

1

SpinUp for New Users

https://www.nersc.gov/systems/spin/

2

Welcome
This workshop will prepare you to design, build, and
manage your own apps using the Spin platform.
Those might be:
• database-backed web apps that access project data
• workflow orchestration tools running outside of HPC
• API servers for real-time or distributed projects
• or something else!

Remember, though: Spin is for apps, not computation.

3

...and with great power comes great responsibility!
• Keep software updated; fix vulnerabilities promptly.

o NERSC scans regularly to find problems quickly.

• Encrypt anything accessible over the network.
o These are strict DOE and DHS requirements!

• Produce logs to stdout/stderr.
o This is Docker convention anyway.

Don’t worry. Spin helps make these best practices easy!

Spin is a Powerful System...

4

Workshop Structure and Content
Seminar (today)

Learn concepts and terms. Build an example application. Store and access
credentials. Configure storage and networking. Discuss the design and
development process.

Hack-a-thon (choose A or B)
Try what you learned, in small groups, with hands-on help. Review. Q&A.

Ask questions here and on NERSC Users Slack (in #spin).

We welcome your feedback. Please complete our survey afterward.

Have a great workshop!

Concepts and Terminology

6

Why Do We Need Spin?

Your project is more than batch jobs and data files; it’s
science gateways, databases, and other services.
Spin is a supported platform designed to help:
• Cloud-style flexibility
• Create new apps yourself on demand
• Redundancy / uptime (97% in 2022)
• Direct access to HPC file systems and networks

7

Docker, Kubernetes, and Rancher
Spin is based on the Rancher
orchestration system, which is
built on Docker and Kubernetes.
How do they all fit together?

• Docker is great for just you on a laptop.
• For lots of applications, you need a

whole Kubernetes cluster.
• For lots of projects, each with lots of

applications, we need orchestration.
• With Rancher orchestration, you get

virtual private access to the multiple
Kubernetes clusters running in Spin.

https://www.lucidchart.com/documents/edit/2902bcd0-4af4-43f1-a9a7-260932b87d4d/0?callback=close&name=slides&callback_type=back&v=1312&s=401.89672519685035

8

(Some of the) Terminology
Container image: blueprint for a container; like a tarball

Container: running instance of an image; like a process

Image Registry: versioned repository for container images

Pod: one or more very-closely-coupled containers

Workload: set of parameters and rules that define how to create a
particular pod

Deploy: create a workload

Ingress: proxy service that exposes a web service in a workload
externally using a DNS name (layer 7)

Load Balancer: proxy service that exposes a non-web service in a
workload using a DNS name (layer 2)

Namespace: group of workloads (often for interoperation)

Project: group of workloads, namespaces, ingresses, etc for access
control; corresponds to a NERSC project

Kubernetes: container scheduling system to run it all

Rancher: orchestration system for Kubernetes clusters

registry

images

containers

pod /
workload

pod /
workload

namespace

9

Canonical Development Workflow

Build
images on your
laptop with your
custom software,
and when they run
reliably, …

Run
your workloads

Ship
them to a registry
for version control
and safekeeping
● DockerHub: share

with the public
● NERSC: keep private

to your project

10

High-Level Spin Architecture

app backend

node 1 node n

database

CFS

. . .

ingress

node 2

web frontend 2web frontend 1

key-value

NFS

m
anagem

ent U
I / C

LI

security policy enforcem
ent

image
registry

docker

Yours to
manage

NERSC
handles
the rest!

CVMFS

11

Interactive Exercises: Let’s Create an App!
Our example app:

• Python-based
• Uses static files in CFS
• Database backend

We will build the app from the
bottom up, database first.
Along the way, we will

• Use variables and config maps
to customize behavior

• Attach storage
• Store passwords securely
• Make it available on the network

node 1 node n

database

NFS

. . .

ingress

node 2

web frontend

CFSimage
registry

Exercise 1: Create a Database

13

Exercise 1: Create a Database
• Databases often underlie web apps, so let’s start there.
• In Spin, you can access an external database or create

your own, as we’ll do now.
• We recommend using stock images from DockerHub for

MongoDB, MySQL, PostgreSQL, Redis, and others.
o Frequently updated, easy to customize...less work!

