
Hybrid Programming

 Alice Koniges, Berkeley Lab/NERSC

Rusty Lusk, Argonne National Laboratory (ANL)

Rolf Rabenseifner, HLRS, University of Stuttgart, Germany

Gabriele Jost, Texas Advanced Computing Center

This short talk is a conglomeration of larger presentations given by
the above authors at a variety of tutorials including
SC08, SC09 (upcoming) ParCFD 2009, SciDAC 2009

We are grateful for the use of these slides at the NUG User Group Meeting

NERSC Users Group Meeting 2009 2

Despite continued “packing” of transistors,
performance is flatlining

•  New Constraints
–  15 years of exponential clock

rate growth has ended

•  But Moore’s Law continues!
–  How do we use all of those

transistors to keep
performance increasing at
historical rates?

–  Industry Response: #cores per
chip doubles every 18 months
instead of clock frequency!

Figure courtesy of Kunle Olukotun,
Lance Hammond, Herb Sutter, and
Burton Smith

NERSC Users Group Meeting 2009 3

Supercomputers are Hierarchical
•  Which programming

model is fastest?

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

1) MPI everywhere

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI everywhere?

Fully hybrid
MPI & OpenMP?

Something between?
(Mixed model)

? Often hybrid
programming can be
slower than pure
MPI

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

NERSC Users Group Meeting 2009 4

Current Multicore SMP Systems can have different
memory access and cache use patterns

667MHz FBDIMMs

Chipset (4x64b controllers)

10.6 GB/s(write) 21.3 GB/s(read)

10.6 GB/s

Core2

Front Side Bus

Core2 Core2 Core2

10.6 GB/s

Core2

FSB

Core2 Core2 Core2

4MB
Shared L2

4MB
Shared L2

4MB
Shared L2

4MB
Shared L2

AMD Opteron Intel Clovertown

Opteron Opteron

667MHz DDR2 DIMMs

10.66 GB/s

128b memory controller

H
T 1MB

victim
1MB
victim

SRI / crossbar

Opteron Opteron

667MHz DDR2 DIMMs

10.66 GB/s

128b memory controller

H
T 1MB

victim
1MB

victim

SRI / crossbar

4G
B

/s

(e
ac

h
di

re
ct

io
n)

Uniform Memory Access Non-uniform Memory Access
Adapted from Sam Williams, John Shalf, LBL/NERSC et al.

NERSC Users Group Meeting 2009 5

MPI and Threads

•  MPI describes parallelism between processes (with
separate address spaces)

•  Thread parallelism provides a shared-memory model
within a process, commonly Pthreads and OpenMP

•  In the threads model of parallel programming, a single
process can have multiple, concurrent execution paths

–  Pthreads (Posix Threads) is a standard library
implementation that can be used for parallel programming

–  Pthreads generally provides more complicated and
dynamic approaches

–  OpenMP is a set of compiler directives, callable runtime
library routines, and environment variables that extend
Fortran, C and C++

–  OpenMP provides convenient features for loop-level
parallelism

–  OpenMP 3.0 adds task parallelism (released May 2008)

NERSC Users Group Meeting 2009 6

Programming models can be designed for
hybrid systems

•  Pure MPI (one MPI process on each CPU) “MPI-Everywhere”
•  Hybrid MPI+OpenMP

–  shared memory OpenMP
–  distributed memory MPI

•  Other: Virtual shared memory systems, PGAS, HPF, …
•  New Models combine MPI and UPC or CAF (see Lusk, et al. SC09,

SIAM Feb. 2009.)

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)
 block_to_be_parallelized
again_some_serial_code

Master thread,
 other threads

••• sleeping •••

OpenMP (shared data) MPI local data in each process

data Sequential
program on
each CPU

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the
SMP nodes

MPI between the nodes
via node interconnect

NERSC Users Group Meeting 2009 7

Hybrid Programming generally combines
message passing with shared memory

•  Other choices for a shared memory model include an
implementations by Microsoft and others, as well as Pthreads

•  In this talk, we concentrate on combining MPI with OpenMP
•  OpenMP consists mostly of directives, where as MPI, related

message passing libraries, and Pthreads methods consist of
library routines

•  Data movement in message passing libraries must be explicitly
programmed, in contrast to OpenMP, where it happens
automatically as data is read and written

•  One goal of OpenMP is to make parallel programming easy
•  It is also designed to be implemented incrementally
•  We first explain some basic concepts of OpenMP, since we assume

you are starting with an MPI program, or knowledge of MPI

NERSC Users Group Meeting 2009 8

Basic Concepts of OpenMP

•  OpenMP is an explicit programming model, namely the
programmer specifies the parallelism. The compiler and run time
system translate this into the parallel execution model.

