
Thomas Davis
Cary Whitney

The NERSC
Data Collect
Hotel

- 1 -

2/28/17

The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate
scientific discovery at the DOE Office of Science through high performance computing and data
analysis.

NERSC is the principal provider of high performance computing services to Office of Science
programs — Magnetic Fusion Energy, High Energy Physics, Nuclear Physics, Basic Energy Sciences,
Biological and Environmental Research, and Advanced Scientific Computing Research.

Computing is a tool as vital as experimentation and theory in solving the scientific challenges of the
twenty-first century. Fundamental to the mission of NERSC is enabling computational science of
scale, in which large, interdisciplinary teams of scientists attack fundamental problems in science and
engineering that require massive calculations and have broad scientific and economic impacts.
Examples of these problems include photosynthesis modeling, global climate modeling, combustion
modeling, magnetic fusion, astrophysics, computational biology, and many more

- 2 -

Who is NERSC?

Shyh Wang Hall, is a 149,000 square foot facility built on a hillside
overlooking the UC Berkeley campus and San Francisco Bay. This building
houses one of the most energy-efficient computing centers anywhere,
tapping into the region’s mild climate to cool the supercomputers at the
National Energy Research Scientific Computing Center (NERSC) and
eliminating the need for mechanical cooling.

Shyh Wang Hall on LBNL Campus

Our machine room is unique.

• Shyh Wang Hall sites about 200 yards from the Hayward Fault Line.
• Machine room floor consists of two very large tables with moats.

• We have no chillers.
• We have tower water

• Water is provided to the floor through plate-style heat exchangers
• We depend on the SF Bay area temperate climate.

• Our power comes from Western Area Power Administration (WAPA), not PGE.
• We can cause large scale power swings

• Currently 2-4MW in range
• N9 system could be in the 10-15MW range.

• Long periods of downtime also cause problems.
• Anything more than 24hrs can cause problems.

30

Ivy Bridge

134,064 Cores
357 TB Memory
5586 Nodes

Cray Dragonfly topology 23.7 TB/s bisectional bandwidth

Lustre Scratch disk space
7.56PB

168 GB/s

For only 2 MW of peak power

Edison, a Cray XC30 System

Cori, a Cray XC40 based system

12

Haswell

16,128 Cores
203 TB Memory
2004 Nodes

52

632,672 Cores
1 PB Memory
9304 Nodes

KNL

Cray Dragonfly topology 45 TB/s bisectional bandwidth

Burst Buffers
1.8PB SSD
dynamic storage

Lustre Scratch disk space
30PB

700 GB/s

For only 7 MW of peak power

HPSS archive system

• Data stored in archive system: 90 PB, >179 million files

• Growth Rate: 1 PB/month

• Current Maximum capacity: 240 Petabytes.

• Buffer (disk) cache: 288 Terabytes.

• Average transfer rate: 100 MB/sec

• Peak measured transfer rate: 1 GB/sec

Compute Floor

So, where does all the data
come from? And Why?

Data Sources

Data Volumes (Single Day)
Size (GB) doc count (M) Description

modbus 15.4 99.7 Serial based industrial devices
2500 PDU stripes and 849 PDU panels and

substation
collectd 108.75 807.8 Linux system stats
SEDC 27.6 261.4 Cray power, environmental and job
Syslog 4.25 21.95 Logs from all systems/devices of the center

weather 0.017 0.044 Davis Weather station outside
onewire 0.940 5 Computer room temperature network over 1800

sensors
upmu 0.46 0.164 High resolution power monitoring
ION 0.206 1.9 Building substation power monitoring

Total 160 1.2B

We even have a seismophone

• Power
• Used for capacity planning
• Also useful to diagnose problems.

• Environmentals
• Air Temperature
• Water Temperature
• Water Pressure
• Water Flow Rate

• Performance monitoring
• Disk I/O
• Network I/O
• Memory usage
• CPU Usage

• Security
• Future Exascale and beyond planning

• All of the above is used to plan, procure, build or remodel for the next generation systems.

Why

How we use the data.

How we use this data

Cori’s Cooling performance

B59 Power

Meter Displays

Performance Metrics

Threat Analysis

Talk, talk, talk..

• Our data collect system
• Long term archiving of data.
• Using hot, warm, and cold storage.
• Configuring elasticsearch to support this model.
• Snapshot and restore.

What we are going to talk about

Long term Archiving

Warning! Danger!

Everything we show you today is for Elasticstack v5. Many
of the concepts are the same for previous versions of the
Elasticstack, but some of the terms have changed between
major versions.

We make no guarantee that any of this will work for you.

You must do tests of any system to ensure proper
operation.

• Months, Years or even decades.
• Must be readable forever.
• Can be retrieved and restored at any time.

