

1

SpinUp for New Users

https://www.nersc.gov/systems/spin/

2

Welcome
This workshop will prepare you to design, build, and
manage your own apps using the Spin platform.
Those might be:
• database-backed web apps that access project data
• workflow orchestration tools running outside of HPC
• API servers for real-time or distributed projects
• or something else!

Remember, though: Spin is for apps, not computation.

3

...and with great power comes great responsibility!
• Keep software updated; fix vulnerabilities promptly.

o NERSC scans regularly to find problems quickly.

• Encrypt anything accessible over the network.
o These are strict DOE and DHS requirements!

• Produce logs to stdout/stderr.
o This is Docker convention anyway.

Don’t worry. Spin helps make these best practices easy!

Spin is a Powerful System...

4

Workshop Structure and Content
Seminar (today)

Learn concepts and terms. Build an example application. Store and access
credentials. Configure storage and networking. Discuss the design and
development process.

Hack-a-thon (choose A or B)
Try what you learned, in small groups, with hands-on help. Review. Q&A.

Ask questions here and on NERSC Users Slack (in #spin).

We welcome your feedback. Please complete our survey afterward.

Have a great workshop!

Concepts and Terminology

6

Why Do We Need Spin?

Your project is more than batch jobs and data files; it’s
science gateways, databases, and other services.
Spin is a supported platform designed to help:
• Cloud-style flexibility
• Create new apps yourself on demand
• Redundancy / uptime (99% in 2020)
• Direct access to HPC file systems and networks

7

Docker, Kubernetes, and Rancher
Spin is based on the Rancher
orchestration system, which is
built on Docker and Kubernetes.
How do they all fit together?

• Docker is great for just you on a laptop.
• For lots of applications, you need a

whole Kubernetes cluster.
• For lots of projects, each with lots of

applications, we need orchestration.
• With Rancher orchestration, you get

virtual private access to the multiple
Kubernetes clusters running in Spin.

https://www.lucidchart.com/documents/edit/2902bcd0-4af4-43f1-a9a7-260932b87d4d/0?callback=close&name=slides&callback_type=back&v=1312&s=401.89672519685035

8

(Some of the) Terminology
Container image: blueprint for a container; like a tarball
Container: running instance of an image; like a process
Image Registry: versioned repository for container images
Pod: one or more very-closely-coupled containers
Workload: set of parameters and rules that define how to

create a particular pod
Deploy: create a workload
Ingress: proxy that allows a workload to be accessible on the

network using a DNS name
Namespace: group of workloads (often for interoperation)
Project: group of workloads, namespaces, ingresses, etc for

access control; corresponds to a NERSC project
Kubernetes: container scheduling system to run it all
Rancher: orchestration system for Kubernetes clusters

registry

images

containers

pod /
workload

pod /
workload

namespace

9

Canonical Development Workflow

Build
images on your
laptop with your
custom software,
and when they run
reliably, …

Run
your workloads

Ship
them to a registry
for version control
and safekeeping
● DockerHub: share

with the public
● NERSC: keep private

to your project

10

High-Level Spin Architecture

app backend

node 1 node n

database

CFS

. . .

ingress

node 2

web frontend 2web frontend 1

key-value

NFS

m
anagem

ent U
I / C

LI

security policy enforcem
ent

image
registry

docker

Yours to
manage

NERSC
handles
the rest!

CVMFS

11

Interactive Exercises: Let’s Create an App!
Our example app:

• Python-based
• Uses static files in CFS
• Database backend

We will build the app from the
bottom up, database first.
Along the way, we will

• Use variables and config maps
to customize behavior

• Attach storage
• Store passwords securely
• Make it available on the network

node 1 node n

database

NFS

. . .

ingress

node 2

web frontend

CFSimage
registry

Exercise 1: Create a Database

13

Exercise 1: Create a Database
• Databases often underlie web apps, so let’s start there.
• In Spin, you can access an external database or create

your own, as we’ll do now.
• We recommend using stock images from DockerHub for

MongoDB, MySQL, PostgreSQL, Redis, and others.
o Frequently updated, easy to customize...less work!