•  The task of the programmer is to correctly identify the parallelism
and the dependencies

•  OpenMP can have both implicit and explicit synchronization points
•  Although OpenMP can be used beyond loop parallelism, we

recommend studying loop parallelism first as a way to understand
certain concepts such as private and shared variables, false
sharing, race conditions, …

NERSC Users Group Meeting 2009 9

MPI Memory Model

•  Message Passing Interface
•  Memory Model:

–  MPI assumes a private address space
–  Private address space for each MPI Process
–  Data needs to be explicitly communicated

•  Applies to distributed and shared memory computer architectures

process 1
process 0
 process 2
 process 3

Address
Space P0

Message buffers
mpi_send mpi_receive

Address
Space P0

NERSC Users Group Meeting 2009 10

OpenMP Memory Model

•  OpenMP assumes a shared address space
•  No communication is required between threads
•  Thread Synchronization is required when accessing shared data

process 0

T2
T1
T0

Shared address space

data

NERSC Users Group Meeting 2009 11

OpenMP Code General Structure

•  Fork-Join Model:
•  Execution begins with a single “Master Thread”
•  A team of threads is created at each parallel region
•  Threads are joined at the end of parallel regions
•  Execution is continued after parallel region by the Master Thread
until the beginning of the next parallel region

time

Serial

4 Core

Parallel
execution

Master Thread
 Multi-Threaded

Serial

6 Core

Parallel
 Serial

NERSC Users Group Meeting 2009 12

The ParLab at Berkeley sponsored a
Parallel Computing Bootcamp

•  Note: All Bootcamp taped lectures, slides can be downloaded
–  See http://parlab.eecs.berkeley.edu/bootcampagenda
–  Including:

  OpenMP
  PGAS Languages
  OpenCL
  And several other interesting lectures

•  From this website, you can also download the following:
–  makefile that should work on all NERSC clusters if you uncomment appropriate lines,
–  job-franklin-serial, job-franklin-pthreads4, job-franklin-openmp4, job-franklin-mpi4,
–  job-bassi-serial, job-bassi-pthreads8, job-bassi-openmp8, job-bassi-mpi8
–  sample batch files to launch jobs on Franklin and Bassi. Use qsub to submit on

Franklin and llsubmit to submit on Bassi.
•  We are also preparing sample codes to be available from the NERSC Website
•  We recommend if you don’t know OpenMP, you watch the ParLab BootCamp talk by

Tim Mattson

NERSC Users Group Meeting 2009 13

Comments on Example from ParLAB Talk
by Tim Mattson, Intel Corp.

Program to compute PI by quadrature, Tim starts with a simple serial
program:

static long num_steps = 100000;
double step;
void main()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 x = 0.5 * step;
 for (i=0;i<=num_steps;i++){
 x+=step;
 sum+=4.0/(1.0+x*x);
 }
 pi = step * sum;

}

NERSC Users Group Meeting 2009 14

Next he shows
Steps of Parallelization by OpenMP

•  Identify concurrency in the loop, iterations may be executed
concurrently:

•  Steps: isolate data tha must be shared from data that will be local
to a task

•  Redefine x to remove loop carried dependence
•  Look at how to rewrite the “reduction,” where results from each

iteration are accumulated into a single global sum
•  Trick to promote scalar “sum” to an array indexed by the number

of threads to create thread local copies of shared data

for (i=0;i<=num_steps;i++){
 x+=step;
 sum+=4.0/(1.0+x*x);
 }

NERSC Users Group Meeting 2009 15

Examines differences between explicitly
specifying the OpenMP other methods

•  Final loop with explicit safe update of shared data

•  Along the way, example exposes concepts of private and shared
data, false sharing, and other concepts. Refer to ParLab talk/slides.

