Programming Model Challenges for
Managing Massive Concurrency

Kathy Yelick

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory and
EECS Department, University of California, Berkeley

| £ ~
W ERSC crceesd]

‘||||

L@axXa Software Issues at Scale

e Power concerns will dominates all others:

— Concurrency is the most significant knob we have: lower
clock, increase parallelism

— Power density and facility energy

 TCO has always been a factor in NERSC procurements, and while LBNL
electrical rates are very low, about 6.5cents/kwh, this term in TCO is
growing

e Summary Issues for Software
— 1EF system: Billion-way concurrency, O(1K) cores per chip
— 1 PF system: millions of threads and O(1K) cores per chip
— The memory capacity/core ratio may drop significantly
— Faults will become more prevalent
— Flops are cheap relative to data movement

~

=

jy-crsc Massive Concurrency

e Processor architecture in chaos

-> programming model research and development is harder
than ever

« “Core” is probably the wrong word

« How many threads (program counters) per functional
unit (say floating point)
— 1 as in traditional microprocessors?
— >1 with multithreading (e.g., Sun, Cray,...)
— <1 as with vectors / SIMD (energy efficient)

 This is not just an HPC concern if we're going to
continue to leverage commodity processors
— May encourage heterogeneity (see Berkeley View) .

2

MNATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Efficiency of software Is also critical, so:

How can we waste an Exaflop machine?

MATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Rule #1: Ignore Little’s Law

Required concurrency
= Latency * Bandwidth

Ignoring this Is a good way to waste
expensive memory bandwidth

L@ax=3 stencil Code Example

“RG =1
IENTIFIC COMPUTING CENTER

va d stencil 3d(doubl e A[], double H]J, int nx, int ny, int nz) {
for dl gidindcesinx-d m{
for dl gidindicesinyd m{

fordl gidindcesinzd m{
Hcenter] = SO* Acenter] +

SI(A 1 +A]+

Al et] + Aright] +

Afront] + Aback]);

X -

« 3D, 7-point, Jacobi iteration on a 2563 grid
 Flop:Byte Ratio:
— 0.33 (write allocate), 0.5 (Ideal)

Joint work by K. Datta, S. Kamil, S. Williams L
J. Shalf, L. Oliker rereee ‘Ihl

BERKELEY LaB

W=rsc

MATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

w

GFLOP/s
[}

GFLOP/s

w

=]

[

0

Xeon E5345
(Clovertown)

25673

UltraSparc T2+ T5140
(Victoria Falls)

25673

| |IIII ||||| |“‘| |||||
0
1 2 4 8

16

Stencil Performance

w

GFLOP/s
[}

[

0

4.0

GFLOP/s

w
o

™
o

-
o

0.0

Coees m B

(out-of-the-box code)

« Expect performance
to be between SpMV
and LBMHD

o Scalability is
universally poor

« Performance is poor

Opteron 2356
(Barcelona)

25673

QS20 Cell Blade
(PPEs only)

25673

GFLOP/s

GFLOP/s

Zxa Auto-tuned Stencil Performance

MATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

=
[=)]

Xeon E5345
(Clovertown)

[y
Y

[y
)

=
(=]

N s B R
1 2 4 8

25673
16
UltraSparc T2+ T5140
147 (Victoria Falls)
12
10
8 {
6
4 1

(architecture specific optimizations)

16 e Cache bypass can
4] Opteron 2356 significantly improve
(Barcelona)

" Barcelona performance.
210] « DMA, SIMD, and cache
g blocking were essential
z on Cell

6

4 1

2
0
1 2 4 8
25673
16.0 +Cache bypass / DMA
QS20 Cell Blade . o

14.0 (SPEs) +Explicit SIMDization

12.0 +Collaborative Threading
0100 +SW Prefetching
g 8.0 .

o +Unrolling
© 6.0
+Thread/Cache Blocking
4.0
2.0 +Padding
0.0 -1 +NUMA

1 2 4 8 16 . . o "
25673 Naive frereer ‘m

MATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Rule #2: Use processors engineered for
serial applications

Many features of “high performance”
processors waste energy:. out-of-order
execution, speculation, hardware-
controlled caches,...

