
Programming Model Challenges for
Managing Massive Concurrency

Kathy Yelick
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory and
EECS Department, University of California, Berkeley

Software Issues at Scale

• Power concerns will dominates all others;
– Concurrency is the most significant knob we have: lower

clock, increase parallelism
– Power density and facility energy

• TCO has always been a factor in NERSC procurements, and while LBNL
electrical rates are very low, about 6.5cents/kwh, this term in TCO is
growing

• Summary Issues for Software
– 1EF system: Billion-way concurrency, O(1K) cores per chip
– 1 PF system: millions of threads and O(1K) cores per chip
– The memory capacity/core ratio may drop significantly
– Faults will become more prevalent
– Flops are cheap relative to data movement

Massive Concurrency

• Processor architecture in chaos
programming model research and development is harder
than ever

• “Core” is probably the wrong word
• How many threads (program counters) per functional

unit (say floating point)
– 1 as in traditional microprocessors?
– >1 with multithreading (e.g., Sun, Cray,…)
– <1 as with vectors / SIMD (energy efficient)

• This is not just an HPC concern if we’re going to
continue to leverage commodity processors
– May encourage heterogeneity (see Berkeley View)

2

Efficiency of software is also critical, so:

How can we waste an Exaflop machine?

Rule #1: Ignore Little’s Law

Required concurrency
= Latency * Bandwidth

Ignoring this is a good way to waste
expensive memory bandwidth

Stencil Code Example

void stencil3d(double A[], double B[], int nx, int ny, int nz) {

for all grid indices in x-dim {

for all grid indices in y-dim {

for all grid indices in z-dim {

B[center] = S0* A[center] +

S1*(A[top] + A[bottom] +

A[left] + A[right] +

A[front] + A[back]);

}

}

}

}

• 3D, 7-point, Jacobi iteration on a 2563 grid
• Flop:Byte Ratio:

– 0.33 (write allocate), 0.5 (Ideal)

Joint work by K. Datta, S. Kamil, S. Williams
J. Shalf, L. Oliker

6

Stencil Performance
(out-of-the-box code)

• Expect performance
to be between SpMV
and LBMHD

• Scalability is
universally poor

• Performance is poor

Naïve

7

Auto-tuned Stencil Performance
(architecture specific optimizations)

• Cache bypass can
significantly improve
Barcelona performance.

• DMA, SIMD, and cache
blocking were essential
on Cell

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Thread/Cache Blocking

+Padding

+NUMA

+Cache bypass / DMA

Naïve

+Collaborative Threading

Rule #2: Use processors engineered for
serial applications

Many features of “high performance”
processors waste energy: out-of-order

execution, speculation, hardware-
controlled caches,…

Stencil Results

Single Precision Double Precision

P
er

fo
rm

an
ce

P
ow

er
 E

ffi
ci

en
cy

Why is the STI Cell So Efficient?
(Latency Hiding with Software Controlled Memory)

• STriad Benchmark
– Measures bandwidth on alternation unit strides runs (Stanza) and jumps

• Tremendous cost to non-unit stride in traditional architectures
– Smarter prefetchers may improve this for some patterns, but can be counter-

productive
– Explains why decreasing cache misses does not always increase performance

Cell STRIAD (64KB concurrency)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

16 32 64 128 256 512 1024 2048

stanza size

1 SPE 2 SPEs 3 SPEs 4 SPEs
5 SPEs 6 SPEs 7 SPEs 8 SPEs

Rule #3: Rely on weak scaling

Many SC highlights from past decade
have used problems that weakly scale

DRAM component density is
only doubling every 3 years

Graph
Source: IBM

1 Mayl 2008 12Sequoia Programming Models

Weak scaling at risk, even for science problems that can weakling scale

Rule #4: Synchronize all data
communication events

Sharing and Communication
Models: PGAS vs. MPI

• A one-sided put/get message can be handled directly by a network
interface with RDMA support

– Avoid interrupting the CPU or storing data from CPU (preposts)
• A two-sided messages needs to be matched with a receive to

identify memory address to put data
– Offloaded to Network Interface in networks like Quadrics
– Need to download match tables to interface (from host)

address

message id

data payload

data payload
one-sided put message

two-sided message

network
interface

memory

host
CPU

Joint work with D. Bonachea, R. Nishtala, P. Hargrove,
and the UPC group

Two-Sided Communication Introduced
Synchronization Overhead

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
La

te
nc

y
(u

se
c)

MPI ping-pong
GASNet put+sync

Use a programming model in which you can’t utilize bandwidth or
“low” latency

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI
GASNet

Strongly Scaled 3D FFT on BG/P

16

What’s Wrong with MPI
Everywhere

• We can run 1 MPI process per core
– This works now (for CMPs) and will work for a while

• How long will it continue working?
– 4 - 8 cores? Probably. 128 - 1024 cores? Probably not.
– Depends on performance expectations -- more on this later

• What is the problem?
– Latency: some copying required by semantics
– Memory utilization: partitioning data for separate address

space requires some replication
• How big is your per core subgrid? At 10x10x10, over 1/2 of the

points are surface points, probably replicated
– Memory bandwidth: extra state means extra bandwidth
– Weak scaling: success model for the “cluster era;” will not be

for the many core era -- not enough memory per core
– Heterogeneity: MPI per SIMD element or CUDA thread-block?

What about Mixed MPI and
Threads?

• Threads: OpenMP, PThreads,…
• Problems

– Will OpenMP performance scale with the
number of cores / chip?

