
HPC I/O
I/O on Lustre

Richard Gerber
HPC Consultant

NERSC / Lawrence Berkeley National Laboratory

SC11 Tutorial
Scaling to Petascale and Beyond: Performance Analysis and Optimization of

Applications

Nov. 13 2011
Thanks Katie Antypas of NERSC for some slides.

2

Tutorial Info & Presentations

http://www.nersc.gov/users/training/nersc-training-events/
sc11/s10/

or

http://tinyurl.com/sc11-s10

•  Storage Systems and Parallel File Systems
•  High Level I/O Strategies
•  Data Access Patterns
•  Parallel I/O Interfaces
•  I/O using Lustre File Systems
•  Best Practices and Recommendations

Outline

3

Getting bigger all the time

•  User I/O needs growing
each year in scientific
community

•  For our largest users I/O
parallelism is mandatory

•  I/O remains a bottleneck
for many users

•  Early 2011 – Hopper: 2
PB /scratch (we thought
that was huge!)

•  New systems at TACC and
NCAR have ~ 18 PB /
scratch!!!!

Images from David Randall, Paola Cessi, John Bell, T Scheibe

Should You Care About
Architecture?

•  Yes! It would be nice not to have
to, but performance and perhaps
functionality depend on it.

•  You may be able to make simple
changes to the code or runtime
environment that make a big
difference.

•  Inconvenient Truth: Scientists
need to understand their I/O in
order to get good performance

 or acceptable

Why is Parallel I/O for science
applications difficult?

•  Scientists think about
data in terms of how a
system is represented in
the code: as grid cells,
particles, …

•  Ultimately, data is stored
on a physical device

•  Layers in between the
application and the
device are complex and
varied

•  I/O interfaces and
configurations are
arcane and complicated

Images from David Randall, Paola Cessi, John Bell, T Scheibe

Simplified I/O Hierarchy

Storage Device

Parallel File System

Intermediate Layer

High Level IO Library

Application

May be
MPI IO

•  Usually we’ll be talking about arrays
of hard disks
•  FLASH “drives” are being used as
fast “disks,” but are expensive
•  Magnetic tapes are cheap, but slow
and probably don’t appear as standard
file systems

Storage Devices

Some Definitions

•  Capacity (in MB, GB, TB, PB)
–  Depends on area available on storage device and the density

data can be written
•  Transfer Rate (bandwidth) – MB/sec or GB/sec

–  Rate at which a device reads or writes data
–  Depends on many factors: network interfaces, disk speed, etc.
–  Be careful with parallel BW numbers: aggregate? per what?

•  Access Time (latency)
–  Delay before the first byte is read

•  Metadata
–  A description of where and how a file or directory is stored on

physical media
–  Is itself data that takes up space and has to be read/written

with each file access
–  May be in a database

10

Latencies

FP
mul
t

FP
add

LD

ST
INT

Shif
t

M
em

or
y

In
te

rfa
ce

L2
 C

ac
he

L1
Data
Cache

L1
Instr.
Cache

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

1 ns 10
ns

FM
A

100
ns

1,000,000
 ns

1,000
ns

Disk Storage

Node Interconnect

CPU

•  How fast can you stream data from
your application to/from disk?
•  System aggregate bandwidths ~ 10s
to now 100s GB/sec
•  Serial bandwidths < 1 GB/sec

–  Limited by interfaces
–  and/or physical media

•  The need for parallelism starts at the
lowest level

Bandwidths

Disk Parallelism
•  Individual disk drives too

slow for supercomputers
•  Need parallelism

RAID: Redundant
Array of Independent

Disks

File System Striping

File Systems

13

What is a File System?
•  Software layer between the Operating System and

Storage Device which creates abstractions for
–  Files
–  Directories
–  Access permissions
–  File pointers
–  File descriptors

•  Mediates moving data between memory and storage
devices

•  Coordinates concurrent access to files
•  Manages the allocation and deletion of data blocks on

the storage devices
•  Has facilities for data recovery (not user accessible)

J.M. May “Parallel IO for High Performance Computing

•  “On-board” (the old “local”)
–  Directly attached to motherboard via some interface
–  Few HPC systems have disks directly attached to a node

•  “Local” in HPC: Access from one system
–  Network attached TB+ file systems

•  Via high-speed internal network (e.g. IB)
•  Direct from node via high-speed custom network (e.g.
FibreChannel)
•  Ethernet

–  Contention among jobs on system
•  “Global”: Access from multiple systems

–  Networked file system
–  Activity on other systems can impact performance
–  Useful for avoiding data replication, movement among
systems

Local vs. Global File Systems

What is a Networked File System

•  A file system that supports sharing of
files as persistent storage over a
network.

