7, and Open
MPI 1.2.8. Open MPI was configured to use the native MX
matching, rather than the default of MPI matching inside the
Open MPI library.

All tests were executed on 32 nodes, with the number of
processes in the job varied based on the desired number of
processes per node. The number of iterations was set to 4096,

8



Test Platforms

•Cray XT

–Sandia Red Storm platform test environment

–2.4 GHz dual-core Opteron processors

–SeaStar with 4 GB/s bidirectional bandwidth

•Myrinet

–128 nodes, each with two 2.2 GHz single-core Opterons

–Myrinet 10G NIC (10G-PCIE-8A-C) w/ Myrinet switch

–RHEL 4U7, MX 1.2.7, Open MPI 1.2.8

•InfiniBand

–272 nodes, each with four 2.2 GHz quad-core Opterons

–ConnectX HCA w/ Voltaire DDR switch

–RHEL 4 variant, OFED 1.2, Open MPI 1.2.7

9



Number of Neighbors Scaling

Cray Myrinet

InfiniBand

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1 2 4 6

M
e

ss
a

g
e

 R
a

te
 (

m
sg

s/
s)

Number of peers

Pair-based
Pre-posted

All-start

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1 2 4 6

M
e
s
s
a
g
e
 
R
a
t
e
 
(
m
s
g
s
/
s
)

Number of peers

Pair-based
Pre-posted
All-start

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1 2 4 6

M
e

ss
a

g
e

 R
a

te
 (

m
sg

s/
s)

Number of peers

Pair-based
Pre-posted

All-start

10



Sensitivity to Working Set Size

Cray Myrinet

InfiniBand

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

0 5
1
2
K

1
M

B

4
M

B

8
M

B

M
e
ss

a
g
e
 R

a
te

 (
m

sg
s/

s)

Working set (bytes)

Single-direction
Pair-based
Pre-posted

All-start

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

0 5
1
2
K

1
M

B

4
M

B

8
M

B

M
e
ss

a
g
e
 R

a
te

 (
m

sg
s/

s)

Working set (bytes)

Single-direction
Pair-based
Pre-posted

All-start

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

0 5
1
2
K

1
M
B

4
M
B

8
M
B

M
e
s
s
a
g
e
 
R
a
t
e
 
(
m
s
g
s
/
s
)

Working set (bytes)

Single-direction
Pair-based
Pre-posted
All-start

11



Process-per-node Scaling

Cray Myrinet

InfiniBand

 0

 0.5

 1

 1.5

 2

1 2 4 6

S
ca

lin
g

 f
ro

m
 1

 p
p

n

Number of peers

Pair-based 2ppn
Pair-based 4ppn
Pre-posted 2ppn
Pre-posted 4ppn

All-start 2ppn
All-start 4ppn

 0

 0.5

 1

 1.5

 2

1 2 4 6

S
ca

lin
g

 f
ro

m
 1

 p
p

n
 r

a
te

Number of peers

Pair-based 2ppn
Pre-posted 2ppn

All-start 2ppn

 0

 5

 10

 15

 20

 25

 30

1 2 4 6

S
ca

lin
g

 f
ro

m
 1

 p
p

n

Number of peers

Pair-based 2ppn
Pair-based 4ppn

Pair-based 16ppn
Pre-posted 2ppn
Pre-posted 4ppn

Pre-posted 16ppn
All-start 2ppn
All-start 4ppn

All-start 16ppn

12



Conclusions

•Benchmarks drive networking innovation

•Current message rate benchmarks provide 
unrealistic results

•Sandia Message Throughput Benchmark

–Basis for further analysis

–Likely to evolve as applications change and grow

–Freely available

http://www.cs.sandia.gov/smb/

13

http://www.cs.sandia.gov/smb/
http://www.cs.sandia.gov/smb/