• Look at the README: https://hub.docker.com/_/mysql
o Customize by setting variables; no custom image needed

https://hub.docker.com/_/mysql

14

https://docs.google.com/file/d/1JuMdAqEk3aztzFxS6A622JR9u-aVCDsj/preview

15

1. Log in to https://rancher2.spin.nersc.gov.

2. In the sidebar under ≡, select development, then click
Projects/Namespaces.

3. Under your project (or if attending the SpinUp Workshop,
under the spinup project), click Create Namespace. Enter
a unique name, then click Create. Note: underscores (_)
are not allowed!

4. In the sidebar under Workload, click Deployments and
click Create. Select the namespace you just created and
enter

Name: db
Container Image: mysql:5

5. Under Ports, click Add Port and enter
Service Type: Cluster IP
Name: mysql
Private Container Port: 3306
Protocol: TCP

6. Scroll down to Environment Variables, click Add
Variable, and enter
MYSQL_DATABASE = science
MYSQL_USER = user
MYSQL_PASSWORD = password1234
MYSQL_RANDOM_ROOT_PASSWORD = yes
TZ = US/Pacific

7. In the left panel, click Security Context and select
Privilege Escalation: No
Add Capabilities: CHOWN, DAC_OVERRIDE, FOWNER,

SETGID, SETUID
Drop Capabilities: ALL

8. Click Create.

9. Under the ⋮ menu to the right of your workload, select
Execute Shell and enter

mysql -u user -D science -p
(enter password from above)
mysql> create table t(n integer);

Try It Yourself!

16

Discussion
• Terminology: You deployed a new workload in a new

namespace in a project on the development cluster. It
has one pod running one container based on the stock
MySQL image.

• Good stock images make life easy, but be prepared to
o Read the READMEs for how to set variables

o Look inside with docker exec -it image /bin/bash

• Shell access is easy; no ssh daemon required.

17

Discussion

Capabilities are root
powers; Spin allows
them selectively.
Later, we’ll discuss
how capabilities are
limited even further
when using global
file systems.

Capability Meaning

CHOWN Change the owner of files and directories

DAC_OVERRIDE Override file permissions

FOWNER Override owner permissions

NET_BIND_SERVICE Open network ports numbered < 1024

SETGID Change the group of a running process

SETUID Change the user of a running process

Exercise 2: Add a Secret

19

Exercise 2: Add a Secret
• The password seems a little too exposed. Is there a

better way to handle things I want to keep secret?

• How can I see what’s happening with my service? How
can I see logs?

• What happens when I change a workload? Are there any
gotchas I should watch out for?

20

https://docs.google.com/file/d/1FVxEhz8MTEyaRSRIuBIlcydhCZZn7FeB/preview

21

Try It Yourself!
1. In the sidebar, select Storage > Secrets. Click Create.
2. Select Opaque.
3. Set Values:

Namespace: Choose the namespace you created earlier.
Name: db-password
Key: password
Value: <make-something-up>

4. Click Create.

1. In the ⋮ menu for your workload, choose Execute Shell
to look at the results:

cat /secrets/password

2. In the ⋮ menu, select Edit Config, expand Environment
Variables, and replace MYSQL_PASSWORD:
password1234 with MYSQL_PASSWORD_FILE:
/secrets/password

3. Click Save

4. To test the secret, click on your workload (db), select
Execute Shell, and connect using the new password:

mysql -u user -D science -p

5. Notice: starting a new pod re-inited the database!

mysql> show tables;
Empty set (0.00 sec)

6. To view logs, click on name of the pod "db", and then
select ⋮ > View Logs

1. Click on Workload > Deployments, open the ⋮ menu to the
right of your workload, and select Edit Config.

2. Click Pod (to the left of “container-0”), then Storage; click Add
Volume; select Secret.

3. Set Values:
Volume Name: vol-db-password
Secret: select db-password

4. DO NOT click Save yet!
5. Click container-0, then Storage. Click Select Volume and

choose vol-db-password.
6. Set Mount Point to /secrets.
7. Click Save. Attach the secret

Use the secret

Create the secret

22

Discussion
• Secrets are a good way to manage and protect

passwords, tokens, etc
• View Logs can help you understand and monitor your

deployments
• Containers are ephemeral unless you use other storage

methods (next)

Exercise 3: Add NFS Storage

24

Exercise 3: Add NFS Storage
Remember, Docker containers are ephemeral. Your changes
go away when a new container is started. Persistent storage
can allow you to make changes stick.

