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Looking Backwards and Forwards

 “There are no new ideas...”
- Silicon trends introduce new opportunities to revisit

>Parallel programming models
>Parallel applications/algorithms

- …on a much different scale

 “…but much room for improvement…”
- Modern programming methods require rethinking

>Dynamic compilation, managed runtimes
>Fine grained modularity
>Exceptionally complex and diverse patterns in single

applications
• Cf: Games!

 “…and new usages.”
- Parallel incremental/adaptive (re)computation
- Forward scaling
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What Software Vendors are Telling Us

 Strong interest by ISVs for a parallel programming model which is:
- Easy to use and high performance: sounds difficult already!

- Portable: Desire the flexibility to target various HW platforms and adapt
to future variations

 Programming parallel applications is 10,100,1000x* less productive
than sequential
- Non-deterministic programming errors

- Performance tuning is extremely microarchitecture-dependent

 Parallel HW is here today, better programming tools are needed to
take advantage of these capabilities
- Quad core on desktop arrived nearly a year months ago

- Multi- and Many-core DP and MP machines are on the way

- (Also, programmable GPUs going on 8 years)

*Depends on which developer you ask.
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Why We Started With Ct

 We moved from video algorithms to physics kernels
 Rigid Body Dynamics

 Broad and narrow-phase collision
 Solvers

 Cloth Simulation

 Found it painful to program using “legacy” parallel
programming models

 Not surprisingly, same concerns as software vendors

 (Nested) data parallel models make it easier

C with
Explicit

Parallelism
alone:

172 lines
of code

Ct: <6 lines of code,
faster, scalable

TVEC<F64> smvpCSC(TVEC<F64> A,
TVEC<I32> cols, TVEC<F64> v)

{
    TVEC<F64> expv, product, result;
    expv =  distribute(v,cols);
    product = A*expv;
    return addReduce(product);
}
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 A classic example: Sparse matrices
- Common in RMS applications
- Difficult for a programmer to deal with

Irregular Data Structures
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4 element vector of
variable length

vectors

Nested data parallelism handles irregular
structures automatically

Flattened representation with
column & row metadata
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Why Dataflow is Interesting

 Data isolation
- Spatio-temporal localization of effects leads to desirable

properties for parallelize
Locality preserved
Safety is guaranteed

 Required agility for many-core
- Scaling

>Stretching “horizontally” to more threads, smaller footprints
>Stretching “vertically” to control memory bandwidth,

arithmetic intensity
- Adaptivity

>For incremental recomputation
>Intelligent, scalable synchronization/scheduling algorithms
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Language Vehicle for General Purpose Parallel Programming
Platform

Ct Api
- Nested Data Parallelism
- Deterministic Task Parallelism

Fine grained concurrency and synch

Dynamic (JIT) compilation

High-performance memory management

Forward-scaling binaries for SSEx, ISAx

Parallel application library development

Performance tools for future architectures

Deterministic parallel programming
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What Is Ct?

 Ct adds new data types (parallel vectors) & operators to C++
- Library interface and is ANSI/ISO-compliant

 Ct abstracts away architectural details
- Vector ISA width / Core count / Memory model / Cache sizes

 Ct forward-scales software written today
-  Ct platform-level API is designed to be dynamically retargetable to SSE, SSEx, ISA x,

etc

 Ct is deterministic*
- No data races

Nested data parallelism and deterministic task parallelism differentiate Ct on
parallelizing irregular data and algorithm

“Extending” C++ for Throughput-Oriented Computing
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The Ct Surface API: Nested Data Parallelism ++
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TVECs

The basic type in Ct is a TVEC
- TVECs are managed by the Ct runtime
- TVECs are single-assignment vectors
- TVECs are (opaquely) flat, multidimensional, sparse, or nested
- TVEC values are created & manipulated exclusively through Ct API

Declared TVECs are simply references to immutable values
TVEC<F64> DoubleVec;   // DoubleVec can refer to any vector of doubles
…
DoubleVec = Src1 + Src2;
…
DoubleVec = Src3 * Src4;

Assigning a value to DoubleVec doesn’t modify the value
representing the result of the add, it simply refers to a new value.
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Ct In Action: C User Migration Path using Vector-style

float s[N], x[N], r[N], v[N], t[N];
float result[N];

for(int i = 0; i < N; i++) {
  float d1 = s[i] / ln(x[i]);
  d1 += (r[i] + v[i] * v[i] * 0.5f) * t[i];
  d1 /= sqrt(t[i]);
  float d2 = d1 – sqrt(t[i]);

  result[i] = x[i] * exp(r[i] * t[i]) *
    ( 1.0f - CND(d2)) + (-s[i]) * (1.0f - CND(d1));
}

