
© 2007 Intel Corporation

Ct: C for Throughput Computing
Channeling NeSL and SISAL through C++

Mohan Rajagopalan
Anwar Ghuloum

2

Looking Backwards and Forwards

 “There are no new ideas...”
- Silicon trends introduce new opportunities to revisit

>Parallel programming models
>Parallel applications/algorithms

- …on a much different scale

 “…but much room for improvement…”
- Modern programming methods require rethinking

>Dynamic compilation, managed runtimes
>Fine grained modularity
>Exceptionally complex and diverse patterns in single

applications
• Cf: Games!

 “…and new usages.”
- Parallel incremental/adaptive (re)computation
- Forward scaling

3

What Software Vendors are Telling Us

 Strong interest by ISVs for a parallel programming model which is:
- Easy to use and high performance: sounds difficult already!

- Portable: Desire the flexibility to target various HW platforms and adapt
to future variations

 Programming parallel applications is 10,100,1000x* less productive
than sequential
- Non-deterministic programming errors

- Performance tuning is extremely microarchitecture-dependent

 Parallel HW is here today, better programming tools are needed to
take advantage of these capabilities
- Quad core on desktop arrived nearly a year months ago

- Multi- and Many-core DP and MP machines are on the way

- (Also, programmable GPUs going on 8 years)

*Depends on which developer you ask.

4

Why We Started With Ct

 We moved from video algorithms to physics kernels
 Rigid Body Dynamics

 Broad and narrow-phase collision
 Solvers

 Cloth Simulation

 Found it painful to program using “legacy” parallel
programming models

 Not surprisingly, same concerns as software vendors

 (Nested) data parallel models make it easier

C with
Explicit

Parallelism
alone:

172 lines
of code

Ct: <6 lines of code,
faster, scalable

TVEC<F64> smvpCSC(TVEC<F64> A,
TVEC<I32> cols, TVEC<F64> v)

{
 TVEC<F64> expv, product, result;
 expv = distribute(v,cols);
 product = A*expv;
 return addReduce(product);
}

5

 A classic example: Sparse matrices
- Common in RMS applications
- Difficult for a programmer to deal with

Irregular Data Structures

1 2
0 0

0 5
0 6

0 3
0 0

0 0
4 7

4x4 sparse
matrix

1 2 5
63

4

7

4 element vector of
variable length

vectors

Nested data parallelism handles irregular
structures automatically

Flattened representation with
column & row metadata

1 2 3 4 5 6 7

0 1 3 4

0 0 2 3 0 1 3

columns
row

index

values

6

Why Dataflow is Interesting

 Data isolation
- Spatio-temporal localization of effects leads to desirable

properties for parallelize
Locality preserved
Safety is guaranteed

 Required agility for many-core
- Scaling

>Stretching “horizontally” to more threads, smaller footprints
>Stretching “vertically” to control memory bandwidth,

arithmetic intensity
- Adaptivity

>For incremental recomputation
>Intelligent, scalable synchronization/scheduling algorithms

7

Language Vehicle for General Purpose Parallel Programming
Platform

Ct Api
- Nested Data Parallelism
- Deterministic Task Parallelism

Fine grained concurrency and synch

Dynamic (JIT) compilation

High-performance memory management

Forward-scaling binaries for SSEx, ISAx

Parallel application library development

Performance tools for future architectures

Deterministic parallel programming

8

What Is Ct?

 Ct adds new data types (parallel vectors) & operators to C++
- Library interface and is ANSI/ISO-compliant

 Ct abstracts away architectural details
- Vector ISA width / Core count / Memory model / Cache sizes

 Ct forward-scales software written today
- Ct platform-level API is designed to be dynamically retargetable to SSE, SSEx, ISA x,

etc

 Ct is deterministic*
- No data races

Nested data parallelism and deterministic task parallelism differentiate Ct on
parallelizing irregular data and algorithm

“Extending” C++ for Throughput-Oriented Computing

9

The Ct Surface API: Nested Data Parallelism ++

10

TVECs

The basic type in Ct is a TVEC
- TVECs are managed by the Ct runtime
- TVECs are single-assignment vectors
- TVECs are (opaquely) flat, multidimensional, sparse, or nested
- TVEC values are created & manipulated exclusively through Ct API

Declared TVECs are simply references to immutable values
TVEC<F64> DoubleVec; // DoubleVec can refer to any vector of doubles
…
DoubleVec = Src1 + Src2;
…
DoubleVec = Src3 * Src4;

Assigning a value to DoubleVec doesn’t modify the value
representing the result of the add, it simply refers to a new value.