#include <omp.h>
static long num_steps = 100000;
#define NUM 4
double step;
void main()
{ double pi, sum = 0.0;

 step = 1.0/(double) num_steps;
#pragma omp parallel num_threads(NUM)

 int i, ID; double x, psum=0.0;
 ID = omp_get_thread_num();
 for (i=ID;i<=num_steps;i+=nthreads){
 x=(i+0.5)*step;
 psum+=4.0/(1.0+x*x);
 }
 #pragma omp critical
 sum += psum

}
 pi = step * sum;

}

NERSC Users Group Meeting 2009 16

Another version of the same PI program
uses common OpenMP constructs

•  Private clause for creating data local to a thread
•  Reduction clause for managing data dependencies

•  Most people would write the OpenMP in this fashion, but the
example serves to illustrate some of the steps behind the
directives and the thought process for shared/private variables

#include <omp.h>
static long num_steps = 100000; double step;
void main()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
#pragma omp parallel for private(i,x) reduction (+:sum)

 for (i=0;i<=num_steps;i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

NERSC Users Group Meeting 2009 17

In order to do hybrid programming, models
must be combined via Standards

•  Hybrid programming (two programming models) requires that
the standards make commitments to each other on semantics.

•  OpenMP’s commitment: if a thread is blocked by an operating
system call (e.g. file or network I/O), the other threads remain
runnable.

–  This is a major commitment; it involves the thread scheduler in
the OpenMP compiler’s runtime system and interaction with the
OS.

–  What this means in the MPI context: An MPI call like MPI_Recv
or MPI_Wait only blocks the calling thread.

•  MPI’s commitments are more complex…

NERSC Users Group Meeting 2009 18

The MPI Standard Defines 4 Levels of
Thread Safety that affect Hybrid

•  Note that these are not specific to Hybrid OpenMP Models
•  The are in the form of commitments that the multithreaded

application makes to the MPI implementation
–  MPI_THREAD_SINGLE: only one thread in the application
–  MPI_THREAD_FUNNELED: only one thread makes MPI calls,

the Master Thread in the OpenMP context (next slide)
–  MPI_THREAD_SERIALIZED: Multiple threads make MPI calls,

but only one at a time (not concurrently)
–  MPI_THREAD_MULTIPLE: Any thread may make MPI calls at

any time, no restrictions
•  MPI-2 defines an alternative to MPI_Init

–  MPI_Init_thread(requested, provided)
  Allows applications to say what level it needs, and the MPI

implementation to say what it provides

NERSC Users Group Meeting 2009 19

What This Means in the OpenMP Context

•  MPI_THREAD_SINGLE
–  There is no OpenMP multithreading in the program.

•  MPI_THREAD_FUNNELED
–  All of the MPI calls are made by the master thread i.e., all MPI calls are

  Outside OpenMP parallel regions, or
  Inside OpenMP master regions, or
  Guarded by call to MPI_Is_thread_main MPI call.

–  (same thread that called MPI_Init_thread)
•  MPI_THREAD_SERIALIZED

#pragma omp parallel
…
#pragma omp atomic
{
 …MPI calls allowed here…
}

•  MPI_THREAD_MULTIPLE
–  Anything goes; any thread may make an MPI call at any time

NERSC Users Group Meeting 2009 20

Threads and MPI in MPI-2

•  An implementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required
to be thread safe in order to be standard-conforming

•  A fully thread-compliant implementation will support
MPI_THREAD_MULTIPLE

•  A portable program that does not call MPI_Init_thread should
assume that only MPI_THREAD_SINGLE is supported

NERSC Users Group Meeting 2009 21

For MPI_THREAD_MULTIPLE

•  When multiple threads make MPI calls concurrently, the
outcome will be as if the calls executed sequentially in
some (any) order

•  Blocking MPI calls will block only the calling thread and
will not prevent other threads from running or executing
MPI functions

•  It is the user's responsibility to prevent races when
threads in the same process post conflicting MPI calls

•  User must ensure that collective operations on the same
communicator, window, or file handle are correctly
ordered among threads

NERSC Users Group Meeting 2009 22

The Current Situation

•  All MPI implementations support MPI_THREAD_SINGLE (duh).
•  They probably support MPI_THREAD_FUNNELED even if they

don’t admit it.
–  Does require thread-safe malloc
–  Probably OK in OpenMP programs

•  “Thread-safe” usually means MPI_THREAD_MULTIPLE.
•  This is hard for MPI implementations that are sensitive to

performance, like MPICH2.
–  Lock granularity issue
–  Working on lock-free MPICH2 implementation

•  “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED.

–  So don’t need “thread-safe” MPI for many hybrid programs
–  But watch out for Amdahl’s Law!

