(intel?eap .

Throughput Computing
GiNeSL and SISAL through C++

Mohan Rajagopalan
Anwar Ghuloum

© 2007 Intel Corporation

Looking Backwards and Forwards

® "There are no new ideas...”
- Silicon trends introduce new opportunities to revisit
> Parallel programming models
> Parallel applications/algorithms
- ...on a much different scale
® " _.but much room for improvement...”
- Modern programming methods require rethinking
>Dynamic compilation, managed runtimes
>Fine grained modularity

> Exceptionally complex and diverse patterns in single
applications
e Cf: Games!

¢ " _.and new usages.”
- Parallel incremental/adaptive (re)computation

What Software Vendors are Telling Us

® Strong interest by ISVs for a parallel programming model which is:
- Easy to use and high performance: sounds difficult already!

- Portable: Desire the flexibility to target various HW platforms and adapt
to future variations

®* Programming parallel applications is 10,100,1000x* /ess productive
than sequential
- Non-deterministic programming errors
- Performance tuning is extremely microarchitecture-dependent
* Parallel HW is here today, better programming tools are needed to
take advantage of these capabilities
- Quad core on desktop arrived nearly a year months ago
- Multi- and Many-core DP and MP machines are on the way
- (Also, programmable GPUs going on 8 years)

*Depends on which developer you ask.

Why We Started With Ct

* We moved from video algorithms to physics kernels
* Rigid Body Dynamics
* Broad and narrow-phase collision
* Solvers
e Cloth Simulation

* Found it painful to program using “legacy” parallel
programming models

* Not surprisingly, same concerns as software vendors

* (Nested) data parallel models make it easier

TVEC<I32> cols, TVEC<F64> v

TVEC<F64> expv, product, result;
expv = distribute(v,cols);

Ct: <6 lin
faste

product = A*expv;
return addReduce(product);

Irregular Data Structures

1]2/0 123288 values
8 8 —>] columns
0 0]0[2[30IEIS] v

index

Flattened representation with
column & row metadata

N

oW o

4 element vector of
variable length
vectors

4x4 sparse
matrix

® A classic example: Sparse matrices
- Common in RMS applications
- Difficult for a programmer to deal with

Nested data parallelism handles irregular
structures automatically

intel)

Why Dataflow is Interesting

® Data isolation

- Spatio-temporal localization of effects leads to desirable
properties for parallelize

—>Locality preserved
—Safety is guaranteed
®* Required agility for many-core
- Scaling
> Stretching “horizontally” to more threads, smaller footprints

> Stretching “vertically” to control memory bandwidth,
arithmetic intensity

- Adaptivity
>For incremental recomputation
> Intelligent, scalable synchronization/scheduling algorithms

intel)

Language Vehicle for General Purpose Parallel Programming

Ct Api
- Nested Data Parallelism
- Deterministic Task Parallelism

Deterministic parallel programming

Fine grained concurrency and synch
Dynamic (JIT) compilation
High-performance memory management

Forward-scaling binaries for SSEx, ISAx

Parallel application library development

Performance tools for future architectures

What Is Ct?
‘Extending” C++ for Throughput-Oriented Computing

®* Ct adds new data types (parallel vectors) & operators to C++
- Library interface and is ANSI/ISO-compliant
® Ct abstracts away architectural details

- Vector ISA width / Core count / Memory model / Cache sizes

® Ct forward-scales software written today

- Ct platform-level APl is designed to be dynamically retargetable to SSE, SSEx, ISA x,
etc

®* (Ctis deterministic*

- No data races

Nested data parallelism and deterministic task parallelism differentiate Ct on
parallelizing irregular data and algorithm

The Ct Surface API: Nested Data Parallelism ++

TVECs

The basic type in Ctisa TVEC

TVECs are managed by the Ct runtime

TVECs are single-assignment vectors

TVECs are (opaquely) flat, multidimensional, sparse, or nested
TVEC values are created & manipulated exclusively through Ct API

Declared TVECs are simply references to immutable values
TVEC<F64> DoubleVec; // DoubleVec can refer to any vector of doubles

BoubleVec = Srcl + Src2;

DoubleVec = Src3 * Src4;

Assigning a value to DoubleVec doesn’t modify the value
representing the result of the add, it simply refers to a new value.

intel)