•  Network File System (protocol) (NFS)
–  Widely used and available, but not

developed as a standard for high-
performance parallel computing

–  Common for /home directories
–  Used for file systems that need high

reliability, but not high performance
•  Other examples: AFS, NetWare Core

Protocol, Server Message Block
(SMB).

Distributed Parallel Fault-Tolerant
File Systems

•  Networked
•  Distributes data over multiple servers for high

performance
•  RAID for fault tolerance
•  Efficiently manages up to 1,000s (?) of processors

accessing the same file concurrently
•  Coordinates locking, caching, buffering and file

pointer challenges
•  Scalable and high performing
•  May have Object Storage Device

–  Storage “device” layer at higher level than physical media
or even arrays of low-level media

•  May have centralized metadata server (database)

Top File Systems Used in HPC

GPFS

More About Metadata

•  File systems store information about files
externally to those files.

•  Linux uses an inode, which stores information
about files and directories: size in bytes,
device id, user id, group id, mode,
timestamps, link info, pointers to disk blocks,
…

•  Any time a file’s attributes change or info is
desired (e.g., ls –l) metadata has to be
retrieved or written
–  Although there may be caching

•  Metadata operations are IO operations
(database queries) and inodes use disk
space.

MDS I/O I/O I/O I/O I/O I/O I/O

Generic Parallel File System
Architecture

Compute
Nodes

Internal
Network

Storage
Hardware --
Disks

Disk controllers -
manage failover

I/O Servers

External
Network -
(Likely FC)

Now from the User’s point
of view

21

•  Checkpoint/Restart files
–  System or node could fail; protect your application so you
don’t have to start from the beginning
–  Need to run longer than wall clock time allows

•  Write data for post run analysis and
visualization
•  You can use disk storage (large) as
slow RAM memory (out-of-core
algorithms)
•  Reading in large datasets for analysis
or visualization

Some reasons you might need I/O

Application I/O

•  All I/O performed by your job should
use the file system designed for HPC
applications.

•  Home directories are often not
optimized for large I/O performance

•  Consult your center’s
documentation

July 19, 2008

High Level IO Strategies

•  Single task does all IO
•  Each task writes to its own file
•  All tasks write to single shared file
•  n<N tasks write to a single file
•  n1<N tasks write to n2<N files

Serial I/O

0 1 2 3 4

File

tasks

•  Each task sends its data to a
master that writes the data

•  Advantages
! Simple

•  Disadvantages
! Scales poorly
! May not fit into memory on task 0
! Bandwidth from 1 task is very limited

5

Parallel I/O Multi-file
Each Processors Writes Its Data to Separate File

tasks

Advantages
Easy to program

Can be fast

0 1 2 3 4

File0 File1 File2 File3 File4

5

File5

Disadvantages
Many files can cause
serious performance
problems

Hard for you to manage
10K, 100K or 1M files

Flash Center IO Nightmare…
•  32,000 processor run on LLNL BG/L
•  Parallel IO libraries not yet available
•  Every task wrote

–  Checkpoint files: .7 TB, every 4 hours, 200 total
–  Plot files: 20GB each, 700 files
–  Particle files: 470 MB each, 1,400 files

•  Used 154 TB total
•  Created 74 million files!
•  UNIX utility problems (e.g., mv, ls, cp)
•  It took 2 years to sift though data, sew

files together

Parallel I/O Single-File
All Tasks to Single File

tasks 0 1 2 3 4

File

5

Advantages
Single file makes data
manageable

No system problems
with excessive
metadata

Disadvantages
Can be more difficult to
program (use libs)

Performance may be
less

Hybrid Model I
Groups of Tasks Access Different Files

0 1 2 3 4

File

tasks 5

File

Advantages
Fewer files than 1"1

Better performance than
All"1

Disadvantages
Algorithmically complex

Hybrid II
Subset of Tasks Access Single File

tasks
0 1 2 3 4

File

5

Advantages
Single file makes data
manageable

No system problems
with excessive
metadata

Disadvantages
Can be more difficult to
program (use libs)

