Easy-to-Write & Scalable
Shared-Memory Applications
with Transactions

Christos Kozyrakis

Computer Systems Laboratory
Stanford University
http://csl.stanford.edu/~christos

Parallelism is Finally Mainstream...

e All computer vendors are now building multiprocessors
= Diminishing returns from uniprocessor architectures
m 4 8,106, ..., 1024, ... processors on a chip

e Scientific computing no longer a niche

= All programs must now become parallel programs
— Need: practical & efficient parallel model

= Parallel programs must be scalable and portable
— Need: write code once, run efficiently at any scale

e This talk

® | ook at a promising solution from mainstream computing
— Transaction-based shared-memory

= Can it help with large-scale parallel computing?

C. Kozyrakis, February 2006

The State of the Art

e Shared-memory multiprocessors
® |Implicit communication hidden from programmer
= Easy to write first version; difficult to optimize
= Difficult to write SM programs with >16 CPUs (NUMA)

e Message-passing multiprocessors
= Explicit communication orchestrated by programmer
= Difficult to write first version; simpler to tune afterwards

= MPI: the defacto standard for large-scale machines
— But too painful to use in most commercial environments

e Common pains
® Programmer productivity suffers
= Architectural knowledge required to tune performance
® Each 10x increase in scale requires revisiting everything

C. Kozyrakis, February 2006

The Quest for Scalable Parallelism

e Summary: we want SM ease with MP performance

e Application characteristics
® | arge data-sets that stress caches and interconnects
® [rregular & adaptive patterns that complicate programming

e Detailed requirements

® Scalable execution resources (FLOPS)

— This is the easy part of the problem
= Efficient mechanisms to manage locality & communication
= Methods to instrument & analyze system behavior
= Methods to dynamically tune program to system behavior
= Reliable operation in the presence of faults

C. Kozyrakis, February 2006

Transactional Memory (TM) 101

e Shared-memory with transactional semantics
" Program access shared data using atomic tasks
= System provides atomicity, isolation, and consistency

e Parallel performance through optimistic concurrency
= Assume independence and execute without any locks
= |f not true, abort and re-execute

e TM simplifies parallel programming

= Coarse-grain, non-blocking synchronization for parallel algorithms
= Speculative parallelization for sequential algorithms

C. Kozyrakis, February 2006

TCC: All Transactions, All The Time

CPUoO CPU1 CPU 2

1d 0xdddd
1ld Oxeeee Execute
Code 1ld Oxaaaa

st Oxbeef 1d Oxbbbb 1d Oxbeef
Execute

Code
Oxbeef

ﬂ OXbeefﬂ

LB 14 Oxbeef
Execute

Code

Transactional coherence with deadlock-freedom guarantees

Intuitive consistency model that allows aggressive re-ordering
See [ISCA’04] for details

C. Kozyrakis, February 2006

Small-scale Implementation (CMP)

Bus Arbiters

'

Private Caches Private Caches Private Caches

Lw Bus & Snoop Control '» Bus & Snoop Control L Bus & Snoop Control
A A A

Commit Bus

Refill Bus

Shared Céches

Changes for TCC support

e Similar implementations for other CMP systems

C. Kozyrakis, February 2006

Small-scale Implementation (CMP)

Speculatively-Read Bits: e Processor

Load/store ' \liolation

Speculatively-Modified Bits:
st Oxcafebabe

Commit:

Read pointers from Store
Address FIFO, flush data
with SM bits set

Violation Detection: Commit Commit

Address In Data Out
Compare incoming Commit B

address to SR bits Refil Bus

See [PACT’05] for details

C. Kozyrakis, February 2006

Small-scale Performance

scientific ¢ Al/Robotics > <(;terprisg

B8 CPUs m 16 CPUs

barnes equake water ocean [classify SPECjbb

Good performance across applications domains

Easy to program and tune using feedback from hardware
= TCC hardware continuously monitors memory accesses
= Can identify most important performance bottlenecks for programmer

C. Kozyrakis, February 2006

Large-scale Transactional Memory?

e Can TM scale beyond CMPs?

= How do you implement TM in a NUMA environment?

e Can communication be optimized automatically?
= How do you reach efficiency of message-passing model?

e Can TM assist with system reliability?
= How do we exploit the atomicity in the case of faults?

e What is the prototype system for this research?

= How do we provide a machine fast enough for scientists and
flexible enough for architects?

C. Kozyrakis, February 2006

Large-scale TCC Performance

@16 CPUs
m 32 CPUs
064 CPUs

tomcatv volrend

e Directory-based implementation for NUMA systems
= Using parallel commit with two-phase protocol
= Same execution model from programmer’s perspective

e Scalable performance for large processor counts
= | imited by dataset sizes for most of our experiments

C. Kozyrakis, February 2006

Automatic Locality Optimizations

e Build upon continuous memory monitoring
® | earn which data accessed within same transaction
® | earn associations between code and data groups
= | earn common producer/consumer patterns

e Optimizations enabled

= Aggressive prefetching without sequential patterns
= Schedule transactions close to their data
® Proactively turn transaction commits to message sends

e The overall opportunity
= Get message-passing behavior from a shared-memory system

C. Kozyrakis, February 2006

TCC Profiling Environment

e HW continuously track performance
" [og events, cause, cost
= Aggregates over multiple occurrences

Processor
Core

ﬁ L1 Cache = Periodically flush to main memory

I Overhead .
Entry

I_. Profiling accuracy
Entry

I. " Pinpoints top performance problems

~ Type of performance problem

— Related PCs, object addresses
= Optimize applications in 2-3 steps

Profiling cost

= <1% performance loss
See [ICS,O5] fOl' deta”S [| <1 % area Overhead

C. Kozyrakis, February 2006

Reliability Optimizations

e Micro-level: TM provides failure atomicity
= Fasy “undo” of computation after fault is detected
= Works with for both hardware and software faults

= Allows software to decide how to best handle error recovery
— Retry, migrate & retry, fail safely...

e Macro-level: TM simplifies app-level checkpointing
®" Transactions define clean boundaries for checkpoints
= Can take checkpoint without stopping application

e The overall opportunity

= A reliability framework that requires minimal programmer or
operator involvement

C. Kozyrakis, February 2006

The Research Infrastructure: FARM

CELL Blade Board IBM BladeCenter Chassis Blade Server Rack

CELL |cachecorerent Virtex4
[cpu T FPGA T ¢

|
MAC PCI-Expressi South 148
—| Bridge 111 |';'|'|'|’iji'
Hard-disk Bay ATA | il
—— 2x GbE =i

MAC

'|':'i'f|!|lul_lki|

L)
]
1
t
"_.lul
|

..:‘_-Z'-Jlll
T fi
1111

.l{II

¢ An industrial strength, scalable prototype
® Full chassis: 19 TFLOPS and 280GB DRAM

e Advantages
= Programmers: research features at industrial speeds
= Architects: customizable memory & communication system

C. Kozyrakis, February 2006

Conclusions

e Large-scale parallelism is now a general need
= All programs must now become parallel programs
= Parallel programs must be scalable and portable

e Transactional memory
= Shared-memory with atomicity guarantees
® Good performance with easy coding/tuning for CMPs

e TM can also help with scalable parallelism
= Automatic optimizations for locality
= Support for system reliability

e Promising direction for parallel systems research
" Hardware, runtime, programming models, ...

C. Kozyrakis, February 2006

Questions?

More info at http://tcc.stanford.edu

C. Kozyrakis, February 2006

