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Software Issues at Scale

• Power concerns will dominates all others; 
– Concurrency is the most significant knob we have:  lower 

clock, increase parallelism
– Power density and facility energy

• TCO has always been a factor in NERSC procurements, and while LBNL  
electrical rates are very low, about 6.5cents/kwh, this term in TCO is 
growing

• Summary Issues for Software
– 1EF system: Billion-way concurrency, O(1K) cores per chip
– 1 PF system: millions of threads and O(1K) cores per chip
– The memory capacity/core ratio may drop significantly
– Faults will become more prevalent
– Flops are cheap relative to data movement



Massive Concurrency

• Processor architecture in chaos 
programming model research and development is harder 
than ever

• “Core” is probably the wrong word
• How many threads (program counters) per functional 

unit (say floating point)
– 1 as in traditional microprocessors?
– >1 with multithreading (e.g., Sun, Cray,…)
– <1 as with vectors / SIMD (energy efficient)

• This is not just an HPC concern if we’re going to 
continue to leverage commodity processors
– May encourage heterogeneity (see Berkeley View)
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Efficiency of software is also critical, so: 

How can we waste an Exaflop machine?



Rule #1: Ignore Little’s Law

Required concurrency 
= Latency * Bandwidth

Ignoring this is a good way to waste 
expensive memory bandwidth



Stencil Code Example

void stencil3d(double A[], double B[], int nx, int ny, int nz) {

for all grid indices in x-dim {

for all grid indices in y-dim {

for all grid indices in z-dim {

B[center] = S0* A[center] + 

S1*(A[top] + A[bottom] +

A[left] + A[right] +

A[front] + A[back]);

}

}

}

}

• 3D, 7-point, Jacobi iteration on a 2563 grid
• Flop:Byte Ratio:

– 0.33 (write allocate), 0.5 (Ideal)

Joint work by K. Datta, S. Kamil, S. Williams
J. Shalf, L. Oliker
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Stencil Performance
(out-of-the-box code)

• Expect performance 
to be between SpMV
and LBMHD

• Scalability is 
universally poor

• Performance is poor

Naïve
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Auto-tuned Stencil Performance
(architecture specific optimizations)

• Cache bypass can 
significantly improve 
Barcelona performance.

• DMA, SIMD, and cache 
blocking were essential 
on Cell

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Thread/Cache Blocking

+Padding

+NUMA

+Cache bypass / DMA

Naïve

+Collaborative Threading



Rule #2: Use processors engineered for 
serial applications

Many features of “high performance”
processors waste energy:  out-of-order 

execution, speculation, hardware-
controlled caches,…



Stencil Results
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Why is the STI Cell So Efficient?
(Latency Hiding with Software Controlled Memory)

• STriad Benchmark
– Measures bandwidth on alternation unit strides runs (Stanza) and jumps

• Tremendous cost to non-unit stride in traditional architectures
– Smarter prefetchers may improve this for some patterns, but can be counter-

productive
– Explains why decreasing cache misses does not always increase performance

Cell STRIAD (64KB concurrency)
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Rule #3: Rely on weak scaling

Many SC highlights from past decade 
have used problems that weakly scale



DRAM component density is
only doubling every 3 years

Graph 
Source: IBM

1 Mayl 2008 12Sequoia Programming Models

Weak scaling at risk, even for science problems that can weakling scale



Rule #4: Synchronize all data 
communication events



Sharing and Communication 
Models: PGAS vs. MPI

• A one-sided put/get message can be handled directly by a network 
interface with RDMA support

– Avoid interrupting the CPU or storing data from CPU (preposts)
• A two-sided messages needs to be matched with a receive to 

identify memory address to put data
– Offloaded to Network Interface in networks like Quadrics
– Need to download match tables to interface (from host)

address

message id

data payload

data payload
one-sided put message

two-sided message

network
interface

memory

host
CPU

Joint work with D. Bonachea, R. Nishtala, P. Hargrove, 
and the UPC group



Two-Sided Communication Introduced 
Synchronization Overhead

8-byte Roundtrip Latency
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Use a programming model in which you can’t utilize bandwidth or 
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Strongly Scaled 3D FFT on BG/P
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What’s Wrong with MPI 
Everywhere

• We can run 1 MPI process per core
– This works now (for CMPs) and will work for a while

• How long will it continue working? 
– 4 - 8 cores? Probably.  128 - 1024 cores? Probably not.
– Depends on performance expectations -- more on this later

• What is the problem?
– Latency: some copying required by semantics
– Memory utilization: partitioning data for separate address 

space requires some replication
• How big is your per core subgrid?  At 10x10x10, over 1/2 of the 

points are surface points, probably replicated
– Memory bandwidth: extra state means extra bandwidth
– Weak scaling: success model for the “cluster era;” will not be 

for the many core era -- not enough memory per core
– Heterogeneity: MPI per SIMD element or CUDA thread-block?