A= s c

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Performance

Power Efficiency

Stencil Results

Single Precision

Double Precision

60

50 |

[l Clovertown
[l Barcelona
[‘IVictoria Falls
ECell

B G8s0

B G80/PCle

Total GFlop/s
w 5
=} o

N
o
|

10 4

16

14 4

M Clovertown
[Barcelona
[]Victoria Falls
ECell

[
[}
I

[
[=]

Total GFlop/s
o

300

MFlop/S/Watt
o
(=]

H System Power
Efficiency
| ¥ Chip Power
Efficiency
s ¢ 2 3 § ¢
i § § S & 3
- «w
Q > 4]

4m

-]

Frereer m

BERKELEY LaB

GBiE

W=rsc

MNATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Why iIs the STI Cell So Efficient?

(Latency Hiding with Software Controlled Memory)

STriad Bandwidth

B jfanm2 STriad
4 Harmm? STREAN
Oipteran STnad
- = TS
a6 A Dploron STREAN
" 4 EE STriad
3 .-"'f GH STREAM
w & P
P3 ETriad
28 / —— P31 STREAM
Fa— .Jj il —lh— L &
. i
1.6 I a o
o
o o
--__-" -
| -
il
(i o
o T T]
16 52 B4 123 256 512 1 H ak B 165K

Stanza Langih (words)

Cell STRIAD (64KB concurrency)

30.000
25.000
20.000

15.000
10.000 <

5.000

0.000 I I I I I
16 32 64 128 256 512 1024 2048

stanza size

1 SPE -®-2 SPEs
——=5 SPEs

3 SPEs
6 SPEs ——7 SPEs

4 SPEs
8 SPEs

STriad Benchmark

— Measures bandwidth on alternation unit strides runs (Stanza) and jumps

Tremendous cost to non-unit stride in traditional architectures
— Smarter prefetchers may improve this for some patterns, but can be counter-

productive

— Explains why decreasing cache misses does not always increase performance

A
Frereer ‘m

BERKELEY LaB H

MATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Rule #3. Rely on weak scaling

Many SC highlights from past decade
have used problems that weakly scale

DRAM component density IS

4 .
= S— only doubling every 3 years
Evolution of memory density
10000 - + 1Mb
oo = 4Mb
2 1000 o 2XB3yrs 16Mb
= .-
=100 e oeo
= ; x 128Mb
=2 4XI3yrs
S 10 — * 256Mb
o 0512Mb
1 4 1 1 1 1 1 A 1Gb
1985 1980 1995 2000 2005 2010 2015 | oqp,
Year mass production starts 4Gh Graph

Source: IBM
Weak scaling at risk, even for science problems that can weakling scale

fiw

Rule #4: Synchronize all data
communication events

rxa Sharing and Communication
T IR e M 0O d el S: PG A S VS. M P|

two-sided message

message id data payload

one-sided put message

address data payload

network
interface

host
CPU

memory

« A one-sided put/get message can be handled directly by a network

interface with RDMA support

— Avoid interrupting the CPU or storing data from CPU (preposts)
« A two-sided messages needs to be matched with a receive to

identify memory address to put data

— Offloaded to Network Interface in networks like Quadrics
— Need to download match tables to interface (from host)

Joint work with D. Bonachea, R. Nishtala, P. Hargrove,

and the UPC group

v Two-Sided Communication Introduced

A

Synchronization Overhead

IMPLUTING CENTER

Use a programming model in which you can’t utilize bandwidth or
“low” latency

25

8'bytze4§°undmp Latency Flood Bandwidth for 4KB messages
: 100% B MPI
223
B P! ping-pong 21 | B GASNet
| MGASNet puttsync
146

714
420 750
547 “‘\

ElndiAlha ElandlA6d Myineth@ IBIGS BlOpteron SPIFed Han/Apha Band/A64 Wyrinet86 IB/G5 IBlOpteron SPIFed

I
BERKELEY LA

434 Strongly Scaled 3D FFT on BG/P

MATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER
T T | I I T
— — —UDDET BDund e e e e o - _
=t UPC Slabs : : : -
—t— MPI Slabs e e e P
—f}— MPI Packed Slabs ' : : -
a
=}
L
[}
i 1 | | | |
512 1024 2048 4096 B19z2 16384
Core Count (Problem Size for All Core Counts: 2048 x 1024 x 1024)
]
/_\l }\
Frereer ‘m

16

e What's Wrong with MPI
)
SCIENTIFIC COMPUTING GENTER EV e ryW h e r e

e We can run 1 MPI process per core
— This works now (for CMPs) and will work for a while

« How long will it continue working?
— 4 -8 cores? Probably. 128 - 1024 cores? Probably not.
— Depends on performance expectations -- more on this later

« What is the problem?
— Latency: some copying required by semantics
— Memory utilization: partitioning data for separate address

space requires some replication

 How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

— Memory bandwidth: extra state means extra bandwidth

— Weak scaling: success model for the “cluster era;” will not be
for the many core era -- not enough memory per core

— Heterogeneity: MPI per SIMD element or CUDA thread-block?