NFS Storage in Spin is
● High performance
● High availability (same as Spin itself)
● Mountable into >1 workload (even across namespaces)
● Mounted only on Spin (not other NERSC systems)
Another option: NERSC Global Filesystems (coming up)

25

https://docs.google.com/file/d/19Z0tiBJqr27Ej8HjEPP1S4VHUiywZ3z8/preview

26

Create and Mount the NFS Volume

1. In the sidebar under Workload, click Deployments,
find your namespace, and click your db workload.

2. Under the ⋮ menu at the top right, click Edit Config;
click Pod; in the left panel, click Storage.

3. Click Add Volume, select Create Persistent Volume
Claim, and enter or select

Persistent Volume Claim Name: any name
Select Use a Storage Class to provision…
Storage Class: nfs-client
Access Modes: Single-Node Read/Write
Capacity: 1 GiB
Volume Name: any name, all lowercase

4. Click container-0; in the left panel, click Storage.

5. Click “Select Volume” and choose the volume claim
you just created.

Try It Yourself!
6. Under Mount Point, enter /var/lib/mysql .

7. Leave Sub Path in Volume blank.

8. Click Save.

Test the Persistent Volume

1. Under the ⋮ menu, select Execute Shell, and
create a table like you did before:

mysql -u user -D science -p
mysql> create table t(n integer);

2. Under the ⋮ menu, click Redeploy and wait for the
new container to be started.

3. Select Execute Shell again and check whether your
changes persisted:

mysql -u user -D science -p
mysql> show tables;

27

Discussion
• NFS Storage enables data to persist across container

instances.
• They allow persistent, performant, read-write storage.
• They are not mounted elsewhere, so you may need to set

up a utility container for backups, permission changes.
• They are best used when the data are not needed across

NERSC systems.

Exercise 4: Add a Web Front-end and CFS

29

Exercise 4: Add a Web Front-end and CFS
• Most use cases for Spin are apps that expose data on

CFS or functionality at NERSC over the web.
• We’ve created one in a Docker image that uses:

o Flask to handle HTTP requests, routing, responses
• Pretty simple galaxy cluster gallery app

o Config map for setting some environment variable
o Database for content and metadata

• Stored on NFS
o Image files for web front-end to serve up

• Stored on CFS

30

https://docs.google.com/file/d/11MoVYZFGf1IBZKp_tsLh8KRex1WZp7q1/preview

31

Try It Yourself!

1. Workload > Deployments then click “Create” then set
 Namespace: <your namespace>
 Name: app
Under “container-0” tab in bottom middle set

Container Image: registry.nersc.gov/spinup/galaxies

2. Scroll down to “Environment Variables” to add 2 variables:
Click “Add Variable,” and set
Type: Key/Value Pair
Variable Name: MYSQL_PASSWORD_FILE
Value: /secrets/password

Click “Add Variable,” and set
Type: ConfigMap Key
Variable Name: BANNER_MESSAGE
ConfigMap: <your config map>
Key: banner_message

3. Scroll up and click “Pod” tab and then click “Storage”
to configure two new volumes:

Open “Add Volume” dropdown, select “Bind-Mount” and set
Volume Name: vol-galaxydata
Path on the Node:
 /global/cfs/cdirs/mpccc/rthomas/spin-demo/static
The Path on the Node must be: An existing directory

Open “Add Volume” dropdown, select “Secret” and set
Volume Name: vol-dbsecret Secret: db-password

4. Click “container-0” tab and then click “Storage”
to attach new volumes to the Deployment

Open “Select Volume” dropdown, select “vol-galaxydata”, and set
Mount Point: /srv/static Read-Only: [✔]

Open “Select Volume” dropdown, select “vol-dbsecret”, and set
Mount Point: /secrets Read-Only: [✔]

5. At “container-0” tab click “Security Context” and set
Run as User ID: <numeric user ID>
Drop Capabilities: ALL

6. Click “Pod” tab and then “Security Context” and set
Filesystem Group: <numeric group ID>

7. Click “Create” button

1. Storage > ConfigMaps then click “Create” then set:
Namespace: <your namespace>
Name: any name

2. Set “Data” key/value pair:
banner_message = something hilarious

3. Click “Create” button Config Map

App Workload

To find your
numeric user ID
and a suitable
numeric group
ID, use the id
command on a

login node or go
to Iris and check
the Profile and
Groups tabs.

https://iris.nersc.gov/

32

Discussion: App, Behind-the-Scenes
• Where did the image come from?

o Built image locally
o https://github.com/NERSC/spin-docker-compose-example

• Contains the app.py code, Dockerfile, entrypoint, etc.
• Image data included too though this is for demonstration only

o Push to registry.nersc.gov/<project>/<image-name>:<tag>
• How was the database initialized?