• Look at the README: https://hub.docker.com/_/mysql
o Customize by setting variables; no custom image needed

https://hub.docker.com/_/mysql

14

Watch an Example

https://docs.google.com/file/d/1IBwMGeZ50dFwgt4kZ0SJqqlbyx6vohG0/preview

15

1. Log in to https://rancher2.spin.nersc.gov.

2. Under Global, select the development cluster,
then select a project.

3. At the top right, click Deploy and enter

Name:
Image:

4. Click Add to a new namespace and enter
something unique. Note: underscores (_) are
not allowed in namespace names!

5. Expand Environment Variables and enter

or other timezone

6. At the bottom right, click Show advanced
options and expand Security & Host Config.

7. Under Add Capabilities, select

8. Under Drop Capabilities, select

9. Click Launch and watch the pod start up.

10. Open the (⋮) menu and select Execute Shell
to create a table:

Try It Yourself!

16

Discussion
• Terminology: You deployed a new workload in a new

namespace in a project on the development cluster. It
has one pod running one container based on the stock
MySQL image.

• Good stock images make life easy, but be prepared to
o Read the READMEs for how to set variables

o Look inside with image

• Shell access is easy; no ssh daemon required.

17

Discussion

Capabilities are root
powers; Spin allows
them selectively.
Later, we’ll discuss
how capabilities are
limited even further
when using global
file systems.

Capability Meaning

CHOWN Change the owner of files and directories

DAC_OVERRIDE Override file permissions

FOWNER Override owner permissions

NET_BIND_SERVICE Open network ports numbered < 1024

SETGID Change the group of a running process

SETUID Change the user of a running process

Exercise 2: Add a Secret

19

Exercise 2: Add a Secret
• The password seems a little too exposed. Is there a

better way to handle things I want to keep secret?

• How can I see what’s happening with my service? How
can I see logs?

• What happens when I change a workload? Are there any
gotchas I should watch out for?

20

Watch an Example
• Create a secret
• Use a secret
• Look at the logs
• See what happened to the previously created table

21

Create and use a secret

https://docs.google.com/file/d/1WVCWL3OoJX4Rsl3jVYQpUi7eb6kxyjFp/preview

22

Look at the logs; data is ephemeral

https://docs.google.com/file/d/1_3dD8hk6ZhlGNdgkzhqNZbI6LBdtf74K/preview

23

Try It Yourself!

App Workload

1. Select Resources > Secrets and click Add Secrets.
Select: Available to a single namespace
Select the namespace in the drop down

2. Set Values
Name: db-password
Key: password
Value: <make-something-up>

3. Click Save

5. Use Exec Shell to look at the results

6. Click Edit, expand Environment Variables, and replace
MYSQL_PASSWORD: pw with MYSQL_PASSWORD_FILE:
/secrets/password

7. Click Save

8. Click on the database Pod, open the (⋮) menu, and
select View Logs for the running Pod.

9. Use Exec Shell again and use the new password to
connect to MySQL

10. Notice: starting a new pod re-inited the database!

1. Click on Resources > Workloads, open the (⋮) menu to the
right of your workload, and select Edit.

2. Expand Volumes; click Add Volumes; select Use a Secret.

3. From the Secret drop-down, choose db-password.

4. Check Select Specific Keys; from the Key drop-down, choose
password. Under Path, enter password.

5. Set Mount Point to /secrets.

6. Click Save. Attach the secret

Use the secret

Test the secret

Create the secret

24

Discussion
• Secrets are a good way to manage and protect

passwords, tokens, etc.
• Secrets can be scoped to a project or a namespace
• View Logs can help you understand and monitor your

deployments
• Containers are ephemeral unless you use other storage

methods (next)

Exercise 3: Add NFS Storage

26

Exercise 3: Add NFS Storage
Remember, Docker containers are ephemeral. Your changes
go away when a new container is started. Persistent storage
can allow you to make changes stick.