Ct In Action: C User Migration Path using Vector-style

1
#include <ct.h>
float s[N], x[N], r[N], vI[N], t[N] T s[N], x[N], r[N], v[N], t[N];
float result[N]; 2 T result[N];
TVEC<T> S(s, N), X(x, N), R(r, N), V(v, N), T(t, N);
for (int i = 0; i < N; i++) (4
oat = s[1 n(x{i TVEC<T> dl = S 1n (X);
dl += (r[i] + vI[i] * v[i] * 0.5f) * t[i] dl += (R + V * V * 0.5f) * T;
dl /= sqgrt(t[i]); dl /= sqgrt(T);
float d2 = dl - sqgrt(t[i]); TVEC<T> d2 = dl - sqrt(T);
result[i] = x[i] * exp(r[i] * t[i]) * TVEC<T> tmp = X * exp(R * T) *
(1.0f - CND(d2)) + (-s[i]) * (1.0f - CND(d1l)); (1.0f - CND(d2)) + (-S) * (1.0f - CND(d1l));
) 5

Use Animation

tmp.copyOut (result, N);

Ct in Action: Kernel-style Programming with Ct Lambdas

Ct element-wise
function

TELt2D<Flo> threebyth'eeFun(TElt4D<F16> arg, F32 w@, F32 wl, F32 w4,
F32 w3, F32 w4) {

return wo Element-wise
wi*arg[-1][@] + argument and result
n2*arg[@][F1] +
w3*arg[1][p] + Relative indexing
va*arg[@1[]1]; for neighboring

b values

TELt2D<I8> errongrffuseEtt2B<Fptxet—t
return someexpression(pixel ,RESULT[-1][@],RESULT[-1][-1],RESULT[O][-1]1);

¥ Dependences on
neighboring results
TVEC2D<F16, defaultvalue> colorplane, filteredcolors; (wavefront pattern)

TVEC2D<I8, defaultvalue> ditheredcolors;

Simple interface for

ditheredcolors =|map(errordiffuse, filteredcolors); apl?\/ é%’el;ggse

filteredcolors =:Tff]threebythreefun, arg, 1/2, 1/8, 1/8, 1/8, 1/8);
m

The Ct Threading Model

Dataflow is back!

One way of looking at Ct:
A declarative way to specify complex task graphs
What we needed:
® Fine-grained concurrency and synchronization support
- A bunch of lightweight tasks arranged in a dependency graph
®* Novel optimizations and usage patterns

- Reuse of task graph (called future-graph)
- Incremental/adaptive update of FG

What we came up with:

® A super-lightweight futures-based threading abstraction

® Primitives for bulk creation of futures and complex synchronization
- Building blocks for dataflow-style task graphs

®* Composable first-class objects to enable dynamic optimization

intel)

Feather-weight “Threads”: Futures

Futures: (Almost) stateless task

args

L= fn(args) j

* API: Spawn & Read G
® Futures can be in one of 3 states

- Unevaluated: can be “stolen” or evaluated by reader

- Evaluating: reader should wait for the result

- Evaluated: reader can just grab the result
® Scheduled using distributed queues

- Enqueued futures serviced by underlying worker threads

® Futures-creation about 2-3 orders of magnitude less expensive than
thread creation

Simplifying Complexity through Data-parallel Patterns

Element-wise operations
e.g. A[] = B[]+C[]

e

Reduction

Prefix

Imitives

h-Level Pri

Hig

n-1
AA[Nn]

- O

c I
(0)) -
u — Tl
O <
f— ~
O ~
| -
©
Q

)
U <L
i N
o
© [
o (8]
- 7))
o 3
U
c <
@)
@)
>
©
O

® Enable automatic dynam
A[] = B[] + C[]

ettty

+,
Fir

T

o

R
+++j |

S
S

o

T,
Lttty
Gk

nuymSpawns

= A[1*27

D[]

Future Graphs Reuse and Adaptivity

® Abstraction for collectively manipulating about groups of futures
- Generic reuse in code (esp. loops)
- Play with funky scheduling algorithms

® 3 Basic operations: Creation, Instantiation, Evaluation

Input Nodes

Static Future Graph

Task 1 F---~.

Task 2

/

Task 3 ===~

v /

Task 4 ----._

Output Nodes

Task Parallelism in Ct

Two options:
Futures and HSTs (Hierarchical, Synchronous Tasks)

® Futures

- Basically, any Ct Function/Lambda can be spawned off as an
parallel task (can include both scalar and vector code)

® HSTs

- A sensible generalization of Bulk Synchronous Processes
- Regions can be hierarchical
- Bodies of tasks can be mix of data parallel and scalar code

®* More details: offline

What Is Ct?

®* Ct adds new data types (parallel vectors) & operators to C++
- Library interface and is ANSI/ISO-compliant

Ct abstracts away architectural details

- Vector ISA width / Core count / Memory model / Cache sizes

Ct forward-scales software written today

- Ct platform-level APl is designed to be dynamically retargetable to SSE, SSEx, ISA x,
etc

® (Ctis deterministic*
- No data races

Nested data parallelism and deterministic task parallelism differentiate Ct on
parallelizing irregular data and algorithms

For more information: www.intel.com/go/Ct