o “Before first request” Flask decorator:
• Connect to the database
• Try to create the data table and fill with data
• Not a robust error check here, it’s a demo
• Do this because the app container might restart

https://github.com/NERSC/spin-docker-compose-example

33

• Using global file systems such as CFS triggers stricter security!
• Set User ID to yourself or a collab user;
• Set Filesystem Group to one you belong to

Otherwise, projects’ files could be exposed
• Only one capability allowed: NET_BIND_SERVICE

Otherwise, file system permissions could be bypassed

• Set o+x permissions from file system root to mount point

• Best practices
• use read-only access unless you specifically need read/write
• mount as deep into the path as possible
• use collab users
• use setgid (chmod g+s) and a group-friendly umask (eg, 007)

Discussion: Global File Systems

34

Discussion: Storage Options
Storage Type Persistent On HPC Size Best Use

Global File Systems
(Homes, CFS) ✓ ✓ O(quota) sequential

NFS ✓ O(10GB)+ random

CVMFS (read-only)
always mount at root!

✓ ✓ n/a CERN
software

in-container O(1GB) temporary

35

Discussion: Storage Options
Storage Need Best Option

Data produced by compute jobs and used by science gateway Global file system

Static web content or config files that require occasional updates Global file system*

Web service access logs to analyze and save for record-keeping Global file system*

Database tablespace or key-value backing store files NFS

Static application code and web style sheets in-container

Small, ephemeral application cache files in-container

What other examples? What are some exceptions?

Exercise 5: Networking

37

Exercise 5: Networking (Internal / Overlay)
Traffic between containers uses a private overlay network.
• Each container gets an IP within 10.42.*.*

• IPs change when new containers are created!

• DNS names are automatically created (and updated)
<workload>[.<namespace>[.svc.cluster.local]]

=> 10.42.x.y

For example, the database in our example app:
db.<namespace>.svc.cluster.local, or simply
db

38

Exercise 5: Networking (External Inbound)
HTTP traffic requires an Ingress.
• When you create an ingress, a dynamic DNS name is associated

with it; the workload(s) you specify become accessible on port 80.

<ingress name>.<namespace>.<cluster>.svc.spin.nersc.org
=> ingress controller IP address(es)

• You must add a friendly name and matching web certificate.

• Redirection to HTTPS happens automatically.

• Many aspects can be configured with annotations.

39

Exercise 5: Networking (External Inbound)
Non-HTTP traffic requires a Load Balancer.
• A dynamic DNS name is associated with the workload; it becomes

accessible at the port you specify
<workload>-loadbalancer.<namespace>.<cluster>.svc.spin.nersc.org

=> 128.55.212.* (dedicated IP for this load balancer)

• Only accessible from NERSC networks.

• Common ports are allowed; let us know if you need others:
3306, 4873, 5432, 5672, 5984, 15672, 27017

Outbound external traffic just works (via NAT).

40

https://docs.google.com/file/d/1wS5cNautCPwCUqM6q_ksZbM2e8ovDTKO/preview

41

Try It Yourself!
1. Workload > Deployments in left navigation menu
2. Click the ⋮ menu to the right of your “app” workload. and select “Edit Config”
3. In “container-0” tab, scroll down, click “Add Port” button and set

Service Type: Cluster IP Name: flask
Private Container Port: 5000 Protocol: TCP

4. Click “Save” button in the lower left to redeploy “app”.

Request Host: lb.<namespace>.development.svc.spin.nersc.org
Path:

1. Service Discovery > Ingresses in left navigation menu
2. Click the “Create” button in the upper right
3. Set these values

Namespace: <Namespace from previous exercise>
Name: ingress
Request Host: ingress.<namespace>.development.svc.spin.nersc.org
Path:

Prefix: / Watch out for leading or trailing spaces
Target Service: app
Port: 5000

4. Click “Create” button in the lower left.

Create the ingress

You are back at the Service Discovery > Ingresses screen
1. Wait for state tag to change to Active
2. Wait for DNS to propagate to the LBL/NERSC and other DNS servers (Usually 1-5 minutes)
3. Access your app at: http://ingress.<namespace>.development.svc.spin.nersc.org

Use the ingress

Create a service

42

Example: www.cosmosgallery.org

1. Request a DNS CNAME record in this format from your DNS provider:
<friendly name> CNAME

<ingress>.<namespace>.<development or production>.svc.spin.nersc.org.