11

Ct In Action: C User Migration Path using Vector-style

float s[N], x[N], r[N], v[N], t[N];
float result[N];

for(int i = 0; i < N; i++) {
 float d1 = s[i] / ln(x[i]);
 d1 += (r[i] + v[i] * v[i] * 0.5f) * t[i];
 d1 /= sqrt(t[i]);
 float d2 = d1 – sqrt(t[i]);

 result[i] = x[i] * exp(r[i] * t[i]) *
 (1.0f - CND(d2)) + (-s[i]) * (1.0f - CND(d1));
}

#include <ct.h>

T s[N], x[N], r[N], v[N], t[N];
T result[N];
TVEC<T> S(s, N), X(x, N), R(r, N), V(v, N), T(t, N);

TVEC<T> d1 = S / ln(X);
d1 += (R + V * V * 0.5f) * T;
d1 /= sqrt(T);
TVEC<T> d2 = d1 – sqrt(T);

TVEC<T> tmp = X * exp(R * T) *
 (1.0f - CND(d2)) + (-S) * (1.0f - CND(d1));

tmp.copyOut(result, N);

1

4

2

3

5

Use Animation

12

Ct in Action: Kernel-style Programming with Ct Lambdas

TElt2D<F16> threebythreefun(TElt2D<F16> arg, F32 w0, F32 w1, F32 w2,
 F32 w3, F32 w4) {

 return w0*arg +
w1*arg[-1][0] +
w2*arg[0][-1] +
w3*arg[1][0] +
w4*arg[0][1];

};

TElt2D<I8> errordiffuse(TElt2D<F16> pixel) {
 return someexpression(pixel,RESULT[-1][0],RESULT[-1][-1],RESULT[0][-1]);
};

TVEC2D<F16, defaultvalue> colorplane, filteredcolors;
TVEC2D<I8, defaultvalue> ditheredcolors;
…
filteredcolors = map(threebythreefun, arg, 1/2, 1/8, 1/8, 1/8, 1/8);
ditheredcolors = map(errordiffuse, filteredcolors);

Ct element-wise
function

Element-wise
argument and result

Relative indexing
for neighboring

values

Dependences on
neighboring results
(wavefront pattern)

Simple interface for
applying these

“kernels”

13

The Ct Threading Model

14

Dataflow is back!

One way of looking at Ct:
 A declarative way to specify complex task graphs

What we needed:
 Fine-grained concurrency and synchronization support
- A bunch of lightweight tasks arranged in a dependency graph

 Novel optimizations and usage patterns
- Reuse of task graph (called future-graph)
- Incremental/adaptive update of FG

What we came up with:
 A super-lightweight futures-based threading abstraction
 Primitives for bulk creation of futures and complex synchronization

 Building blocks for dataflow-style task graphs
 Composable first-class objects to enable dynamic optimization

15

Feather-weight “Threads”: Futures

Futures: (Almost) stateless task

 API: Spawn & Read
 Futures can be in one of 3 states
- Unevaluated: can be “stolen” or evaluated by reader
- Evaluating: reader should wait for the result
- Evaluated: reader can just grab the result

 Scheduled using distributed queues
- Enqueued futures serviced by underlying worker threads

 Futures-creation about 2-3 orders of magnitude less expensive than
thread creation

fn

args

result
= fn(args)

16

Simplifying Complexity through Data-parallel Patterns

Element-wise operations
e.g. A[] = B[]+C[]

Reduction

Prefix

17

 Enable automatic dynamically configurable parallelism

High-Level Primitives

Setup

fn fn fn fnCompute

Setup

fn fn fn fnCompute

numSpawns

Args

Args

Barrier

A[] = B[] + C[]

D[] = A[] * 2

addaddaddadd

addaddaddadd

 n-1
AddScan(A) // A[i] = °∆0 A[n]

18

Future Graphs Reuse and Adaptivity
 Abstraction for collectively manipulating about groups of futures

- Generic reuse in code (esp. loops)
- Play with funky scheduling algorithms

 3 Basic operations: Creation, Instantiation, Evaluation

Task 1

Task 2

Task 3

Task 4

Static Future Graph

Dynamic Future
Graph

Output Nodes

Input Nodes

19

Task Parallelism in Ct

Two options:
Futures and HSTs (Hierarchical, Synchronous Tasks)

 Futures
- Basically, any Ct Function/Lambda can be spawned off as an

parallel task (can include both scalar and vector code)
 HSTs
- A sensible generalization of Bulk Synchronous Processes
- Regions can be hierarchical
- Bodies of tasks can be mix of data parallel and scalar code

 More details: offline

20

What Is Ct?

 Ct adds new data types (parallel vectors) & operators to C++
- Library interface and is ANSI/ISO-compliant

 Ct abstracts away architectural details
- Vector ISA width / Core count / Memory model / Cache sizes

 Ct forward-scales software written today
- Ct platform-level API is designed to be dynamically retargetable to SSE, SSEx, ISA x,

etc

 Ct is deterministic*
- No data races

Nested data parallelism and deterministic task parallelism differentiate Ct on
parallelizing irregular data and algorithms

For more information: www.intel.com/go/Ct

21