What about Mixed MPI and 
Threads?

• Threads: OpenMP, PThreads,…
• Problems

– Will OpenMP performance scale with the 
number of cores / chip?

– More investment in infrastructure than MPI, 
but can leverage existing technology

– Do people want two programming models?
– Doesn’t go far enough

• Thread context is a large amount of state compared 
to vectors/streams

• Op per instruction vs. 64 ops per instruction



PGAS Languages
• Global address space: thread may directly read/write remote data 
• Partitioned: data is designated as local or global
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• Implementation issues:

– Distributed memory: Reading a remote array or structure is 
explicit, not a cache fill

– Shared memory: Caches are allowed, but not required
• No less scalable than MPI!
• Permits sharing, whereas MPI rules it out!



Sharing and Communication 
Models: PGAS vs. Threads

• “Shared memory” OpenMP, Threads,…
– No control over locality
⇒Caching (automatic management of memory 

hierarchy) is critical
⇒Cache coherent needed (hw or sw)

• PGAS / One-sided Communication
– Control over locality, explicit movement
⇒Caching is not required; programmer makes 

local copies and manages their consistency
⇒Need to read/write without bothering remote 

application (progress thread, DMA)
⇒No cache coherent needed, except between the 

network interface and procs in a node



PGAS Languages + Autotuning
for Multicore

• PGAS languages are a good fit to shared memory 
machines, including multicore
– Global address space implemented as reads/writes
– Also may be exploited for processor with explicit local store 

rather than cache, e.g., Cell, GPUs,…
• Open question in architecture

– Cache-coherence shared memory
– Software-controlled local memory (or hybrid)
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Rule #5: Add Global Synchronization



Avoid Global Synchronization

•Bulk-synchronous programming has too much synchronization
•Bad for performance

•Linpack performance
•On Multicore / SMP (left, Dongarra et al) and distributed memory (right, UPC)

•Also bad direction for fault tolerance
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Rule #6: Use Algorithms 
Design to minimize Flops

Count data movement, not Flops



Latency and Bandwidth-Avoiding

• Communication is limiting factor for scalability
– Movement of data within memory hierarchy
– Movement of data between cores/nodes

• Two aspects of communication
– Latency: number of discrete events (cache misses, 

messages)
– Bandwidth: volume of data moved

• More efficient algorithms tend to run less efficiently
– Algorithm efficiency: E.g., O(n) ops on O(n) data
– Efficiency of computation on machine: % of peak
– At scale, cannot afford to be algorithmically inefficient
– Need to run low compute intensity algorithms well, or flops 

are wasted
Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden



Avoiding Communication in Sparse Linear 
Algebra

• Take k steps of Krylov subspace method
– GMRES, CG, Lanczos, Arnoldi
– Assume matrix “well-partitioned,” with modest surface-to-

volume ratio
– Parallel implementation

• Conventional: O(k log p) messages
• “New”: O(log p) messages - optimal

– Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• “New”: O(1) moves of data – optimal

• Can incorporate some preconditioners
– Hierarchical, semiseparable matrices …

• Lots of speed up possible (modeled and measured)
– Price: some redundant computation



Avoiding Communication in Sparse 
Iterative Solvers

• Consider Sparse Iterative Methods for Ax=b
– Use Krylov Subspace Methods like GMRES, CG
– Can we lower the communication costs?

• Latency of communication, i.e., reduce # messages by computing 
Ak*x with one read of remote x

• Bandwidth to memory hierarchy, i.e., compute A
• Example: Inner loop is sparse matrix-vector multiply, Ax (=nearest 

neighbor computation on a graph)
• Partition into cache blocks or by

processor, and take multiple steps
• Simple examples, A is matrix of:

– 2D Mesh has “5 point stencil”
– 1D mesh mesh “3 point stencil”

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden
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Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by neighbors

• Send/shared data to neighbors
• Compute remaining locally dependent 

entries
• Compute remotely dependent entries
• Shown for 1D mesh, but can be done for 

general matrix
– Traveling salesman problem within for layout

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden



Work by Demmel and Hoemmen

Can use Matrix Power Kernel, but change Algorithms



Performance Results To Date

• Tall-skinny QR (measured) 
• 6.7x on Pentium cluster, 4x on BlueGene

•Square QR (modeled)
• 22x on petascale machine) 22x

•A^kx kernel
• (modeled 2D mesh matrix, on petascale) 
15x without overlap, 7x with overlap
• (measured 2D mesh matrix, on “out of 
core” system with matrix on disk) 3.2x



Conclusions

• Re-think Programming Models
– Software to make the most of hardware

• One-sided communication to avoid synchronization
• Global address space to increase sharing (re-use) 

and for productivity

• Re-think software for libraries/applications
– Write self-tuning applications

• Re-think Algorithms
– Design for bottlenecks: latency and bandwidth