For example,
www.cosmosgallery.org CNAME lb.cosmosapp.production.svc.spin.nersc.org.

This will typically take a day or more.
2. Configure Ingress to accept traffic destined for that hostname:

a. In your Ingress => Add Rule
b. Add the friendly hostname as a second "rule"

■ For HTTPS, the hostname must match name in certificate

Exercise 5: Add a Friendly Hostname

43

https://docs.google.com/file/d/1L6md7zUtpInZQ_gJS6wOy_-DJ6HPszhZ/preview

44

https://docs.google.com/file/d/1_VtNMVqPjPDAvB9rSnb4yN59fhVIVZjP/preview

45

1. Get a CNAME entry from your DNS provider that
points at your ingress. For instance:

<friendly name> CNAME

lb.<namespace>.<cluster>.svc.spin.nersc.org

2. When it is ready (hours or days later), navigate to
Service Discovery > Ingresses in Rancher.

3. Click the ⋮ icon next to your ingress,
and select “Edit Config” from the dropdown

4. Click Add Rule.

5. For Request Host enter the CNAME. Do not
alter the existing rule.

6. Select the same Path, Target Service and Port
as in the existing ingress rule, then click Save.

Try It Yourself Later: Add a Friendly Name and SSL
1. Get a web certificate from your provider. There

are many tutorials on how to do this.

2. Navigate to Storage > Secrets, click the Create
button, then click TLS Certificate.

3. Enter a meaningful Name and select a
Namespace scope.

4. Upload your Private Key and Certificate using
“Read from File” buttons and click Create.

5. Navigate to Service Discovery > Ingresses.

6. Edit the ingress, select Certificates panel,
click Add Certificate, select your certificate
from the list, add your hostname, and Save.

Friendly Hostname SSL/TLS (HTTPS)

46

1. Under Workload, click Deployments and click your db workload; under the ⋮ menu, click Edit Config; in the header, click
container-0; in the left panel, click General. Scroll down to Ports.

2. Modify the existing port
Service Type: Load Balancer
Name: mysql
Private Container Port: 3306
Protocol: TCP
Listening Port: 3306

3. Click Save.

4. Under Service Discovery, click Services and find your namespace; your load balancer will be named db-loadbalancer.

5. Just like an ingress, Rancher will create a DNS name for the load balancer based on the workload name, namespace, and
cluster name. To see this generated name, click db-loadbalancer, then Show # annotations near the top of the page.

6. To try connecting to the database via the load balancer, log into Perlmutter and run

% mysql -p -u user -D science -h db-loadbalancer.namespace.development.svc.spin.nersc.org

Try It Yourself Later: Add a Load Balancer

Only common ports are exposed!
(Don’t pick your “favorite” port here)

47

Discussion: Networking
• Beware of DNS propagation delays

o Wait a minute for the DNS name of a brand new ingress or load
balancer to be created; Rancher uses an internal queue.

o Accessing either too early can negative cache for five minutes.

• Custom hostnames and web certificates
o Processes vary for obtaining a hostname and certificate.
o Check with your institution or PI.

• Web certificate chain ordering
o If your certificate requires a chain, use nginx ordering: your

certificate first, then that of its issuer, etc, but omitting the root.

Viewing Logs and Performance Data

49

Viewing Logs, Events & Conditions
Log Type Content Where Best Use

Container

All stdout and
stderr from
container
processes

Option #1: Workload > Deployments,
click on the name to view the pods, select
View Logs under (⋮) menu next to pod

Option #2: Workload > Pods, select
View Logs under (⋮) menu next to pod

Application problem,
but container runs

Container produces
error at startup, exits,
and restarts

Workload
Events,
Pod
Conditions

Scheduler
activity (start,
stop, scale),
node failure

Workload > Deployments > (Your
Deployment) and choose one of:

● Recent Events
● Conditions

Workload will not start
or scale at all

Container restarts
continuously

Denied due to
security policy

50

Performance Analytics
Rancher provides live Grafana plots of
Kubernetes Resource Metrics:
• CPU Utilization
• Memory Utilization
• Network packets and throughput
• Disk throughput

Where:
• Workload > Deployment, click Metrics tab

Building Your Own Microservices App

52

Microservices

Services (Workloads/Pods)
• Valuable actions that fulfill a demand
• One or more containers

Microservice Architecture
• How services are combined

Service Principles
• Modular and loosely coupled
• Composable
• Platform and language independent
• Self-describing

53

Starting Your Microservice Design

Why should you think about your app in terms of microservices?