Performance better than
previous, but worse
than 1->1

Common Storage Formats

•  ASCII:
–  Slow
–  Takes more space!
–  Inaccurate

•  Binary
–  Non-portable (eg. byte ordering and types sizes)
–  Not future proof
–  Parallel I/O using MPI-IO

•  Self-Describing formats
–  NetCDF/HDF4, HDF5, Parallel NetCDF
–  Example in HDF5: API implements Object DB model in portable file
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO)

•  Community File Formats
–  FITS, HDF-EOS, SAF, PDB, Plot3D
–  Modern Implementations built on top of HDF, NetCDF, or other self-

describing object-model API

Many NERSC
users at this level.
We would like to

encourage users to
transition to a

higher IO library

MPI-IO

32

What is MPI-IO?
•  Parallel I/O interface for MPI programs
•  Part of the MPI standard (ubiquitous)
•  Allows access to shared files using a

standard API that is optimized and safe
•  Key concepts:

–  MPI communicators
•  open()s and close()s are collective within communicator
•  Only tasks in communicator can access file handle

–  Derived data types
•  All operations (e.g. read()) have an associated MPI data type

–  Collective I/O for optimization

33

•  MPI_File_open() – associate a file with a file handle.

•  MPI_File_seek() – move the current file position to a
given location in the file.
•  MPI_File_read() – read some fixed amount of data
out of the file beginning at the current file position.

•  MPI_File_write() – write some fixed amount of data
into the file beginning at the current file position.

•  MPI_File_sync() -- flush any caches associated with
the file handle.

•  MPI_File_close() – close the file handle.

Basic MPI IO Routines

•  You can use MPI IO File Views to
control how data is laid out on the file
system

–  Initial offset (default = 0)
–  Record type (size) (default = MPI_BYTE)
–  How records are laid out relative to each
other (default=MPI_BYTE)
–  You can interleave data
–  Once defined, you may not need to seek()
to explicit offsets

MPI IO File Views

•  Allows the library to optimize the IO
•  Must be called from all tasks in

communicator
•  Consolidates I/O requests from all tasks in

communicator
•  Only a subset of tasks (aggregators) access

the file
•  Also has a set of non-blocking routines
•  Can give “hints” to optimize performance for

your access patterns and/or the underlying
file system structure

MPI-IO Collectives

36

When To Use Collectives

•  The smaller the write, the more
likely it is to benefit from collective
buffering

•  Large contiguous I/O will not benefit
from collective buffering.
–  Non-contiguous writes of any size will not see a

benefit from collective buffering

37

MPI-IO Summary

•  Provides optimizations for typically
low performing I/O patterns (non-
contiguous I/O and small block I/O)

•  You could use MPI-IO directly, but
better to use a high level I/O library

•  MPI-IO works well in the middle of the
I/O stack, letting high-level library
authors write to the MPI-IO API

38

High Level Parallel I/O
Libraries
(HDF5)

39

What is a High Level Parallel I/O
Library?

•  An API which helps to express scientific
simulation data in a more natural way
–  Multi-dimensional data, labels and tags, non-

contiguous data, typed data
•  Typically sits on top of MPI-IO layer and

can use MPI-IO optimizations
•  Offer

–  Simplicity for visualization and analysis
–  Portable formats - can run on one machine and take

output to another
–  Longevity - output will last and be accessible with

library tools and no need to remember version
number of code

The HDF Group

•  HDF5 is maintained by a non-profit
company called the HDF Group

•  Example code and documentation can be
found here:

•  http://www.hdfgroup.org/HDF5/
•  http://www.hdfgroup.org/ftp/HDF5/

examples/

HDF5 Data Model

•  Groups
–  Arranged in directory

hierarchy
–  root group is always

‘/’
•  Datasets

–  Dataspace
–  Datatype

•  Attributes
–  Bind to Group & Dataset

•  References
–  Similar to softlinks
–  Can also be subsets

of data

“/”!
(root)!

“Dataset0”!
type,space!

“Dataset1”!
type, space!

“subgrp”!

“time”=0.2345!

“validity”=None!

“author”=Jane Doe!

“Dataset0.1”!
type,space!

“Dataset0.2”!
type,space!

“date”=10/24/2006!