NFS Storage in Spin is
● High performance
● High availability (same as Spin itself)
● Mountable into >1 workload (even across namespaces)
● Mounted only on Spin (not other NERSC systems)
Another option: NERSC Global Filesystems (coming up)

27

Watch an Example: Add NFS Storage
In this video example,
you will learn how to
set up a Volume Claim
so that updates to your
database are saved.

https://docs.google.com/file/d/1ZEawNnxiNs69X-4tdKGoa6g-BpWjvA_v/preview

28

Try It Yourself!
Set up the NFS Volume
1. In your project, open the workload for which

you want to add storage.
2. Open the (⋮) menu and click Edit.
3. Open the Volumes accordion.
4. Click Add Volume and select “Add a new

persistent volume (claim)”.
5. Fill in a name for the volume. Under Storage

Class, select “nfs-client”. Set the Capacity to
1 GiB. Click Define.

6. Fill in the mount point where it should appear
in the container, .

7. Leave Sub Path in Volume blank.
8. Click Save at the bottom of the page.

Test changes to the database
1. Open the (⋮) menu, select Execute Shell,

and create a table like you did before:

2. “Edit” the container: open the (⋮) menu
and select Redeploy (or select Edit, then
Save, which has the same effect).

3. Run Execute Shell again and do a “show
tables;” to see that your changes persist:

29

Discussion
• NFS Storage enables data to persist across container

instances.
• They allow persistent, performant, read-write storage.
• They are not mounted elsewhere, so you may need to set

up a utility container for backups, permission changes.
• They are best used when the data are not needed across

NERSC systems.

Exercise 4: Add a Web Front-end and CFS

31

Exercise 4: Add a Web Front-end and CFS
• Most use cases for Spin are apps that expose data on

CFS or functionality at NERSC over the web.
• We’ve created one in a Docker image that uses:

o Flask to handle HTTP requests, routing, responses
• Pretty simple galaxy cluster gallery app

o Config map for setting some environment variable
o Database for content and metadata

• Stored on NFS
o Image files for web front-end to serve up

• Stored on CFS

32

Watch an Example

https://docs.google.com/file/d/1JNbDEnbvLQFq3Mk2YSWYD-3rE8bFpTwN/preview

33

Try It Yourself!

1. Resources > Workloads then click “Deploy”
 Namespace: <your namespace>
to see “Deploy Workload” console, at top set:

Name: app
Docker Image: registry.nersc.gov/spinup/galaxies:latest

2. Expand “Environment Variables” panel
to configure 2 variables:

Click “Add Variable” and set:
MYSQL_PASSWORD_FILE = /secrets/password

Click “Add From Source,” and set:
Type: Config Map
Source: <your config map>
Key: banner_message
Prefix or Alias: BANNER_MESSAGE

3. Expand “Volumes” panel to configure 2 volumes:
Open “Add Volume” dropdown
Select “Bind-mount a directory from the node” and set:
Path on the Node:
 /global/cfs/cdirs/mpccc/rthomas/spin-demo/static
The Path on the Node must be: An existing directory
Mount Point: /srv/static
Read-Only: [✔]

Open “Add Volume” dropdown to add a new volume
Select “Use a secret,” set:
Secret: db-password Select Specific Keys [✔]
Key: password
Path: password
Mount Point: /secrets Read-Only [✔]

4. Click “Show advanced options” to see more panels,
expand “Command” panel, set

User ID: <user ID>
Filesystem Group: <group ID>

5. Expand “Security & Host Config” panel and set:
Run as Non-Root: Yes
Add Capabilities: NET_BIND_SERVICE
Drop Capabilities: ALL

6. Click “Launch” button

1. Resources > Config then click “Add Config Map”
to see the “Add Config Map” console, then set:

Name: <your config map>
Namespace: <your namespace>

2. Set “Config Map Values” key/value pair:
banner_message = <something hilarious>

3. Click “Save” button Config Map

App Workload

Use id on Cori to find
these values.