– More investment in infrastructure than MPI,
but can leverage existing technology

– Do people want two programming models?
– Doesn’t go far enough

• Thread context is a large amount of state compared
to vectors/streams

• Op per instruction vs. 64 ops per instruction

PGAS Languages
• Global address space: thread may directly read/write remote data
• Partitioned: data is designated as local or global

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn
• Implementation issues:

– Distributed memory: Reading a remote array or structure is
explicit, not a cache fill

– Shared memory: Caches are allowed, but not required
• No less scalable than MPI!
• Permits sharing, whereas MPI rules it out!

Sharing and Communication
Models: PGAS vs. Threads

• “Shared memory” OpenMP, Threads,…
– No control over locality
⇒Caching (automatic management of memory

hierarchy) is critical
⇒Cache coherent needed (hw or sw)

• PGAS / One-sided Communication
– Control over locality, explicit movement
⇒Caching is not required; programmer makes

local copies and manages their consistency
⇒Need to read/write without bothering remote

application (progress thread, DMA)
⇒No cache coherent needed, except between the

network interface and procs in a node

PGAS Languages + Autotuning
for Multicore

• PGAS languages are a good fit to shared memory
machines, including multicore
– Global address space implemented as reads/writes
– Also may be exploited for processor with explicit local store

rather than cache, e.g., Cell, GPUs,…
• Open question in architecture

– Cache-coherence shared memory
– Software-controlled local memory (or hybrid)

DMA

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip

l: m: Private on-chip

Shared
off-chip
DRAM

Rule #5: Add Global Synchronization

Avoid Global Synchronization

•Bulk-synchronous programming has too much synchronization
•Bad for performance

•Linpack performance
•On Multicore / SMP (left, Dongarra et al) and distributed memory (right, UPC)

•Also bad direction for fault tolerance

UPC vs.
ScaLAPACK

0

20

40

60

80

2x4 pr oc gr i d 4x4 pr oc gr i d

G
Fl

op
s

ScaLAPACK

UPC

0 2500 5000 7500 10000 12500 15000
2.5

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

Cholesky -- 8-way Dual Opteron

async. 2d b locking
LAPACK + Th.
BLAS

problem size

G
flo

p/
s

Rule #6: Use Algorithms
Design to minimize Flops

Count data movement, not Flops

Latency and Bandwidth-Avoiding

• Communication is limiting factor for scalability
– Movement of data within memory hierarchy
– Movement of data between cores/nodes

• Two aspects of communication
– Latency: number of discrete events (cache misses,

messages)
– Bandwidth: volume of data moved

• More efficient algorithms tend to run less efficiently
– Algorithm efficiency: E.g., O(n) ops on O(n) data
– Efficiency of computation on machine: % of peak
– At scale, cannot afford to be algorithmically inefficient
– Need to run low compute intensity algorithms well, or flops

are wasted
Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

Avoiding Communication in Sparse Linear
Algebra

• Take k steps of Krylov subspace method
– GMRES, CG, Lanczos, Arnoldi
– Assume matrix “well-partitioned,” with modest surface-to-

volume ratio
– Parallel implementation

• Conventional: O(k log p) messages
• “New”: O(log p) messages - optimal

– Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• “New”: O(1) moves of data – optimal

• Can incorporate some preconditioners
– Hierarchical, semiseparable matrices …

• Lots of speed up possible (modeled and measured)
– Price: some redundant computation

Avoiding Communication in Sparse
Iterative Solvers

• Consider Sparse Iterative Methods for Ax=b
– Use Krylov Subspace Methods like GMRES, CG
– Can we lower the communication costs?

• Latency of communication, i.e., reduce # messages by computing
Ak*x with one read of remote x

• Bandwidth to memory hierarchy, i.e., compute A
• Example: Inner loop is sparse matrix-vector multiply, Ax (=nearest

neighbor computation on a graph)
• Partition into cache blocks or by

processor, and take multiple steps
• Simple examples, A is matrix of:

– 2D Mesh has “5 point stencil”
– 1D mesh mesh “3 point stencil”

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax], A tridiagonal
2 processors

Can be computed without communication

Proc 1 Proc 2

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,A2x], A tridiagonal
2 processors

Can be computed without communication

Proc 1 Proc 2

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A3x], A tridiagonal
2 processors

Can be computed without communication

Proc 1 Proc 2

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A4x], A tridiagonal
2 processors

Can be computed without communication

Proc 1 Proc 2

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by neighbors

• Send/shared data to neighbors
• Compute remaining locally dependent

entries
• Compute remotely dependent entries
• Shown for 1D mesh, but can be done for

general matrix
– Traveling salesman problem within for layout

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

Work by Demmel and Hoemmen

Can use Matrix Power Kernel, but change Algorithms

Performance Results To Date

• Tall-skinny QR (measured)
• 6.7x on Pentium cluster, 4x on BlueGene

•Square QR (modeled)
• 22x on petascale machine) 22x

•A^kx kernel
• (modeled 2D mesh matrix, on petascale)
15x without overlap, 7x with overlap
• (measured 2D mesh matrix, on “out of
core” system with matrix on disk) 3.2x

Conclusions

• Re-think Programming Models
– Software to make the most of hardware

• One-sided communication to avoid synchronization
• Global address space to increase sharing (re-use)

and for productivity

• Re-think software for libraries/applications
– Write self-tuning applications

• Re-think Algorithms
– Design for bottlenecks: latency and bandwidth