• Useful for long term modeling
• System modeling
• Machine room modeling
• Mechanical models

• Helps to answer ‘What if’ questions

What does ‘long term’ mean

How we achieve this

• We use a hot, warm, and cold architecture
• Hot nodes are our ingest and short term storage nodes

• Days, even weeks of data
• Warm nodes are our medium/archival storage nodes

• Weeks, months, upto a year of data
• Cold storage is done using a combination of technologies

• HPSS (High Performance Storage System)
• A very large tape storage system, with multiple very fast (10G+ jumbo

frame) connections.
• This is also a storage system used by everyone at NERSC.

• Elasticsearch snapshot/restore
• A large GlusterFS based filesystem
• Elasticsearch Curator

• Elasticsearch node attributes

The databases we use.

We use elasticsearch as our long term database.
• Time series metric type data
• System logs
• Events/Annotations

Redis is used as for several other functions.
• Tombstone database, AKA “last known value”
• Configuration
• Python RQ (Task queuing for the collectors)
• Time series caching

MariaDB is used for several support programs.
• Grafana, Opendcim, etc.

Postgresql
• BMS

Definitions

A Hot storage node has a drive subsystem configured for speed instead of capacity.
• IE, SSD/NVME based drive systems.

• We use 1TB sata drives at this time.
• PCI based drives are available if desired.

A Warm storage node has a drive subsystem configured for capacity instead of speed.
• IE, a RAID5 array of cheap, large capacity drives

• In our case, these are 5ea, 2.5” 2TB drives Linux software raid5 array.
• combined with a SATA SSD drive
• Both sets of drives are combined into one large drive using lvm-cache.

Cold storage is where the data takes time measured in seconds, minutes or even
hours to access.
• This is our large glusterfs based global filesystem
• We also copy data to/from a HPSS archive system for long term storage.

The System

Data Collect Cluster

• 8 ea Supermicro Fat Twin 4u chassis
• 8 nodes per chassis

• Minimum of 64GB per node.
• 16 CPU cores
• 10GB interface into a 10GB switch
• Some nodes have just 1TB of SSD drive space.
• Some nodes have also 5ea, 2.5” 2TB drives.

• Software
• Centos 7 based.
• Not all nodes are used for Elasticsearch.
• Ovirt 4.1 is run to provide a VM service.
• Rancher combined with VM’s from Ovirt is used to run the data collect.
• Several elasticsearch nodes (client and master) are run as VM’s.

• 3 master nodes
• 3 client nodes pooled using Consul
• Kibana, Grafana client nodes using client node pool.

• No elasticsearch client runs on these nodes.
• 19 ea Hot storage nodes
• 10 ea Warm storage nodes

Supermicro FatTwin

Elasticsearch configuration

Now that we have defined our hot/warm storage nodes, this is where node
attributes in elasticsearch comes in.

We define two types of attributes

• An attribute that defines what type of node
• This can be either ‘ssd’ or ‘archive’.

• An attribute that defines physical location data of the node.
• Normally based on a chassis, ie ‘c0’.

The attributes are used by the system to place the indexes on the correct node.
We do not want ingest data going to an archive node, and we do not want to use
a SSD node for archival data.

Elasticsearch Node Attributes

node:
data: true
master: false
name: ${HOSTNAME}
attr:
chassis_id: c0
tag: ssd

path:
data: /ssd/elastic
repo: /glusterfs/ec0/es5

Elasticsearch Config - SSD Node

node:
data: true
master: false
name: ${HOSTNAME}
attr:
chassis_id: c0
tag: archive

path:
data: /data/elastic
repo: /glusterfs/ec0/es5

Elasticsearch Config - Archive Node

• Several technologies
• HPSS.

• Uncompressed data is best
• We let the tape drives do the compression

• Dual 10g Jumbo framed interfaces into this system
• Capable of over 5GB/s transfer rates

• GlusterFS
• Elasticsearch snapshot/restore needs a global filesystem.

• Elasticsearch snapshot/restore
• Elasticsearch Curator v4
• Shell scripts
• Rundeck to run jobs

• Cron can also do this.

Cold Storage

Scripts

Curator config set an archive tag
actions:

1:
action: allocation
options:

key: tag
value: archive
allocation_type: require
wait_for_completion: False
timeout_override:
continue_if_exception: False

filters:
- filtertype: pattern

kind: regex
value: .*
exclude:

- filtertype: age
source: creation_date
direction: older
unit: days
unit_count: 4
exclude:

Snapshots

• One Snapshot, One Repository per daily index.
• We create repo’s on a per-index basis
• Never shared.
• One per day, one per index.
• Each index becomes a tar file

• Not compressed due to how the tape storage unit works.
• Built using

• Curator 4.0
• Bash scripts
• Large glusterfs volume

• 30TB usable space
• Built using erasure codes, not replication.
• Glusterfs file sharding for performance.