34

Discussion: App
• Where did the image come from?

o Built image locally
o https://github.com/NERSC/spin-docker-compose-example

• Contains the app.py code, Dockerfile, entrypoint, etc.
• Image data included too though this is for demonstration only

o Push to registry.nersc.gov/<project>/<image-name>:<tag>
• How was the database initialized?

o “Before first request” Flask decorator:
• Connect to the database
• Try to create the data table and fill with data
• Not a robust error check here, it’s a demo
• Do this because the app container might restart

https://github.com/NERSC/spin-docker-compose-example

35

Set User ID to your

Discussion: Global File Systems

36

Discussion: Storage Options
Storage Type Persistent On HPC Size Best Use

Global File Systems
(Homes, CFS) ✓ ✓ O(quota) sequential

NFS ✓ O(10GB)+ random

CVMFS (read-only)
always mount at root!

✓ ✓ n/a CERN
software

in-container O(1GB) temporary

37

Discussion: Storage Options
Storage Need Best Option

Data produced by compute jobs and used by science gateway Global file system

Static web content or config files that require occasional updates Global file system*

Web service access logs to analyze and save for record-keeping Global file system*

Database tablespace or key-value backing store files NFS

Static application code and web style sheets in-container

Small, ephemeral application cache files in-container

What other examples? What are some exceptions?

Exercise 5: Networking & Ingress

39

Exercise 5: Networking (Internal Overlay)
Containers inside cluster communicate over an overlay network
● Internal IP range: 10.42.0.0-10.42.255.255

○ Addresses are assigned randomly to your application

● Internal DNS & service discovery handled by CoreDNS
○ The app container already knows about the db:

db.<namespace>.svc.cluster.local

○ Network policies ensures network access only within your project

● Performance between containers: 1-5 Gbps
● Takeaway: Once you get used to it, it just works

40

Exercise 5: Networking (External & DNS)
Great! My web app is running. But how do I access it?
● Ingress: Enables external access to a web app

○ Maps a Spin IP address (public) to your application
○ HTTP/HTTPS-only (Ports 80 & 443)

● DNS: Maps a hostname to the public IP
○ Hostname will stay the same and will alway point to a working IP address

■ Spin has multiple public IPs. IP of your ingress will sometimes change-- don't rely on it!

○ Must have one host which follows hostname convention:

■ <name>.<namespace>.development.svc.spin.nersc.org

● Notice: nersc.org, NOT nersc.gov!

○ Friendly hostnames like www.cosmosgallery.org covered in an upcoming slide

● Access for Non-HTTP/HTTPS services is coming in the future

41

● Terminology: An ingress exposes the application to a public network,
& works with DNS to direct traffic to your application
○ Ingress is built on Nginx

● External DNS record is requested when the ingress created,
Removed when ingress is deleted

● Behind the scenes (For those familiar with Kubernetes already)
○ Rancher automatically creates a Kubernetes service to connect

the ingress & workload, but this is not shown within the UI

Exercise 5: How an Ingress Works

42

Watch an Example: Add an Ingress

https://docs.google.com/file/d/1bqE0Prih9bJmkawjGRfcw5kKU0UQZBuS/preview

43

Try It Yourself!
1. Start in Resources > Workload
2. Click Load Balancing, then Add Ingress
3. Set these values
Name: lb
Namespace: <Namespace from previous exercise>

4. Click Specify Hostname to use and add lb.<namespace>.development.svc.spin.nersc.org
5. Scroll down to Target Backend (The Workload type is selected by default) & add these values
Path: Leave blank
Target: app
Port: 5000

6. Click Save

Create the ingress

You are back at the Load Balancing screen
1. Wait for State to change from Initializing to Ready
2. Wait for DNS to propagate to the LBL/NERSC and other DNS servers (Usually 1-5 minutes)
3. Access your app at: http://lb.<namespace>.development.svc.spin.nersc.org

Use the ingress

44

● Examples: myscience.lbl.gov or www.cosmosgallery.org

1. Use LBL's DNS service or your favorite DNS provider
a. Create a DNS alias (CNAME), point your hostname to:

lb.<namespace>.development.svc.spin.nersc.org

2. Configure Ingress to accept traffic destined for that hostname:
a. In your Ingress -> Add Rule
b. Add the friendly hostname as a second "rule"