~

rreererr

g

What about Mixed MPI and

.
SCIENTIFIC COMPUTING GENTER T h r e a.d S ?

e Threads: OpenMP, PThreads,...

* Problems
— Wil OpenMP performance scale with the
number of cores / chip?
— More investment in infrastructure than MPI,
but can leverage existing technology
— Do people want two programming models?

— Doesn’t go far enough

« Thread context is a large amount of state compared
to vectors/streams

 Op per instruction vs. 64 ops per instruction

~

!

A ERSC PGAS Languages

“RG ES| .
IENTIFIC COMPUTING CENTER

» Global address space: thread may directly read/write remote data
» Partitioned: data is designated as local or global

)

9: g: g /

Global address space
\\
=]
°
o
[

PO pl pn
 Implementation issues:

— Distributed memory: Reading a remote array or structure is
explicit, not a cache fill

— Shared memory: Caches are allowed, but not required
* No less scalable than MPI!
 Permits sharing, whereas MPI rules it out!

~

!

Sharing and Communication

.
SCIENTIFIC COMPUTING GENTER M O d el S : P GA S VS . Th read S

e “Shared memory” OpenMP, Threads,...
— No control over locality

—Caching (automatic management of memory
hierarchy) is critical

—Cache coherent needed (hw or sw)

e PGAS /One-sided Communication

— Control over locality, explicit movement

—Caching is not required; programmer makes
local copies and manages their consistency

—Need to read/write without bothering remote
application (progress thread, DMA)

—No cache coherent needed, except between the
network interface and procs in a node '

anguages + Autotuning

sz

« PGAS languages are a good fit to shared memory
machines, including multicore

— Global address space implemented as reads/writes

— Also may be exploited for processor with explicit local store
rather than cache, e.g., Cell, GPUs,...

« Open question in architecture
— Cache-coherence shared memory
— Software-controlled local memory (or hybrid)

e e e Private on-chip

Shared

partitioned

on-chip
Shared

ff-chi
(I?)R/gl\/llp '>r| ‘iﬁl

Rule #5: Add Global Synchronization

LAPACK + Th.
BLAS

12500

2500 5000 7500 10000
problem size

15000

UPC vs.

ScaLAPACK

m ScaLAPACK
m UPC

*Bulk-synchronous programming has too much synchronization

« Bad for performance
e Linpack performance

* On Multicore / SMP (left, Dongarra et al) and distributed memory (right, UPC)

» Also bad direction for fault tolerance

-

rreererr

=y

MATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Rule #6: Use Algorithms
Design to minimize Flops

Count data movement, not Flops

W ERSC Latency and Bandwidth-Avoiding

“RG ES| .
IENTIFIC COMPUTING CENTER

« Communication is limiting factor for scalability
— Movement of data within memory hierarchy
— Movement of data between cores/nodes

« Two aspects of communication

— Latency: number of discrete events (cache misses,
messages)

— Bandwidth: volume of data moved

 More efficient algorithms tend to run less efficiently
— Algorithm efficiency: E.g., O(n) ops on O(n) data
— Efficiency of computation on machine: % of peak
— At scale, cannot afford to be algorithmically inefficient

— Need to run low compute intensity algorithms well, or flops

are wasted
Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden .

A
Frereer ‘w

A ERSC Avoiding Communication in Sparse Linear
i Al ge bra

« Take k steps of Krylov subspace method
— GMRES, CG, Lanczos, Arnoldi

— Assume matrix “well-partitioned,” with modest surface-to-
volume ratio

— Parallel implementation
 Conventional: O(k log p) messages
« “New”: O(log p) messages - optimal
— Serial implementation
 Conventional: O(k) moves of data from slow to fast memory
« “New”: O(1) moves of data — optimal
« Can incorporate some preconditioners

— Hierarchical, semiseparable matrices ...

o Lots of speed up possible (modeled and measured)
— Price: some redundant computation

~

!