But what about performance?
•  Hand tuned I/O for a particular application and

architecture will likely perform better, but …
•  Purpose of I/O libraries is not only portability,

longevity, simplicity, but productivity
•  Using own binary file format forces user to

understand layers below the application to get
optimal IO performance

•  Every time code is ported to a new machine or
underlying file system is changed or upgraded,
user is required to make changes to improve IO
performance

•  Let other people do the work
–  HDF5 can be optimized for given platforms and file systems

by library developers

IO Library Overhead

Data from Hongzhang Shan!

Very little, if any overhead from HDF5 for one file per
processor IO compared to Posix and MPI-IO

Performance

•  IO performance is complicated to
predict.

•  Other users impact your job because IO
uses a shared resource.

•  Buffer caches exist throughout the
system adding to the unpredictability.

•  Data paths into single elements (e.g., a
node) are limiting for large IO.

•  Many small IO requests have a high
overhead.

•  You have to experiment!

I/O on Lustre File Systems

46

47

Terminology: Lustre

•  Lustre (name derived from “Linux
Cluster”)
•  A clustered, shared file system
•  Open software, available under GNU GPL
•  Designed, developed, and maintained by
Sun Microsystems, Inc., which acquired it
from Cluster File Systems, Inc. in Oct. 2007
•  Two types of Lustre servers (on IO
service nodes)

–  Object Storage Servers (OSS)
–  Metadata Servers (MDS)

What is File Striping?
•  Lustre file systems are made up of an

underlying set of parallel I/O servers
–  OSSs (Object Storage Servers) - nodes dedicated to

I/O connected to high speed torus interconect
–  OSTs (Object Storage Targets) software abstraction

of physical disk (1 OST maps to 1 LUN)
•  File is said to be striped when read and

write operations access multiple OSTs
concurrently

•  Striping can increase I/O performance since
writing or reading from multiple OSTs
simultaneously increases the available I/O
bandwidth

July 19, 2008

Lustre File Striping

•  Files are broken into chunks that are
stored on OSTs in a round-robin fashion.

•  The size of the chunks and number of
OSTs can be set by the user

– 
–  <name> can be a file or directory. If directory, new

files in directory will inherit setting.
–  size = size of chunk, 0 signifies default of 1 MB
–  start = starting OST; you should use -1 to let the

system decide
–  count = number of OSTs; 0 means use default, -1

means use all

lfs setstripe <name> -s <size> -I <start> -c <count>

A Stripe Count of 2

•  Pros
–  Get 2 times the bandwidth you could from using 1 OST
–  Max bandwidth to 1 OST on NERSC’s Hopper ~ 350 MB/Sec
–  Using 2 OSTs ~700 MB/Sec

•  Cons
–  For better or worse your file now is in 2 different places
–  Metadata operations like ‘ls -l’ on the file could be slower
–  For small files (<100MB) no performance gain from

striping

I/O
Servers

OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23

0,24 1,25 2,26 3,27 4,28 5,29 23,47

One File-Per-Processor IO with Stripe
Count of 1

•  System will give a different offset to each file
(mod # of OSTs)

•  If you have fewer writers than OSTs, and large
files, you should stripe across >1 OST

OSS 19

4 OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

Interconnect Network

0 1 2 3 4 5 40,000

Shared File I/O with Stripe Count 2

•  All processors writing shared file will write to 2
OSTs

•  No matter how much data the application is writing,
it won’t get more than ~700 MB/sec (2 OSTs * 350 MB/
Sec)

•  Need to use more OSTs for large shared files

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

Network

0 1 2 3 4 5 38,000

OSS 24

Shared File I/O with Stripe Count = #
OSTs

•  Now Striping over all OSTs
•  Increased available bandwidth to

application

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

0 1 2 3 4 5 38,000

OSS 24

Interconnect Network

•  One File-Per-Processor I/O or shared files
< 10 GB

–  Keep default, stripe count 1
•  Medium shared files: 10GB – 100sGB

–  Set stripe count ~4-20
•  Large shared files > 1TB

–  Set stripe count to 20 or higher, maybe all OSTs?
•  You’ll have to experiment a little

Striping Summary

Best Practices
•  Do large I/O: write fewer big chunks of data

(1MB+) rather than small bursty I/O
•  Do parallel I/O.

–  Serial I/O (single writer) can not take advantage of
the system’s parallel capabilities.

•  Stripe large files over many OSTs.
•  If job uses many cores, reduce the number

of tasks performing IO
•  Use a single, shared file instead of 1 file

per writer, esp. at high parallel concurrency.
•  Use an IO library API and write flexible,

portable programs.