■ For HTTPS, the hostname must match name in certificate (See
next slide)

Exercise 5: Add a Friendly Hostname

45

Watch an Example: Add a Friendly Hostname

https://docs.google.com/file/d/1oduvuE8kOPLyVJID0qfok9c_x0xxiPPj/preview

46

Watch an Example: Add a TLS Certificate

https://docs.google.com/file/d/1dNuSdMvcGphm31T6YlYuo1r04wwnUZFF/preview

47

1. Get a CNAME entry from your DNS provider that
points at your ingress. For instance:

<something>.myproject.org ->

lb.<namespace>.development.svc.spin.nersc.org

2. When it is ready (hours or days later), navigate to
Resources > Workload in Rancher.

3. Click Load Balancing, then the ⋮ icon next to
your ingress, and select Edit from the dropdown

4. Click Add Rule.

5. Select Specify a Hostname to Use and enter
the CNAME. Do not alter the existing rule.

6. Select the same Target workload and Port as in
the existing ingress rule, then click Save.

Try It Yourself!
1. Get a TLS/SSL certificate from your provider.

There are many tutorials on how to do this.

2. Navigate to Resources > Secrets, click the
Certificates tab, then click Add Certificate.

3. Enter a meaningful Name and select a Scope.
We don’t recommend selecting all namespaces.

4. Upload your Private Key and CA Certificate
using “Read from File” buttons and click Save.

5. Navigate to Resources > Workloads and then
the Load Balancing tab.

6. Edit the ingress, open the SSL/TLS Certificates
accordion, select the certificate from the list, and
Save.

Friendly Hostname SSL/TLS (HTTPS)

48

Discussion: DNS Gotchas
● Wait 2-3 minutes for DNS name to get pushed to the

NERSC+LBL DNS servers and propagated to the internet
● Reusing a hostname? Watch out for DNS caching on your

Mac and in Chrome (and in your workplace network)!

49

Discussion: HTTPS and Certificate Gotchas

Many certificates contain a certificate chain:

• A certificate for your hostname
• Certificates for the Certificate Authority used to sign your certificate

(InCommon, Go Daddy, etc)
The certificate for your hostname must be listed first in the file. The key
will be checked against the first certificate only.

• This type of failure is not obvious
o Kubernetes will serve a "Kubernetes Default" certificate if the hostname does not

match.

• If your certificate doesn't need a chain, you're good!

50

Discussion: Non-HTTP Services (DBs, etc)
● Non-HTTP services not supported on Spin yet

○ Kubernetes community still trying determine best solution
○ Many half-solutions, alpha-, beta- software
○ This will improve as Kubernetes matures

● Solutions coming soon to Spin:
○ Load Balancer (Not Ingress): direct traffic from NERSC hosts to

your application in the Spin cluster. For example:
db.<myns>.development.svc.spin.nersc.org:32767 -> myns/db:3306

○ Security is important here!

Viewing Logs and Performance Data

52

Viewing Logs
Log Type Content Where Best Use

Container

All stdout and
stderr from
container
processes

Workload page: expand Pods, select
View Logs under (⋮) menu next to pod.

Pod page #1: select View Logs under
(⋮) menu in top right

Pod page #2: expand Containers, select
View Logs under (⋮) menu next to
container

Application problem,
but container runs

Container produces
error at startup, exits,
and restarts

Pod Events,
Pod Status

Scheduler
activity (start,
stop, scale)

Workload page: expand Events

Pod page: expand Events and/or Status

Workload will not start
or scale at all

Container restarts
continuously

53

Performance Analytics
Rancher provides live Grafana plots of
Kubernetes Resource Metrics:
• CPU Utilization
• Memory Utilization
• Network packets and throughput
• Disk throughput

Where:
• Workload page: expand Workload Metrics
• Pod page: expand Pod Metrics

Building Your Own Microservices App

55

Microservices

Services (Workloads/Pods)
• Valuable actions that fulfill a demand
• One or more containers

Microservice Architecture
• How services are combined

Service Principles
• Modular and loosely coupled
• Composable
• Platform and language independent
• Self-describing

56

Starting Your Microservice Design

Why should you think about your app in terms of microservices?