NERSC Users Group Meeting 2009 23

How to determine thread support

MPI_Init_thread(&argc,&argv, MPI_THREAD_MULTIPLE,&provided);
Printf(“Supports level %d of %d %d %d %d\n”,
 provided,
MPI_THREAD_SINGLE,
MPI_THREAD_FUNNELED,
MPI_THREAD_SERIALIZED,
MPI_THREAD_MULTIPLE);

Example output:

>Supports level 1 of 0 1 2 3

Support may vary depending on chosen compiler and MPI library.

NERSC Users Group Meeting 2009 24

Argonne has developed tools to Visualize the
Behavior of Hybrid Programs

•  Jumpshot is a logfile-based parallel program visualizer of the
“standard” type. Uses MPI profiling interface.

•  Recently it has been augmented in two ways to improve
scalability.

–  Summary states and messages are shown as well as individual
states and messages.
  Provides a high-level view of a long run.
  SLOG2 logfile structure allows fast interactive access

(jumping, scrolling, and zooming) for large logfiles.

NERSC Users Group Meeting 2009 25

Jumpshot and Multithreading

•  Newest additions are for multithreaded and hybrid programs
that use pthreads.

–  Separate timelines for each thread id
–  Support for grouping threads by communicator as well as by

process

NERSC Users Group Meeting 2009 26

Using Jumpshot with Hybrid Programs

•  SLOG2/Jumpshot needs two properties of the OpenMP
implementation that are not guaranteed by the OpenMP
standard

–  OpenMP threads must be pthreads
  Otherwise, the locking in the logging library necessary to

preserve exclusive access to the logging buffers would need
to be modified.

–  These pthread ids must be reused (threads are “parked” when
not in use)
  Otherwise Jumpshot would need zillions of time lines.

•  At NERSC, we are currently examining the use of Jumpshot
and other tools for the analysis of hybrid programs

–  Part of the Cray Center of Excellence (COE) Program

NERSC Users Group Meeting 2009 27

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)
 block_to_be_parallelized
again_some_serial_code

Master thread,
 other threads

••• sleeping •••

OpenMP (shared data) MPI local data in each process

data Sequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Rabensiefners Models for Hybrid

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

Masteronly
MPI only outside
of parallel regions

NERSC Users Group Meeting 2009 28

Hybrid Masteronly

Advantages
–  No message passing inside of the SMP nodes
–  No topology problem

for (iteration ….)
{
 #pragma omp parallel
 numerical code
 /*end omp parallel */

 /* on master thread only */
 MPI_Send (original data
 to halo areas
 in other SMP nodes)
 MPI_Recv (halo data
 from the neighbors)
} /*end for loop

Masteronly
MPI only outside
of parallel regions

Major Problems
–  All other threads are sleeping

while master thread communicates!
–  What is inter-node bandwidth?

–  MPI-lib must support at least
MPI_THREAD_FUNNELED

NERSC Users Group Meeting 2009 29

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….
 i.e., communicate all halo data

} else {

Execute those parts of the application
 that do not need halo data
 (on non-communicating threads)

}

Execute those parts of the application
 that need halo data
 (on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

This can get very complicated.
Looks a little bit more like MPI Programming.

NERSC Users Group Meeting 2009 30

Overlapping communication and computation

Three problems:
•  the application problem:

–  one must separate application into:
  code that can run before the halo data is received
  code that needs halo data

  very hard to do !!!

•  the thread-rank problem:
–  comm. / comp. via

thread-rank
–  cannot use

work-sharing directives
  loss of major

OpenMP support
(see next slide)

•  the load balancing problem

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

 ….
}

}

NERSC Users Group Meeting 2009 31

Overlapping communication and computation

Subteams
•  Important proposal

for OpenMP 3.x
or OpenMP 4.x

#pragma omp parallel
{
#pragma omp single onthreads(0)
 {

 MPI_Send/Recv….
 }
#pragma omp for onthreads(1 : omp_get_numthreads()-1)
 for (……..)
 { /* work without halo information */
 } /* barrier at the end is only inside of the subteam */
 …
#pragma omp barrier
#pragma omp for
 for (……..)
 { /* work based on halo information */
 }
} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:
Toward Enhancing
OpenMP’s Work-Sharing
Directives.
In proceedings, W.E.
Nagel et al. (Eds.): Euro-
Par 2006, LNCS 4128, pp.
645-654, 2006.