Daily cold storage routine.

Cold Storage script
#!/bin/sh
MASTER="es5-client-pool.service.consul"
curator --config /home/tdavis/.curator/curator.yml /home/tdavis/curator/archive-allocation
curator --config /home/tdavis/.curator/curator.yml /home/tdavis/curator/force-merge
INDEXS=$(curator_cli --host $MASTER show_indices \

--filter_list '[{"filtertype":"age","source":"creation_date","direction":"older","unit":"days","unit_count":2},\
{"filtertype":"age","source":"creation_date","direction":"younger","unit":"days","unit_count":3 }]'|grep -v ".monitoring-")

for INDEX in $INDEXS
do

echo index: $INDEX
LOCATION="/glusterfs/ec0/es5/"$INDEX
echo LOCATION: $LOCATION
curl --silent -XPOST http://$MASTER:9200/_snapshot/$INDEX \
-d '{ "type": "fs", "settings": { "location": "/glusterfs/ec0/es5/'$INDEX'", "compress":”true”,"max_snapshot_bytes_per_sec":"200m" } }'
echo
curl --silent -XPOST http://$MASTER:9200/_snapshot/${INDEX}/${INDEX}?wait_for_completion=true \
-d '{ "indices": "'$INDEX'", "ignore_unavailable": "true", "include_global_state":false }'
echo
sleep 300

done
YM=$(date +"%Y.%m")
DIR=/glusterfs/ec0/es5/archive
if [! -d /glusterfs/ec0/es5-snap/$YM];then

mkdir -p $DIR/$YM
fi
for INDEX in $INDEXS
do

echo Creating tar file $INDEX.tar
cd /glusterfs/ec0/es5
tar cf $DIR/$YM/$INDEX.tar $INDEX

done
ssh d8-r13-c4-n8 /root/xfer.sh

loop-de-loop

for I in $INDEXS
do

curl --silent -XPOST http://$M/_snapshot/$I \
-d '{ "type": "fs", "settings": { \
"location": "/glusterfs/ec0/es5/'$I'", \
"compress":”true”,"max_snapshot_bytes_per_sec":"200m" } }'

echo
curl --silent -XPOST \

http://$M/_snapshot/${I}/${I}?wait_for_completion=true \
-d '{ "indices": "'$I'", "ignore_unavailable": "true", \
"include_global_state":false }'

echo
sleep 300

done

Restoring indexes

#!/bin/sh
MASTER="es5-client-pool.service.consul:9200"
cd /glusterfs/ec0/elasticsearch/restore
INDEXES=$(echo *.tar)
cd /glusterfs/ec0/snap
for IDX in $INDEXES
do

INDEX=$(echo $IDX | awk -F. '{ print $1 "." $2 "." $3 }')
echo index: $INDEX
LOCATION="/glusterfs/ec0/snap/"$INDEX
TAR="/glusterfs/ec0/elasticsearch/restore/"$INDEX".tar"
echo LOCATION: $LOCATION TAR: $TAR
curl -XPOST http://$MASTER/_snapshot/$INDEX \
-d '{ "type": "fs", "settings": { "location": "/glusterfs/ec0/snap/'$INDEX'", "compress": true } }'

echo
echo "restoring tar file into snapshot.."
tar xf $TAR
curl -XPOST http://$MASTER/_snapshot/${INDEX}/${INDEX}/_restore \
-d '{ "indices": "'$INDEX'", "ignore_unavailable": "true", "include_global_state": false }'

echo
echo "sleeping for 10 seconds.."
sleep 10

done

Restore Script

Waiting for a green state

while (true)
do

STATUS=$(curl -s -X GET http://$MASTER/_cluster/health?pretty=true| \
grep "status" | awk '{ print $3 }' | cut -f1 -d",")

RELOCATING=$(curl -s -X GET http://$MASTER/_cluster/health?pretty=true | \
grep "relocating_shards" | awk '{ print $3 }' | cut -f1 -d",")

INITIALIZING=$(curl -s -X GET http://$MASTER/_cluster/health?pretty=true | \
grep "initializing_shards" | awk '{ print $3 }' | cut -f1 -d",")

UNASSIGNED=$(curl -s -X GET http://$MASTER/_cluster/health?pretty=true | \
grep "unassigned_shards" | grep -v "delayed" | awk '{ print $3 }' | cut -f1 -d",")

echo STATUS: $STATUS RELOCATING: $RELOCATING \
INITIALIZING: $INITIALIZING UNASSIGNED: $UNASSIGNED

if [$STATUS == '"green"' -a $RELOCATING == 0 -a $INITIALIZING == 0 -a $UNASSIGNED
== 0]

then
break

fi
sleep 2

done

Sunset at Shyh Wang Hall

Questions