What are some examples of microservice components?

What does Spin take care of or make easy for you?

Draw a microservices picture of your use case!

How does your app get on the web?

What conventions do we recommend?

57

Categories of Microservices

Web Front-end
Web App • Authentication • Access Control

Application Logic
REST API • Workflow Engine

Metadata, Application State, or Science Data
SQL • NoSQL • XML

File Storage for Science Data
Ephemeral or Persistent • Open or Closed

What are some others?

58

Real-World Example: jupyter-test

PostgreSQL

database

Notebook
Node

API server

SSH Service

API server

Persistent, not
exposed to users
or other systems.

(Not the sqlite
default for app

state.) Global File
System

Persistent and
exposed to users

and other systems.

NFS
(certs)

NFS
(database

tables)

Reverse Proxy

Ingress

JupyterHub

web front-end

59

Recall: Container Development Workflow

Build
images on your
laptop with your
custom software,
and when they run
reliably, …

Run
your workloads

Ship
them to a registry
for version control
and safekeeping
● DockerHub: share

with the public
● NERSC: keep private

to your project

60

“Classic” Development Model

1. Build your app on your laptop like
in the big picture.

2. Run and test containers locally.
3. Use mock APIs or mock volume

mounts with a subset of data on
your laptop.

4. For the brave: mount larger data
sets over sshfs, but…

61

“Classic” Development Model

Pros:
● Testing on your laptop is a tight loop.
● No deployment to Spin until things are

working reliably.

Cons:
● Pushing big images with small

bandwidth is slow.
● Complex apps can be difficult to build in

a simple local setup.

62

“On Ramp” Development Model

63

“On Ramp” Development Model
Pros:
● Less pushing images from your laptop.
● No setting up of mocks APIs or mounts/sshfs.

Cons:
● You depend on a “data” filesystem for hosting code.
● Tendency to build up technical debt especially as

new deps arise.

64

“DevOps” Model is Ideal

65

“DevOps” Model is Ideal

Pros:
● Most efficient and reliable.
● Promotes inner peace.
● Keep computers busy; delay the singularity. (ahem)

Cons:
● Requires setup and commitment from team.
● Not all the tools available (yet) in Spin.

66

Encouragements and Admonishments
We most extremely strongly admonish you not to use .

It enables changes that go untracked and are not easily reproduced.
Changes to your Dockerfile should be under source control.
It should feel wrong to you.

Iterating a lot on an image build?
To force rebuilds from a point just insert to force
the build from that point (c.f. multi-stage builds).

Want to start all over with a clean slate?
Use the option in your docker build.

Need to clean out containers and images?

Wrap-Up

68

High-Level Spin Architecture

app backend

node 1 node n

database

CFS

. . .

ingress

node 2

web frontend 2web frontend 1

key-value

NFS

m
anagem

ent U
I / C

LI

security policy enforcem
ent

image
registry

docker

Yours to
manage

NERSC
handles
the rest!

CVMFS

69

Roles and Responsibilities
You bring...
● Your own microservice design

● Your own services based in Docker images

● Lifecycle management
● maintain at least one owner for every application
● track Docker build files with git
● minimize image customizations

● Security management
● produce logs to stdout / stderr
● use trustworthy public images; keep custom images updated

● NERSC will scan images and network ports

70

Roles and Responsibilities
NERSC brings...
● Stable infrastructure

● redundancy: 2x power, 2x network
● dedicated storage
● access to global file systems

● Management practices for high uptime
● rolling upgrades
● pre-scheduled quarterly maintenance

● Support via the usual channels
● Spin team spans NERSC groups
● NERSC staff are also Spin users!

Questions and Hack-a-thon Prep