NERSC Users Group Meeting 2009 32

Slide 32 / 140
Hybrid Parallel Programming

•  Aggregate sizes and zones:
–  Class B: 304 x 208 x 17 grid points, 64 zones
–  Class C: 480 x 320 x 28 grid points, 256 zones
–  Class D: 1632 x 1216 x 34 grid points, 1024 zones
–  Class E: 4224 x 3456 x 92 grid points, 4096 zones

•  BT-MZ:
Block tridiagonal simulated CFD application

–  Size of the zones varies widely:
  large/small about 20
  requires multi-level parallelism to achieve a good load-balance

•  SP-MZ:
Scalar Pentadiagonal simulated CFD application

–  Size of zones identical
  no load-balancing required

Multi-zone NAS Parallel Benchmarks –
 Characteristics

Load-balanced on
MPI level: Pure MPI
should perform best

Pure MPI:
Load-balancing

problems!
Good candidate

for
MPI+OpenMP

Expectations:

NERSC Users Group Meeting 2009 33

Sun Constellation Cluster Ranger (1)

•  Located at the Texas Advanced Computing Center (TACC),
University of Texas at Austin (http://www.tacc.utexas.edu)

•  3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per
node (blade), 62976 cores total

•  123TB aggregrate memory
•  Peak Performance 579 Tflops
•  InfiniBand Switch interconnect
•  Sun Blade x6420 Compute Node:

–  4 Sockets per node
–  4 cores per socket
–  HyperTransport System Bus
–  32GB memory

NERSC Users Group Meeting 2009 34

Sun Constellation Cluster Ranger (2)

•  Compilation:
–  PGI pgf90 7.1
–  mpif90 -tp barcelona-64 -r8

•  Cache optimized benchmarks
Execution:
–  MPI MVAPICH
–  setenv

OMP_NUM_THREAD
NTHREAD

–  Ibrun numactl bt-mz.exe
•  numactl controls

–  Socket affinity: select
sockets to run

–  Core affinity: select cores
within socket

–  Memory policy: where to
allocate memory

–  http://www.halobates.de/numaapi3.pdf

Core

Node

Socket

PCI-e

PCI-e

NERSC Users Group Meeting 2009 35

NPB-MZ Class E Scalability on Sun Constellation

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

1024 2048 4096 8192core#

M
Fl

op
/s

SP-MZ (MPI)
SP-MZ MPI+OpenMP
BT-MZ (MPI)
BT-MZ MPI+OpenMP

•  Scalability in Mflops
•  MPI/OpenMP outperforms pure MPI
•  Use of numactl essential to achieve scalability

NPB-MZ Class E Scalability on Ranger

BT
Significant improve-

ment (235%):
Load-balancing

issues solved with
MPI+OpenMP

SP
Pure MPI is already

load-balanced.
But hybrid

programming
9.6% faster

Cannot be build for
8192 processes!

Hybrid:
SP: still scales

BT: does not scale

NERSC Users Group Meeting 2009 36

Results reported for  
Class D on 256‐2048 cores 

•  SP‐MZ pure MPI scales up to 
1024 cores 

•  SP‐MZ MPI/OpenMP scales to 
2048 cores 

•  SP‐MZ MPI/OpenMP 
outperforms pure MPI for 1024 
cores 

• BT‐MZ MPI does not scale 
• BT‐MZ MPI/OpenMP scales to 
2048  cores, outperforms pure 
MPI 

Cray XT5: NPB-MZ Class D Scalability

256 cores 
512 cores 

2048 cores 

1024 cores 

Unexpected! 

Expected:  
#MPI processes limited  

Expected: Load‐
Imbalance for pure 
MPI 

best of category

Courtesy of Gabriele Jost (TACC/NPS)

NERSC Users Group Meeting 2009 37

•  Results for 128‐2048 
cores 

•  Only 1024 cores were 
available for the 
experiments 

•  BT‐MZ and SP‐MZ 
show benefit from 
Simultaneous 
Mul.threading (SMT):  
2048 threads  
on 1024 cores 

NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

128 cores 

256 cores 

1024 cores 

512 cores 

20
48

x1
 

Doubling the number of threads
through hyperthreading (SMT):

#!/bin/csh

#PBS -l select=32:ncpus=64:

mpiprocs=NP:ompthreads=NT

2048 
“cores” 

best of category

Courtesy of Gabriele Jost (TACC/NPS)