What are some examples of microservice components?

What does Spin take care of or make easy for you?

Draw a microservices picture of your use case!

How does your app get on the web?

What conventions do we recommend?

54

Categories of Microservices

Web Front-end
Web App • Authentication • Access Control

Application Logic
REST API • Workflow Engine

Metadata, Application State, or Science Data
SQL • NoSQL • XML

File Storage for Science Data
Ephemeral or Persistent • Open or Closed

What are some others?

55

Real-World Example: jupyter-test

PostgreSQL

database

Notebook
Node

API server

SSH Service

API server

Persistent, not
exposed to users
or other systems.

(Not the sqlite
default for app

state.) Global File
System

Persistent and
exposed to users

and other systems.

NFS
(certs)

NFS
(database

tables)

Reverse Proxy

Ingress

JupyterHub

web front-end

56

Recall: Container Development Workflow

Build
images on your
laptop with your
custom software,
and when they run
reliably, …

Run
your workloads

Ship
them to a registry
for version control
and safekeeping
● DockerHub: share

with the public
● NERSC: keep private

to your project

57

“Classic” Development Model

1. Build your app on your laptop like
in the big picture.

2. Run and test containers locally.
3. Use mock APIs or mock volume

mounts with a subset of data on
your laptop.

4. For the brave: mount larger data
sets over sshfs, but…

58

“Classic” Development Model

Pros:
● Testing on your laptop is a tight loop.
● No deployment to Spin until things are

working reliably.

Cons:
● Pushing big images with small

bandwidth is slow.
● Complex apps can be difficult to build in

a simple local setup.

59

“On Ramp” Development Model
(This applies mostly to web front-ends.)

1. Docker image houses your application
dependencies and runs with your UID and GID.

2. Deploy “app.py” code to some path on CFS with
appropriate permissions.

3. Mount app.py’s directory and run it with “reload on
source change” turned on.

4. Now you can hack in traditional fashion.
(Eventually move “app.py” into container.)

60

“On Ramp” Development Model
Pros:
● Less pushing images from your laptop.
● No setting up of mocks APIs or mounts/sshfs.

Cons:
● You depend on a “data” filesystem for hosting code.
● Tendency to build up technical debt especially as

new deps arise.

61

“DevOps” Model is Ideal

1. Starts out like classic model.

2. Leverage continuous integration to
automate image build, test, and push
to registry.

3. Trigger re-deployment on successful
image push and test.

4. Not all features available yet.

62

“DevOps” Model is Ideal

Pros:
● Most efficient and reliable.
● Promotes inner peace.
● Keep computers busy; delay the singularity. (ahem)

Cons:
● Requires setup and commitment from team.
● Not all the tools available (yet) in Spin.

63

Encouragements and Admonishments
We most extremely strongly admonish you not to use docker commit.

It enables changes that go untracked and are not easily reproduced.
Changes to your Dockerfile should be under source control.
It should feel wrong to you.

Iterating a lot on an image build?
To force rebuilds from a point just insert RUN env or RUN pwd to force
the build from that point (c.f. multi-stage builds).

Want to start all over with a clean slate?
Use the --no-cache option in your docker build.

Need to clean out containers and images?
docker rm -f $(docker ps -aq)
docker rmi -f $(docker images -q)
docker container prune
docker image prune
docker system prune

Wrap-Up

65

High-Level Spin Architecture

app backend

node 1 node n

database

CFS

. . .

ingress

node 2

web frontend 2web frontend 1

key-value

NFS

m
anagem

ent U
I / C

LI

security policy enforcem
ent

image
registry

docker

Yours to
manage

NERSC
handles
the rest!

CVMFS

66

Roles and Responsibilities
You bring...
● Your own microservice design

● Your own services based in Docker images

● Lifecycle management
● maintain at least one owner for every application
● track Docker build files with git
● minimize image customizations

● Security management
● produce logs to stdout / stderr
● use trustworthy public images; keep custom images updated

● NERSC will scan images and network ports

67

Roles and Responsibilities
NERSC brings...
● Stable infrastructure

● redundancy: 2x power, 2x network
● dedicated storage
● access to global file systems

● Management practices for high uptime
● rolling upgrades
● pre-scheduled quarterly maintenance

● Support via the usual channels
● Spin team spans NERSC groups
● NERSC staff are also Spin users!

Questions and Hack-a-thon Prep