: Avoiding Communication in Sparse
‘ nerox seseon lterative Solvers

Consider Sparse lterative Methods for Ax=b
— Use Krylov Subspace Methods like GMRES, CG
— Can we lower the communication costs?

« Latency of communication, i.e., reduce # messages by computing
Ak*x with one read of remote x

« Bandwidth to memory hierarchy, i.e., compute A

Example: Inner loop is sparse matrix-vector multiply, Ax (=nearest
neighbor computation on a graph)

Partition into cache blocks or by
processor, and take multiple steps
Simple examples, A is matrix of:
— 2D Mesh has “5 point stencil”
— 1D mesh mesh “ 3 point stencil”

1T

Joint work with Jim Demmel, Mark Hoemmen, Marghoob MohiyuddenEi

Locally Dependent Entries for [x,Ax], A tridiagonal
M ERSC d

“RG =1
IENTIFIC COMPUTING CENTER

Proc1 . Proc 2
AX nnnuu‘nunnuuuua
X 0’!0’0’{’0‘0?0"?}??{0
é 1|0 1|5‘ 2‘0 2|5 3I0
Can be computed without communication /—\l
rerrfrerer

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohlyudden

Locally Dependent Entries for [x,Ax,A%x], A tridiagonal
' v ERSC ’ /4)
W ERSC] 2 proceseats

“RG ES| .
IENTIFIC COMPUTING CENTER

Proc1 . Proc 2

000 000000000000 0

»® O 0O 00000000000 0 Of

X 0 SO0 00 00000000000 0 O
é 1|0 1|5‘ 2"0 2|5 3I0

Can be computed without communication /—\l

rerrfrerer

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

=2

Locally Dependent Entries for [x,AXx,...,A3x], A tridiagonal
2 processors

“RG ES| .
IENTIFIC COMPUTING CENTER

Proc1 . Proc 2

T T T T T !

OO0 000000000000 000 O

D @ @ O0/0O0 00000000000 . Oq

BB
e
JAAAXDON
Lo

»® O 0O 00000000000 0 Of

X 0 SO0 00 00000000000 0 O
é 1|0 1|5 2"0 2|5 3I0

Can be computed without communication /—\l

rerrfrerer

=2

Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden

Locally Dependent Entries for [x,AXx,...,A%], A tridiagonal

Vv
W ERS C 2 processors

Proc1 . Proc 2

y 04}‘0‘0‘4}

o O
-~ S :::::::::::::::
- ‘.N.N..NN’ oooooooooooooo i

| il \ | |
10 15 20 25 30

Can be computed without communication
Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden—

r vy Latency Avoiding Parallel Kernel for
[X, AX, A2X, . AkX]

« Compute locally dependent entries
needed by neighbors

 Send/shared data to neighbors

« Compute remaining locally dependent
entries

e Compute remotely dependent entries

e Shown for 1D mesh, but can be done for
general matrix

— Traveling salesman problem within for layout

~

) A
Joint work with Jim Demmel, Mark Hoemmen, Marghoob Mohiyudden'

Can use Matrix Power Kernel, but change Algorithms

Matrix diag-cond-1.000000e-11: rel. 2-nm resid.

1 1
Monrestanted GMRES
v Restarted GMRES(192)
O Monomial-GMRES(24,3)
MNewton-GMRES(24 8)

b T =

rm relative residual

Log10 of 2-n

Work by Demmel and Hoemmen

—EI | | | | | | | | |
100 200 300 400 o) GO0 700 800 500 1000 \ ‘
nner iteration number aNl

A
I

: Performance Results To Date

e Tall-skinny QR (measured)
e 6.7x on Pentium cluster, 4x on BlueGene
eSquare QR (modeled)
e 22X 0on petascale machine) 22x
*A™kx kernel
* (modeled 2D mesh matrix, on petascale)
15x without overlap, 7x with overlap
e (measured 2D mesh matrix, on “out of
core” system with matrix on disk) 3.2x

A=rsc! |
SCIENTIFIC COMPUTING GENTER CO n C | u S I O n S

 Re-think Programming Models

— Software to make the most of hardware
e One-sided communication to avoid synchronization

 Global address space to increase sharing (re-use)
and for productivity

 Re-think software for libraries/applications
— Write self-tuning applications

 Re-think Algorithms
— Design for bottlenecks: latency and bandwidth

~

zY