NERSC Users Group Meeting 2009 38

Hybrid parallelization affords new
opportunities

•  Nested Parallelism

•  Load-Balancing

•  Memory consumption

•  Opportunities, if MPI speedup is limited due to “algorithmic” problem

•  MPI scaling problems

NERSC Users Group Meeting 2009 39

Load-Balancing
(on same or different level of parallelism)

•  OpenMP enables
–  Cheap dynamic and guided load-balancing
–  Just a parallelization option (clause on omp for / do directive)
–  Without additional software effort
–  Without explicit data movement

•  On MPI level
–  Dynamic load balancing requires

moving of parts of the data structure through the network
–  Significant runtime overhead
–  Complicated software / therefore not implemented

•  MPI & OpenMP
–  Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

NERSC Users Group Meeting 2009 40

Memory consumption

•  Shared nothing
–  Heroic theory
–  In practice: Some data is duplicated

•  MPI & OpenMP
With n threads per MPI process:

–  Duplicated data is reduced by factor n

NERSC Users Group Meeting 2009 41

Memory consumption (continued)

•  Future:
With 100+ cores per chip the memory per core is limited.

–  Data reduction through usage of shared memory
may be a key issue

–  Domain decomposition on each hardware level
  Maximizes

–  Data locality
–  Cache reuse

  Minimizes
–  CCnuma accesses
–  Message passing

–  No halos between domains inside of SMP node
  Minimizes

–  Memory consumption

NERSC Users Group Meeting 2009 42

How many multi-threaded MPI processes
per SMP node

•  SMP node = with m sockets and n cores/socket

•  How many threads (i.e., cores) per MPI process?
–  Too many threads per MPI process

 overlapping of MPI and computation may be necessary,
 some NICs unused?

–  Too few threads
 too much memory consumption (see previous slides)

•  Optimum
–  somewhere between 1 and m x n

NERSC Users Group Meeting 2009 43

Opportunities, if MPI speedup is limited
due to “algorithmic” problems

•  Algorithmic opportunities due to larger physical domains inside of
each MPI process
 If multigrid algorithm only inside of MPI processes
 If separate preconditioning inside of MPI nodes and between MPI

nodes
 If MPI domain decomposition is based on physical zones

NERSC Users Group Meeting 2009 44

To overcome MPI scaling problems

compared to pure MPI •  Reduced number of MPI messages,
reduced aggregated message size

•  MPI has a few scaling problems
–  Handling of more than 10,000 processes
–  Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

  Scaling applications should not use MPI_....v() routines

–  MPI-2.1 Graph topology (MPI_Graph_create)
  MPI-2.2 MPI_Dist_graph_create_adjacent

–  Creation of sub-communicators with MPI_Comm_create
  MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

•  Hybrid programming reduces all these problems (due to a smaller number of
processes)

NERSC Users Group Meeting 2009 45

Summary of Hybrid Programming

MPI + OpenMP
•  Significant opportunity  higher performance on fixed number of cores
•  NPB-MZ examples

–  BT-MZ  strong improvement (as expected)
–  SP-MZ  small improvement (none was expected)

•  Often however, no speedup is obtained, especially for naïve
implementations

•  Hybrid MPI + OpenMP can solve certain problems with MPI-Everywhere
–  Load balancing
–  Memory consumption
–  Two levels of parallelism

 Outer  distributed memory  halo data transfer  MPI
  Inner  shared memory  ease of SMP parallelization  OpenMP

NERSC Users Group Meeting 2009 46

Summary (cont)

MPI+OpenMP – Pitfalls:
•  Problems with OpenMP performance remain

–  On ccNUMA  e.g., first touch
–  Pinning of threads on cores

•  Problems with combination of MPI & OpenMP
–  topology and mapping problems
–  mismatch problems

•  Most hybrid programs  Masteronly style
•  Overlapping communication and computation with several threads

–  Requires thread-safety quality of MPI library
–  Loss of OpenMP support  future OpenMP subteam concept

NERSC Users Group Meeting 2009 47

Hybrid Programming: more information

“Hybrid MPI and OpenMP Parallel Programming”
SC09 half-day tutorial M09, Monday, 8:30am – 12:00pm

Reminder, these slides are excerpted various tutorials
given by
Rolf Rabenseifner, Gabriele Jost, Rusty Lusk, Alice
Koniges, et al.
including
SC08, SC09 (upcoming) ParCFD 2009, SciDAC 2009
We are grateful for the use of these slides at the NUG
User Group Meeting