#include <ct.h>

T s[N], x[N], r[N], v[N], t[N];
T result[N];
TVEC<T> S(s, N), X(x, N), R(r, N), V(v, N), T(t, N);

TVEC<T> d1 = S / ln(X);
d1 += (R + V * V * 0.5f) * T;
d1 /= sqrt(T);
TVEC<T> d2 = d1 – sqrt(T);

TVEC<T> tmp = X * exp(R * T) *
   ( 1.0f - CND(d2)) + (-S) * (1.0f - CND(d1));

tmp.copyOut(result, N);
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Use Animation
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Ct in Action: Kernel-style Programming with Ct Lambdas

TElt2D<F16> threebythreefun(TElt2D<F16> arg, F32 w0, F32 w1, F32 w2,
       F32 w3, F32 w4) {

 return w0*arg +
w1*arg[-1][0] +
w2*arg[0][-1] +
w3*arg[1][0] +
w4*arg[0][1];

};

TElt2D<I8> errordiffuse(TElt2D<F16> pixel) {    
   return someexpression(pixel,RESULT[-1][0],RESULT[-1][-1],RESULT[0][-1]);
};

TVEC2D<F16, defaultvalue> colorplane, filteredcolors;
TVEC2D<I8, defaultvalue> ditheredcolors;
…
filteredcolors = map(threebythreefun, arg, 1/2, 1/8, 1/8, 1/8, 1/8);
ditheredcolors = map(errordiffuse, filteredcolors);

Ct element-wise
function

Element-wise
argument and result

Relative indexing
for neighboring

values

Dependences on
neighboring results
(wavefront pattern)

Simple interface for
applying these

“kernels”
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The Ct Threading Model
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Dataflow is back!

One way of looking at Ct:
 A declarative way to specify complex task graphs

What we needed:
 Fine-grained concurrency and synchronization support
- A bunch of lightweight tasks arranged in a dependency graph

 Novel optimizations and usage patterns
- Reuse of task graph (called future-graph)
- Incremental/adaptive update of FG

What we came up with:
 A super-lightweight futures-based threading abstraction
 Primitives for bulk creation of futures and complex synchronization

 Building blocks for dataflow-style task graphs
 Composable first-class objects to enable dynamic optimization
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Feather-weight “Threads”: Futures

Futures: (Almost) stateless task

 API: Spawn & Read
 Futures can be in one of 3 states
- Unevaluated: can be “stolen” or evaluated by reader
- Evaluating: reader should wait for the result
- Evaluated: reader can just grab the result

 Scheduled using distributed queues
- Enqueued futures serviced by underlying worker threads

 Futures-creation about 2-3 orders of magnitude less expensive than
thread creation

fn

args

result
= fn(args)
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Simplifying Complexity through Data-parallel Patterns

Element-wise operations
e.g. A[] = B[]+C[]

Reduction

Prefix
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 Enable automatic dynamically configurable parallelism

High-Level Primitives

Setup

fn fn fn fnCompute

Setup

fn fn fn fnCompute

numSpawns

Args

Args

Barrier

A[] = B[] + C[]

D[] = A[] * 2

addaddaddadd

addaddaddadd

                                    n-1
AddScan(A) // A[i] = °∆0 A[n]
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Future Graphs Reuse and Adaptivity
 Abstraction for collectively manipulating about groups of futures

- Generic reuse in code (esp. loops)
- Play with funky scheduling algorithms

 3 Basic operations: Creation, Instantiation, Evaluation

Task 1

Task 2

Task 3

Task 4

Static Future Graph

Dynamic Future 
Graph

Output Nodes

Input Nodes
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Task Parallelism in Ct

Two options:
Futures and HSTs (Hierarchical, Synchronous Tasks)

 Futures
- Basically, any Ct Function/Lambda can be spawned off as an

parallel task (can include both scalar and vector code)
 HSTs
- A sensible generalization of Bulk Synchronous Processes
- Regions can be hierarchical
- Bodies of tasks can be mix of data parallel and scalar code

 More details: offline
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What Is Ct?

 Ct adds new data types (parallel vectors) & operators to C++
- Library interface and is ANSI/ISO-compliant

 Ct abstracts away architectural details
- Vector ISA width / Core count / Memory model / Cache sizes

 Ct forward-scales software written today
-  Ct platform-level API is designed to be dynamically retargetable to SSE, SSEx, ISA x,

etc

 Ct is deterministic*
- No data races

Nested data parallelism and deterministic task parallelism differentiate Ct on
parallelizing irregular data and algorithms

For more information: www.intel.com/go/Ct
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